JPH0258833B2 - - Google Patents

Info

Publication number
JPH0258833B2
JPH0258833B2 JP56086936A JP8693681A JPH0258833B2 JP H0258833 B2 JPH0258833 B2 JP H0258833B2 JP 56086936 A JP56086936 A JP 56086936A JP 8693681 A JP8693681 A JP 8693681A JP H0258833 B2 JPH0258833 B2 JP H0258833B2
Authority
JP
Japan
Prior art keywords
gain
circuit
output
variable gain
amplifier circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56086936A
Other languages
Japanese (ja)
Other versions
JPS57202179A (en
Inventor
Yoshihiro Todaka
Kentaro Hanma
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP56086936A priority Critical patent/JPS57202179A/en
Publication of JPS57202179A publication Critical patent/JPS57202179A/en
Publication of JPH0258833B2 publication Critical patent/JPH0258833B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/67Focus control based on electronic image sensor signals
    • H04N23/673Focus control based on electronic image sensor signals based on contrast or high frequency components of image signals, e.g. hill climbing method

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Automatic Focus Adjustment (AREA)

Description

【発明の詳細な説明】 本発明はビデオカメラ等の自動焦点合わせ装置
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an automatic focusing device for a video camera or the like.

ビデオカメラの特徴を生かした自動焦点合わせ
装置として撮影中の映像信号の高域成分を用いて
画面の精細度を検出し、精細度が最大となるよう
にレンズの距離環(以後ヘリコイドと表わす)を
回転制御するいわゆる山登り制御が知られてい
る。この方式はNHK技術研究報告、昭40、第17
巻、第1号、通巻第86号21ページに石田他著「山
登りサーボ方式によるテレビカメラの自動焦点調
整」として詳細に述べられているが以下この方式
を第1図,第2図を用いて簡単に説明する。
As an automatic focusing device that takes advantage of the characteristics of a video camera, it detects the definition of the screen using the high-frequency components of the video signal being shot, and adjusts the distance ring (hereinafter referred to as helicoid) of the lens to maximize the definition. So-called hill-climbing control, which controls the rotation of the This method was published in NHK Technical Research Report, 1966, No. 17.
Volume, No. 1, Volume 86, page 21, it is described in detail by Ishida et al. as ``Automatic focus adjustment of a television camera using a mountain-climbing servo method.'' This method will be explained below using Figures 1 and 2. Explain briefly.

第1図は山登り方式による自動焦点合わせ装置
の構成を示すブロツク図である。同図において1
はレンズ、2は光電変換回路、3は映像信号の出
力端子、4はハイバスフイルタ、5は検波器、6
は差分ホールド回路、7はモータ駆動回路、8は
レンズ1のヘリコイドを回転するためのモータで
ある。
FIG. 1 is a block diagram showing the structure of an automatic focusing device using a hill climbing method. In the same figure, 1
is a lens, 2 is a photoelectric conversion circuit, 3 is a video signal output terminal, 4 is a high-bass filter, 5 is a detector, 6
7 is a differential hold circuit, 7 is a motor drive circuit, and 8 is a motor for rotating the helicoid of the lens 1.

以下第1図の構成の動作を第2図の特性図を用
いて説明する。
The operation of the configuration shown in FIG. 1 will be explained below using the characteristic diagram shown in FIG. 2.

レンズ1に入射する被写体よりの光は結像し、
光電変換回路2で電気信号となり、端子3には映
像信号として出力される。この映像信号の高域成
分だけがハイパスフイルタ4で抽出され、検波器
5で検波された後、端子51にあらわれる。端子
51にあらわれる映像信号の高域成分に対応する
電圧(第2図曲線イ)(以後焦点電圧と表わす)
は撮影像の精細度に対応しているので、レンズ1
のヘリコイドの位置(Aとする)がレンズ1と被
写体間の距離に合致していれば最大となり、ここ
からずれるに従つて低下する。第2図で曲線ロは
ヘリコイドの位置(Aとする)がレンズ1と被写
体間の距離に合致していれば最大となり、ここか
らずれるに従つて低下する。第2図で曲線ロはヘ
リコイド位置を至近→∞方向に移動した場合の曲
線ハはヘリコイド位置を∞→至近方向に移動した
場合の差分ホールド回路6の出力端子61の出力
電圧波形を示す。
The light from the subject that enters the lens 1 forms an image,
The photoelectric conversion circuit 2 converts the signal into an electric signal, which is output to the terminal 3 as a video signal. Only the high-frequency components of this video signal are extracted by a high-pass filter 4, detected by a detector 5, and then appear at a terminal 51. Voltage corresponding to the high frequency component of the video signal appearing at terminal 51 (curve A in Figure 2) (hereinafter referred to as focal voltage)
corresponds to the definition of the photographed image, so lens 1
If the position of the helicoid (denoted as A) matches the distance between the lens 1 and the subject, it will be maximum, and as it deviates from this position, it will decrease. In FIG. 2, curve B reaches a maximum when the helicoid position (designated A) matches the distance between the lens 1 and the subject, and decreases as it deviates from this position. In FIG. 2, curve B shows the output voltage waveform of the output terminal 61 of the differential hold circuit 6 when the helicoid position is moved from close to ∞, and curve C shows the waveform of the output voltage at the output terminal 61 of the differential hold circuit 6 when the helicoid position is moved from ∞ to near.

