JPH0258526B2 - - Google Patents

Info

Publication number
JPH0258526B2
JPH0258526B2 JP61254098A JP25409886A JPH0258526B2 JP H0258526 B2 JPH0258526 B2 JP H0258526B2 JP 61254098 A JP61254098 A JP 61254098A JP 25409886 A JP25409886 A JP 25409886A JP H0258526 B2 JPH0258526 B2 JP H0258526B2
Authority
JP
Japan
Prior art keywords
gas
stage
temperature
combustion
drying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61254098A
Other languages
Japanese (ja)
Other versions
JPS63108108A (en
Inventor
Katsuo Hayano
Toshi Nasuno
Nobutsugu Kato
Takuji Nakazato
Tatsunori Sugita
Masami Horibe
Minoru Inaba
Masaki Yamada
Kazumi Tachikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON GAISHI KK
TOKYOTO
Original Assignee
NIPPON GAISHI KK
TOKYOTO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON GAISHI KK, TOKYOTO filed Critical NIPPON GAISHI KK
Priority to JP25409886A priority Critical patent/JPS63108108A/en
Publication of JPS63108108A publication Critical patent/JPS63108108A/en
Publication of JPH0258526B2 publication Critical patent/JPH0258526B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Incineration Of Waste (AREA)
  • Gasification And Melting Of Waste (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は有機性窒素を含有する下水汚泥焼却に
おいて排ガス中に不完全燃焼ガスである一酸化炭
素やシアン化水素などをほとんど生じさせること
なく焼却することができる下水汚泥の焼却法に関
するものである。
[Detailed Description of the Invention] (Industrial Application Field) The present invention incinerates sewage sludge containing organic nitrogen without producing nearly any incomplete combustion gas such as carbon monoxide or hydrogen cyanide in the exhaust gas. This article concerns a method for incinerating sewage sludge that can be used to incinerate sewage sludge.

(従来の技術) 下水汚泥の最終処理方法としては、予め脱水処
理された汚泥ケーキを多段焼却炉へ投入し、乾燥
段で徐々に乾燥させたうえ燃焼段において約800
℃で燃焼させる焼却処理法が一般的であり、通常
はランニングコストを最小限に抑えるために第5
図に示すような緩やかな昇温ヒートカーブが設定
されている。この結果、低温燃焼領域において、
不完全燃焼ガスである一酸化炭素やシアン化水素
などが発生していることが判明した。このような
不完全燃焼ガスは排ガスとともに大気中へ放出さ
れたりスクラバ排水中へ移行するおそれがある。
そこでシアン化水素を含有するおそれのあるスク
ラバ排水については、これをアルカリ性としたう
えで塩素や次亜塩素酸ソーダ等を注入してシアン
化水素をN2ガスとCO2ガス及びH2Oに分解する
アルカリ塩素法による処理が試みられているが、
ランニングコストが極めて高くつくという問題が
あつた。
(Prior art) As a final treatment method for sewage sludge, a sludge cake that has been dehydrated in advance is fed into a multi-stage incinerator, gradually dried in a drying stage, and then heated to about 800 ml in a combustion stage.
Incineration is the most common method, burning at a temperature of
A gentle temperature increase heat curve as shown in the figure is set. As a result, in the low temperature combustion region,
It was discovered that incomplete combustion gases such as carbon monoxide and hydrogen cyanide were being generated. Such incompletely combusted gases may be released into the atmosphere together with the exhaust gas or may migrate into the scrubber wastewater.
Therefore, for scrubber wastewater that may contain hydrogen cyanide, we make it alkaline and then inject chlorine, sodium hypochlorite, etc. to decompose the hydrogen cyanide into N 2 gas, CO 2 gas, and H 2 O. Attempts have been made to deal with the matter by law, but
The problem was that running costs were extremely high.

(発明が解決しようとする問題点) 本発明はこのような従来の問題点を解決して、
ランニングコストを上昇させることなく多段焼却
炉からの不完全燃焼ガスの排出を防止することが
できる下水汚泥の焼却法を目的として完成された
ものである。
(Problems to be solved by the invention) The present invention solves these conventional problems,
This was completed with the aim of creating a method for incinerating sewage sludge that can prevent the discharge of incomplete combustion gas from multistage incinerators without increasing running costs.