第2図から判断されることは、何らかの手段に
よりヘリコイド位置を焦点電圧の山を登るように
制御し、焦点電圧が最大となる山の頂上にヘリコ
イドゆ導ければ自動焦点合わせ装置が形成しう
る。
What can be determined from Figure 2 is that if the helicoid position is controlled by some means so that it climbs the peak of the focal voltage, and the helicoid is guided to the top of the mountain where the focal voltage is maximum, an automatic focusing device can be formed. .

この手段は第1図の差分ホールド回路6〜モー
タ8により達せられる。すなわち、モータ8によ
りヘリコイド位置を動かしながら差分ホールド回
路は端子51にあらわれる焦点電圧を一定時間毎
にサンプルホールドし、焦点電圧が時間経過に対
して増加方向であれば正の電圧を、減少方向であ
れば負の電圧を発生する回路であり、モータ駆動
回路7は端子61にならわれる差分ホールド回路
5の出力電圧が正であればモータ8の回転方向を
そのままに保つて更に山を登りつづけ、同出力電
圧が負であればモータ8を逆転してヘリコイドを
山を上る方向へと戻す。
This means is achieved by the differential hold circuit 6 to motor 8 shown in FIG. That is, while moving the helicoid position by the motor 8, the differential hold circuit samples and holds the focal voltage appearing at the terminal 51 at fixed time intervals, and if the focal voltage is increasing over time, it will be a positive voltage, and if the focal voltage is decreasing, it will be a positive voltage. If the output voltage of the differential hold circuit 5 connected to the terminal 61 is positive, the motor drive circuit 7 keeps the rotational direction of the motor 8 as it is and continues climbing the mountain. If the output voltage is negative, the motor 8 is reversed to return the helicoid to the uphill direction.

このようにすれば第1図の構成のヘリコイド位
置制御閉ループは焦点電圧により作られる山を差
分ホールド回路6の出力電圧を参照して登つてゆ
き、ついにはこの山の頂上で小きざみに振動しな
がら定常状態に達することにより自動的に焦点合
わせができる。
In this way, the helicoid position control closed loop with the configuration shown in FIG. 1 climbs the mountain created by the focal voltage by referring to the output voltage of the differential hold circuit 6, and finally vibrates in small increments at the top of this mountain. However, by reaching a steady state, the focus can be adjusted automatically.

以上が山登り方式によるビデオカメラの自動焦
点合わせ装置である。
The above is an automatic focusing device for a video camera using the mountain climbing method.

この方式は撮影像そのものを用いて自動焦点合
わせ動作を行なうため、独立の測距機構で測距し
た結果でヘリコイド位置を開ループ制御する方式
に比べて構造も簡単で初期調整数も少なく安価に
正確な自動焦点合わせ装置を構成しうるが以下に
述べる改良すべき点を有する。
Since this method performs automatic focusing using the photographed image itself, it has a simpler structure, requires fewer initial adjustments, and is cheaper than a method that uses open-loop control of the helicoid position based on the distance measured by an independent distance measuring mechanism. Although an accurate automatic focusing device can be constructed, there are points to be improved as described below.

この改良すべき点は焦点電圧のダイナミツクレ
ンジに関することである。すなわち、カメラ回路
等の光電変換回路2の出力信号である映像信号の
振幅は光電変換回路2の自動又は手動利得調整回
路により一定値に抑えられていても、検波器5の
出力信号は映像信号に含まれている高域成分の量
に対応するため、撮映画像がりんかくのはつきり
した縦線成分をあまり含まない場合焦点電圧の山
は低く、撮影画像がりんかくのはつきりした縦線
成分を多く含む場合焦点電圧の山は高くなる。こ
の差は実際の画像においては非常に大きい。一方
検波器は主に回路の電源電圧によりダイナミツク
レンジに制限をうけるため、はつきりした縦線成
分を多く含む映像に対して検波器5の出力電圧が
飽和しないように設計すると、はつきりした縦線
成分をあまり含まない映像に対して検波器5の出
力電圧が低くなり差分ホールド回路6が動作する
に足るレベルに達しない場合が生じ、焦点電圧の
増減に対応した差分ホールド回路の出力電圧が得
られない。逆にはつきりした縦線成分をあまり含
まない映像に対して検波器5の出力電圧が山登り
動作を行なうのに十分なように焦点電圧の高さを
上げるように設計すると、はつきりした縦線成分
を多く含む映像に対して検波器5の出力電圧が飽
和して第2図に示す焦点電圧の山がつぶれされて
しまうのでこれ場合にも差分ホールド回路6には
所望の信号が供給されず、正確な山登り動作が行
なえない。
The point to be improved is the dynamic range of the focal voltage. That is, even if the amplitude of the video signal that is the output signal of the photoelectric conversion circuit 2 such as a camera circuit is suppressed to a constant value by the automatic or manual gain adjustment circuit of the photoelectric conversion circuit 2, the output signal of the detector 5 is the video signal. To correspond to the amount of high frequency components contained in When a large number of vertical line components are included, the peak of the focal voltage becomes high. This difference is very large in actual images. On the other hand, the dynamic range of the detector is mainly limited by the power supply voltage of the circuit. For images that do not contain many vertical line components, the output voltage of the detector 5 becomes low and may not reach a level sufficient for the differential hold circuit 6 to operate. Unable to obtain output voltage. On the other hand, if the height of the focal voltage is increased so that the output voltage of the detector 5 is sufficient to perform a hill-climbing operation for an image that does not contain many strong vertical line components, the result will be very clear. For images containing many vertical line components, the output voltage of the detector 5 is saturated and the peak of the focal voltage shown in FIG. 2 is crushed, so even in this case, the desired signal is supplied to the differential hold circuit 6. Therefore, accurate mountain climbing movements cannot be performed.

本発明の目的は、上記した従来技術の欠点をな
くし、撮影画像のはつきりした縦線成分が多い場
合も少ない場合も良好な山登り動作を行なうよう
に検波回路のダイナミツクレンジを拡大して、検
波器ダイナミツクレンジの不足より起こる誤動作
をなくした自動焦点合わせ装置を提供することに
ある。
An object of the present invention is to eliminate the above-mentioned drawbacks of the prior art and to expand the dynamic range of the detection circuit so as to perform a good hill-climbing operation regardless of whether there are many or few vertical line components in the photographed image. An object of the present invention is to provide an automatic focusing device that eliminates malfunctions caused by insufficient dynamic range of a detector.

第1図を用いて説明した従来の自動焦点合わせ
装置の欠点は検波器5の検波電圧のダイナミツク
レンジの不足にあつた。ダイナミツクレンジの不
足を補なる方法は何らかの自動利得制御回路によ
り、検波器5の検波電圧が飽和するのを防ぐこと
であるが、この場合通常の自動利得制御ループを
使うことができない。すなわち、通常の自動利得
制御ループでは検波電圧そのものを一定値となる
よう閉ループ制御をかけるため、焦点電圧の山そ
のものが平担化されるので山登り回路が動作しな
くなつてしまう。
The drawback of the conventional automatic focusing device explained using FIG. 1 is that the dynamic range of the detection voltage of the detector 5 is insufficient. A way to compensate for the lack of dynamic range is to use some kind of automatic gain control circuit to prevent the detection voltage of the detector 5 from becoming saturated, but in this case a normal automatic gain control loop cannot be used. That is, in a normal automatic gain control loop, closed loop control is performed so that the detected voltage itself remains at a constant value, so the peak of the focal voltage itself is flattened, and the hill climbing circuit becomes inoperable.

そこで本発明では焦点電圧がある定めた閾値よ
り大きくなり飽和する恐れのある場合、検波器の
感度を一段下げ、また逆に焦点電圧がある定めた
閾値より小さくなり差分ホールド回路の出力電圧
が現われない恐れのある場合には検波器の感度を
一段上げ、段階的に感度を切り替えることにより
適性な検波器感度を保つように調整する。ところ
が感度を切り替えた瞬間、感度を切替えたことに
よる検波器出力変化によつて差分ホールド回路か
ら誤つた出力が出る。この誤出力は一瞬ではある
が、山登り方式のオートフオーカスでは差分ホー
ルド回路の出力だけを頼りにモータを制御してい
るため、この瞬時の誤出力によりモータが反転し
てしまう場合が生じ、致命的な誤動作につなが
る。これを防ぐため、感度を切り替えた場合合焦
ループを、少なくとも切り替える前の検波出力が
差分ホールド回路にホールドされている周期の間
以上開いて合焦動作を止めた後、合焦動作を再開
する。このとき、距離環は感度切り替え前と同一
方向へ回転させるようにし、再び合焦動作を始め
ても正しく山を登るようにする。
Therefore, in the present invention, when the focal voltage becomes larger than a certain threshold value and there is a risk of saturation, the sensitivity of the detector is lowered by one step, and conversely, when the focal voltage becomes smaller than a certain threshold value, the output voltage of the differential hold circuit appears. If there is a possibility that the detector is not detected, increase the sensitivity of the detector by one step and adjust the sensitivity to maintain an appropriate detector sensitivity by changing the sensitivity in stages. However, at the moment the sensitivity is switched, an erroneous output is output from the differential hold circuit due to the change in the detector output caused by the sensitivity switch. Although this erroneous output is instantaneous, since the mountain-climbing autofocus relies only on the output of the differential hold circuit to control the motor, this instantaneous erroneous output can cause the motor to reverse, which can be fatal. This may lead to malfunction. To prevent this, when switching the sensitivity, the focusing loop is opened for at least the period in which the detection output before switching is held in the differential hold circuit, and the focusing operation is stopped, and then the focusing operation is restarted. . At this time, the distance ring is rotated in the same direction as before the sensitivity switch, so that it will climb the mountain correctly even if the focusing operation is started again.

第3図に本発明の一実施例をブロツク図で示
す。同図中の1〜9は第1図に示した同一番号の
ブロツクと同一機能を有するブロツクである。第
3図中の10は階段状可変利得増幅器、11はラ
ツチ回路、12は過大信号検出回路、13は過小
信号検出回路、14はラツチパルス発生回路であ
る。
FIG. 3 shows a block diagram of an embodiment of the present invention. 1 to 9 in the figure are blocks having the same functions as the blocks with the same numbers shown in FIG. In FIG. 3, 10 is a stepped variable gain amplifier, 11 is a latch circuit, 12 is an excessive signal detection circuit, 13 is an under-signal detection circuit, and 14 is a latch pulse generation circuit.

以下第4図を用いて第3図の回路の動作説明を
行なう、第4図はある被写体を撮像した場合の距
離対焦点電圧特性を示し、縦軸に焦点電圧、横軸
に距離環位置を取つてある。
The operation of the circuit shown in Fig. 3 will be explained below using Fig. 4. Fig. 4 shows the distance versus focal voltage characteristic when imaging a certain subject, with the vertical axis representing the focal voltage and the horizontal axis representing the distance ring position. It's set aside.

階段状可変利得増幅器10は4段階の利得を持
つとし、利得1の場合の山の形を基にすれば、各
利得における焦点電圧の山の形は第4図に示すよ
うになる。ここで利得1は最大利得をもち順に低
利得となる。階段状可変利得増幅器10は過大出
力検出回路12の信号により1段階利得が下が
り、逆に過小出力検出回路13の信号により1段
階利得が上がる。
It is assumed that the stepped variable gain amplifier 10 has four stages of gain, and based on the shape of the peak in the case of a gain of 1, the shape of the peak of the focal voltage at each gain is as shown in FIG. Here, gain 1 has the maximum gain, and the gains become lower in order. In the stepped variable gain amplifier 10, the gain is decreased by one step in response to the signal from the excessive output detection circuit 12, and conversely, the gain is increased by one step in response to the signal from the under-output detection circuit 13.

過大出力検出回路には検波器5からの出力信号
がある閾値より大きくなり飽和の恐れがある場
合、階段状可変利得増幅器10へ過大出力検出信
号を発生する。過小出力検出回路13は検波器5
からの出力信号がある閾値より小さくなり差分ホ
ールド回路6より差分信号が得られなくなる恐れ
がある場合階段状可変利得増幅器10へ過小出力
信号を発生する。今合焦動作開始直後に距離環初
期位置がW点にあり、利得が利得1にあつたとす
れば第4図において差分ホールド回路6はa点に
おける焦点電圧をうる。a点での傾きは大きく距
離環の回転方向はすぐに定まるのでただちに距離
環はb点に向つて回転しはじめる。過大出力検出
閾値に達したb点では過大出力検出回路12によ
り過大出力検出信号が発生し階段状可変利得増幅
器10の利得を利得1から利得2へと低下させ
る。この利得変化により第4図においてc点にお
ける焦点電圧が発生する。
The excessive output detection circuit generates an excessive output detection signal to the stepped variable gain amplifier 10 when the output signal from the detector 5 exceeds a certain threshold value and there is a risk of saturation. The under-output detection circuit 13 is the detector 5
If the output signal from the differential hold circuit 6 becomes smaller than a certain threshold and there is a possibility that a differential signal cannot be obtained from the differential hold circuit 6, an undersized output signal is generated to the stepped variable gain amplifier 10. If the initial position of the range ring is at point W and the gain is 1 immediately after the start of the focusing operation, the differential hold circuit 6 obtains the focal voltage at point a in FIG. 4. Since the slope at point a is large and the direction of rotation of the distance ring is quickly determined, the distance ring immediately begins to rotate toward point b. At point b, at which the excessive output detection threshold is reached, the excessive output detection circuit 12 generates an excessive output detection signal, reducing the gain of the stepwise variable gain amplifier 10 from gain 1 to gain 2. This gain change generates a focal voltage at point c in FIG.

この時差分ホールド回路6からは利得変化前よ
り小さい焦点電圧が入力されるため山を下つてい
ると判断する出力が発生する。これは誤判断であ
るからこれによる誤合焦動作を防止する必要があ
る。
At this time, a focal voltage smaller than that before the gain change is input from the differential hold circuit 6, so an output is generated that indicates that the voltage is descending from the mountain. Since this is a misjudgment, it is necessary to prevent misfocusing operations caused by this.

これを防止するために第3図に示すラツチ回路
11及びラツチパルス発生回路14があり、その
動作を説明する。
To prevent this, a latch circuit 11 and a latch pulse generating circuit 14 shown in FIG. 3 are provided, and their operations will be explained.

ラツチ回路11は通常は差分ホールド回路6の
出力をモータ駆動回路7へ単に伝達するだけであ
るが、ラツチパルスが入力されるとそのパルスの
立上りで差分ホールド回路6の出力をラツチして
モータ駆動回路7へ伝達し、立下りでラツチを解
除して元の状態になる回路である。またラツチパ
ルス発生回路14は過大出力検出信号又は過小出
力検出信号が入力された場合一定時間幅のパルス
を発生する回路である。よつて過大出力検出信号
或いは過小出力検出信号が発生するとラツチパル
ス発生回路14より一定時間幅ラツチパルスが出
力され、誤判断をする前の正しい差分ホールド回
路出力をラツチしてモータ駆動回路7へ伝え誤判
断差分ホールド回路出力による誤動作を防止す
る。利得変化による差分ホールド回路の誤動作が
新しい利得での検波信号による正常な差分ホール
ド回路動作になるまでのラツチパルス幅の時間の
後にラツチを解除して通常の合焦動作にもどる。
この一連の動作によつて回路は利得変化が起こる
と同時に合焦点方向判定動作を停止しその間距離
環回転方向を利得変化前と同一方向へ維持させた
のち新しい利得下での合焦動作を行なわせる。よ
つて第4図のb点からc点へ移行した後にd点へ
むかうように距離環が回転する。d点へ達したら
b点へ達した場合と同様にe点へ移行し山頂fへ
向け距離環が回転する。f点付近では従来の山登
り動作が行なわれ距離環が合焦位置に止まる。こ
の一連の動作の跡を示すため第4図では実線を用
いて示した。逆に低利得である利得4でかつ初期
位置Wが初期値であつてもすぐに過小出力検出回
路13からの検出信号により第4図G点からh点
へ移り利得4の焦点電圧曲線にそつてF点へ至り
合焦動作が終了する。
Normally, the latch circuit 11 simply transmits the output of the differential hold circuit 6 to the motor drive circuit 7, but when a latch pulse is input, it latches the output of the differential hold circuit 6 at the rising edge of the pulse and transfers the output to the motor drive circuit. 7 and releases the latch at the falling edge to return to the original state. The latch pulse generating circuit 14 is a circuit that generates a pulse with a constant time width when an excessive output detection signal or an insufficient output detection signal is input. Therefore, when an over-output detection signal or an under-output detection signal is generated, the latch pulse generation circuit 14 outputs a latch pulse with a fixed time width, latches the correct differential hold circuit output before making an erroneous judgment, and transmits it to the motor drive circuit 7 to prevent an erroneous judgment. Prevents malfunctions caused by differential hold circuit output. After the latch pulse width has elapsed for the differential hold circuit to malfunction due to the gain change and return to normal differential hold circuit operation due to the detection signal at the new gain, the latch is released and normal focusing operation is resumed.
Through this series of operations, the circuit stops the focusing point direction judgment operation at the same time as the gain change occurs, maintains the distance ring rotation direction in the same direction as before the gain change, and then performs the focusing operation under the new gain. let Therefore, after moving from point b to point c in FIG. 4, the distance ring rotates toward point d. When it reaches point d, it moves to point e and the distance ring rotates toward the summit f in the same way as when it reaches point b. Near point f, a conventional hill-climbing operation is performed and the range ring stops at the in-focus position. In order to show the traces of this series of operations, solid lines are used in FIG. 4. Conversely, even if the gain is 4, which is a low gain, and the initial position W is the initial value, the detection signal from the under-output detection circuit 13 immediately moves from point G to point H in FIG. 4, following the focal voltage curve of gain 4. The focus reaches point F and the focusing operation ends.

以上のように本実施例では、レンズ1の合焦の
具合に応じた、合焦状態を表す信号が検波器5か
ら出力され、この合焦状態を表す信号が、予め検
出レベルが設定された過大および過小出力検出回
路12,13に供給される。このため、合焦動作
中にこの合焦状態を表す信号が、過大および過小
出力検出回路12,13の検出レベルによつて決
まる許容範囲を越えると、過大または過小検出信
号が発生され、可変利得増幅器10の利得が段階
的に変化される。すなわち、過大検出信号が発生
されと可変利得増幅器10の利得が1段階減少さ
れ、この結果、合焦動作を表す信号が許容範囲の
上限値から中間値にもどされ、また逆に、過小検
出信号が発生されて可変利得増幅器10の利得が
1段階増大され、この結果、合焦状態を表す信号
が許容範囲の下限値から中間値にもどされる。
As described above, in this embodiment, a signal representing the focused state is output from the detector 5 according to the focusing condition of the lens 1, and the detection level of this signal representing the focused state is set in advance. It is supplied to excessive and under output detection circuits 12 and 13. Therefore, if the signal representing the in-focus state exceeds the tolerance range determined by the detection levels of the over- and under-output detection circuits 12 and 13 during the focusing operation, an over- or under-output detection signal is generated, and the variable gain The gain of amplifier 10 is changed in steps. That is, when an overdetection signal is generated, the gain of the variable gain amplifier 10 is reduced by one step, and as a result, the signal representing the focusing operation is returned from the upper limit value of the allowable range to the intermediate value, and conversely, when an underdetection signal is generated, the gain of the variable gain amplifier 10 is reduced by one step. is generated and the gain of the variable gain amplifier 10 is increased by one step, and as a result, the signal representing the in-focus state is returned from the lower limit value of the allowable range to the intermediate value.

合焦動作を表す信号が、過大および過小出力検
出回路12,13の検出レベルによつて決まる許
容範囲を越えると、可変利得増幅器10の利得を
階段的に変化させるので、検波器5がダイナミツ
クレンジ不足となるのを防ぐことができる。この
結果、正常な焦点電圧の特性が得られるととも
に、種々の被写体に対して必要十分な信号量が得
られるので安定な自動合焦の制御動作を行うこと
ができる。しかも、可変利得増幅器10の利得は
その切り替え点(b,c点)から次の切り替え点
(d,e点)までの間は一定なので、合焦状態に
対応した焦点電圧やレンズ1の動きに応じてリニ
アに得られることになる。このため、合焦点に接
近するにしたがつて必ず増加する焦点電圧の特性
が得られるので合焦点に必ず到達する良好な合焦
動作を行うことができる。もちろん切り替え点で
は、焦点電圧の不連続すなわち急激な減少あるい
は増加の変化が生ずるので合焦点方向の誤判定を
生ずる恐れがあるが、この変化が生じた直後の所
定期間は変化直前の合焦動作が持続されるので、
利得切り替え時の誤動作を防止でき、従来ダイナ
ミツクレンジ不足で起きていた動作不良をなくす
ことができた。
When the signal representing the focusing operation exceeds the permissible range determined by the detection levels of the excessive and under output detection circuits 12 and 13, the gain of the variable gain amplifier 10 is changed stepwise, so that the detector 5 is dynamically activated. This can prevent the microwave from running out. As a result, a normal focus voltage characteristic is obtained, and sufficient signal amounts are obtained for various objects, so that stable automatic focusing control operations can be performed. Moreover, the gain of the variable gain amplifier 10 is constant from the switching point (points b, c) to the next switching point (points d, e), so it depends on the focal voltage corresponding to the focusing state and the movement of the lens 1. It will be obtained linearly depending on the situation. Therefore, a characteristic of the focus voltage always increasing as the focus approaches the focus point can be obtained, so that a good focusing operation that always reaches the focus point can be performed. Of course, at the switching point, a discontinuous change in the focus voltage, that is, a sudden decrease or increase, may occur, so there is a risk of misjudgment of the direction of the focus point. is sustained, so
Malfunctions during gain switching can be prevented, and malfunctions that previously occurred due to insufficient dynamic range have been eliminated.

なお、利得切り換え中、距離環は回転しつづけ
ていたが切り換え中はモータを停止させる等を行
なつて距離環を止めてもよいことはいうまでもな
い。
Although the distance ring continues to rotate during gain switching, it goes without saying that the distance ring may be stopped by, for example, stopping the motor during the gain switching.

また、実施例においては利得を切り換えたがハ
イパスフイルタの定数を変化させてもよいし、ハ
イパスフイルタ出力信号のベースクリツプ量を変
化させてもよい。
Further, although the gain is switched in the embodiment, the constant of the high-pass filter may be changed, or the base clip amount of the high-pass filter output signal may be changed.

また実施例においては差分ホールド回路出力を
ラツチしていたが、差分ホールド回路でホールド
されている値をリセツトしてしまい、新しい利得
下における焦点電圧を差分ホールド回路に入れて
ない。また実施例の説明では利得の切替えを4段
としたが、この段数は必要に応じた数で良い。
Further, in the embodiment, the output of the differential hold circuit is latched, but the value held by the differential hold circuit is reset, and the focal voltage under the new gain is not entered into the differential hold circuit. Further, in the description of the embodiment, the gain is switched in four stages, but the number of stages may be any number according to necessity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の自動焦点合わせ装置の構成を示
すブロツク図、第2図は第1図の構成の動作を説
明するための特性図、第3図は本発明による自動
合焦装置の一実施例を示すブロツク図、第4図は
第3図の構成の動作を説明するための特性図であ
る。 1:レンズ、2:光電変換回路、7:モータ駆
動回路、8:レンズ駆動モータ、9:山登り回
路、10:階段状可変利得増幅器、11:ラツチ
回路、12:過大出力検出回路、13:過小出力
検出回路、14:ラツチパルス発生回路。
FIG. 1 is a block diagram showing the configuration of a conventional automatic focusing device, FIG. 2 is a characteristic diagram for explaining the operation of the configuration in FIG. 1, and FIG. 3 is an implementation of the automatic focusing device according to the present invention. FIG. 4, a block diagram showing an example, is a characteristic diagram for explaining the operation of the configuration of FIG. 3. 1: Lens, 2: Photoelectric conversion circuit, 7: Motor drive circuit, 8: Lens drive motor, 9: Hill climbing circuit, 10: Stepped variable gain amplifier, 11: Latch circuit, 12: Excessive output detection circuit, 13: Underestimation Output detection circuit, 14: Latch pulse generation circuit.

Claims (1)

【特許請求の範囲】 1 焦点距離が可変にされた光学レンズ系と、 光学レンズ系により結像された画像を映像信号
に変換する光電変換回路と、 段階的に変化される利得で上記映像信号を増幅
する可変利得増幅回路と、 上記映像信号の高域成分を抽出するハイパスフ
イルタと、ハイパスフイルタの出力信号を検波す
る検波器とを有し、検波出力に応じて上記高域成
分信号が増大する方向に上記光学レンズ系の焦点
距離を制御する合焦制御回路と、 上記光学レンズ系、光電変換回路、可変利得増
幅回路および合焦制御回路を含むフイードバツク
ループ中より、上記光学レンズ系の焦点距離の変
化に応じて変化する、合焦状態を表す信号を取出
す合焦状態検出手段と、 上記フイードバツクループの動作中に上記合焦
状態を表す信号が、予め設定された上限値および
下限値によつて決まる許容範囲から逸脱するのを
検出すると、上記合焦状態を表す信号が上限値よ
りも増大する場合には上記可変利得増幅回路の利
得を段階的に減少させ、下限値よりも減少する場
合には上記可変利得増幅回路の利得を段階的に増
大させる利得制御手段と、 からなることを特徴とする自動焦点合わせ装置。 2 上記合焦制御系は、 上記検波出力の時間的差分を一定時間保持する
保持回路を有し、 上記利得制御手段によつて上記可変利得増幅回
路の利得が段階的に変化された直後の一定時間に
おいては、保持回路の出力に応じた自動合焦動作
を行ない、 上記可変利得増幅回路の利得が段階的に変化さ
れてから上記一定時間経過した後から、検波出力
応じた自動合焦動作を再開する、 ことを特徴とする特許請求の範囲第1項記載の自
動焦点合わせ装置。 3 上記利得制御手段は、 上記合焦状態を表す信号が上限値を越えたとき
に上記可変利得増幅回路の利得を段階的に減少さ
せる過大検出回路と、 上記合焦状態を表す信号信号が下限値を越えた
ときに上記可変利得増幅回路の利得を段階的に増
大させる過小検出回路とからなり、 上記合焦状態検出手段は、 上記合焦状態を表す信号として、上記合焦制御
回路において発生された検波出力を上記過大およ
び過小検出回路に供給する、 ことを特徴とする特許請求の範囲第1項記載の自
動焦点合わせ装置。 4 上記可変利得増幅回路は、 上記検波出力が上限値よりも増大するときは上記
可変利得増幅回路の利得を一段階減少させ、下限
値よりも減少するときは一段階増大させる ことを特徴とする特許請求の範囲第3項記載の自
動焦点合わせ装置。
[Scope of Claims] 1. An optical lens system with a variable focal length, a photoelectric conversion circuit that converts an image formed by the optical lens system into a video signal, and a stepwise variable gain that converts the video signal into a video signal. a variable gain amplifier circuit that amplifies the video signal, a high-pass filter that extracts the high-frequency component of the video signal, and a detector that detects the output signal of the high-pass filter, and the high-frequency component signal increases in accordance with the detection output. a focus control circuit that controls the focal length of the optical lens system in the direction of a focus state detection means for extracting a signal representing a focus state that changes according to a change in a focal length of the feedback loop; When detecting deviation from the allowable range determined by the focus state and the lower limit value, if the signal representing the focused state increases more than the upper limit value, the gain of the variable gain amplifier circuit is decreased in stages, and the lower limit value is detected. an automatic focusing device comprising: gain control means for increasing the gain of the variable gain amplifier circuit in steps when the gain decreases by more than . 2 The focusing control system has a holding circuit that holds the temporal difference of the detected output for a certain period of time, and the focusing control system has a holding circuit that holds the temporal difference of the detected output for a certain period of time, and the gain of the variable gain amplifier circuit is kept constant immediately after the gain of the variable gain amplifier circuit is changed stepwise by the gain control means. At the time, an automatic focusing operation is performed according to the output of the holding circuit, and after the above-mentioned certain period of time has elapsed since the gain of the variable gain amplifier circuit is changed stepwise, an automatic focusing operation according to the detection output is performed. The automatic focusing device according to claim 1, characterized in that the automatic focusing device restarts. 3 The gain control means includes an overdetection circuit that reduces the gain of the variable gain amplifier circuit stepwise when the signal representing the focused state exceeds an upper limit; and an under/under detection circuit that increases the gain of the variable gain amplification circuit in stages when the gain exceeds the value, and the focus state detection means generates a signal in the focus control circuit as a signal representing the focus state. The automatic focusing device according to claim 1, wherein the detected output is supplied to the over/under detecting circuit. 4. The variable gain amplifier circuit is characterized in that when the detected output increases above an upper limit value, the gain of the variable gain amplifier circuit is decreased by one step, and when it decreases below a lower limit value, the gain of the variable gain amplifier circuit is increased by one step. An automatic focusing device according to claim 3.
JP56086936A 1981-06-08 1981-06-08 Automatic focusing device Granted JPS57202179A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56086936A JPS57202179A (en) 1981-06-08 1981-06-08 Automatic focusing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56086936A JPS57202179A (en) 1981-06-08 1981-06-08 Automatic focusing device

Publications (2)

Publication Number Publication Date
JPS57202179A JPS57202179A (en) 1982-12-10
JPH0258833B2 true JPH0258833B2 (en) 1990-12-10

Family

ID=13900748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56086936A Granted JPS57202179A (en) 1981-06-08 1981-06-08 Automatic focusing device

Country Status (1)

Country Link
JP (1) JPS57202179A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0628402B2 (en) * 1983-12-29 1994-04-13 松下電器産業株式会社 Automatic focusing device
JPH0628401B2 (en) * 1983-12-29 1994-04-13 松下電器産業株式会社 Automatic focusing device
JPH0628400B2 (en) * 1983-12-29 1994-04-13 松下電器産業株式会社 Automatic focusing device
DE3538406A1 (en) * 1985-10-29 1987-04-30 Will Wetzlar Gmbh A COMPUTING DEVICE WORKING ON AN ELECTRONIC BASE

Also Published As

Publication number Publication date
JPS57202179A (en) 1982-12-10

Similar Documents

Publication Publication Date Title
US5715483A (en) Automatic focusing apparatus and method
US5517238A (en) Camera with image stabilization controlled by focus detection
JPH0376722B2 (en)
US5872595A (en) Methods and apparatus for providing wide range exposure control for image intensifier cameras
JPH07135596A (en) Video camera
US4833541A (en) Image sensing apparatus having function of automatically matching focus and exposure in response to video signal
US4409472A (en) Iris servo apparatus
US5923371A (en) Automatic focus adjusting apparatus
US6184931B1 (en) Image pickup device with focusing control
US4544953A (en) Automatic facusing using slope and peak detection
JPH0258833B2 (en)
US5402175A (en) Automatic focusing device wherein lens movement is controlled in accordance with lens hunting
JPH0115188B2 (en)
JP3562820B2 (en) Automatic focusing device
JPS6412434B2 (en)
JPH0534871B2 (en)
JP3428663B2 (en) Automatic focusing device
JPS58161579A (en) Automatic focusing device
JPH0325984B2 (en)
JP3014745B2 (en) Auto focus device
JPS60142678A (en) Automatic focus matching device
JPH05110924A (en) Automatic focusing device
KR20060007792A (en) Imaging device containing auto focus control function and method thereof
JPH06268895A (en) Auto-focusing device
JPS58215176A (en) Automatic focusing device