(問題点を解決するための手段) 本発明者等は前記のような従来の多段焼却炉に
おける不完全燃焼ガスの生成について研究を重ね
た結果、従来の焼却法においては乾燥段において
汚泥ケーキが550〜750℃の不完全燃焼ガス生成温
度域に長く保たれ、汚泥ケーキ中の有機炭素が一
酸化炭素に変化したり、汚泥ケーキ中の有機窒素
がシアン化水素に変化することが原因であること
が分り、この知見に基いて本発明を完成したもの
である。かくして完成された本発明は多段焼却炉
の上部燃焼段を750〜900℃に保持しつつ乾燥段下
部に冷却用ガスを吹込んで乾燥段下部の温度を
550℃以下に抑制することにより乾燥段下部と上
部燃焼段との間に200℃/段以上の温度差を形成
し、一酸化炭素及びシアン化水素ガスの発生を抑
制しながら下水汚泥の焼却を行うことを特徴とす
るものである。
(Means for Solving the Problems) As a result of repeated research into the generation of incomplete combustion gas in the conventional multi-stage incinerator, the present inventors found that in the conventional incineration method, sludge cake is produced in the drying stage. The cause is that the organic carbon in the sludge cake changes to carbon monoxide and the organic nitrogen in the sludge cake changes to hydrogen cyanide due to being kept in the incomplete combustion gas generation temperature range of 550 to 750℃ for a long time. The present invention was completed based on this knowledge. The present invention thus completed maintains the upper combustion stage of a multistage incinerator at 750 to 900°C while blowing cooling gas into the lower part of the drying stage to lower the temperature of the lower part of the drying stage.
By suppressing the temperature to 550℃ or less, a temperature difference of 200℃ or more is created between the lower drying stage and the upper combustion stage, and the sewage sludge is incinerated while suppressing the generation of carbon monoxide and hydrogen cyanide gas. It is characterized by:

次に本発明を図面を参照しつつ更に詳細に説明
すると、第1図は本発明の方法により運転されて
いる多段焼却炉のヒートカーブの一例を示すもの
で、この例では第1〜5段が乾燥段、第6〜7段
が燃焼段、第8〜10段が冷却段とされている。
Next, the present invention will be explained in more detail with reference to the drawings. Fig. 1 shows an example of the heat curve of a multi-stage incinerator operated by the method of the present invention, and in this example, the heat curve of the first to fifth stages is shown. is the drying stage, the 6th to 7th stages are the combustion stage, and the 8th to 10th stages are the cooling stage.

本発明はこのようなヒートカーブを設定するこ
とにより、汚泥ケーキや燃焼ガス中の窒素成分、
炭素成分及び水素成分が相互に反応して不完全燃
焼ガスを生成する550〜750℃の温度域をできるだ
け小さくし、汚泥ケーキがこの温度域を通過する
時間を短縮して不完全燃焼ガスの発生量を最小限
に抑制するものである。ここで上部燃焼段の温度
を750〜900℃としたのは、750℃未満では乾燥段
下部との間に不完全燃焼ガスの生成を有効に防止
できるだけの十分な温度差を形成することができ
ず、逆に900℃を越えると焼却灰がクリンカーを
形成するおそれがあるためである。またその上方
の乾燥段下部の温度を550℃以下としたのは、550
℃を越えるとやはり不完全燃焼ガスの生成を有効
に防止できなくなるためである。この例における
乾燥段下部とは、第4段〜第5段目を意味するも
のとする。
By setting such a heat curve, the present invention reduces nitrogen components in the sludge cake and combustion gas,
Generate incomplete combustion gas by minimizing the temperature range of 550 to 750℃, where carbon and hydrogen components react with each other to generate incomplete combustion gas, and shorten the time that the sludge cake passes through this temperature range. The amount is kept to a minimum. Here, the temperature of the upper combustion stage was set at 750 to 900°C because a temperature lower than 750°C cannot form a sufficient temperature difference between it and the lower part of the drying stage to effectively prevent the generation of incompletely combusted gas. On the other hand, if the temperature exceeds 900°C, there is a risk that the incinerated ash will form clinker. In addition, the temperature at the bottom of the drying stage above it was set to 550℃ or less.
This is because if the temperature exceeds .degree. C., the generation of incomplete combustion gas cannot be effectively prevented. In this example, the lower part of the drying stage means the fourth to fifth stages.

このようなヒートカーブを設定するには、例え
ば第2図に示されるように750〜900℃の温度で汚
泥を燃焼している多段焼却炉1の上部燃焼段2の
直上の乾燥段下部3,4に冷却フアン5によつて
空気等の冷却用ガスを吹き込むことが有効であ
る。このように、冷却用ガスを乾燥段下部3,4
に吹き込むと、上部燃焼段2から上昇した燃焼ガ
スは冷却されて550℃以下の温度にまで急激に低
下し、前記した不完全燃焼ガス生成温度域を極め
て小さくすることができる。またこのような冷却
用ガスの吹き込みにより、乾燥段を通過する乾燥
ガス量(燃焼ガス量と冷却用ガス量との和)は増
加するとともに、冷却用ガスの相対湿度は燃焼ガ
スよりもはるかに低いため、乾燥ガス相対湿度は
燃焼ガスのみを乾燥ガスとして用いていた従来の
場合よりも大幅に低下し、例えば燃焼ガスのみの
場合に対し、冷却用ガスを加える場合には、相対
湿度は70〜80%となる。一般に、多段焼却炉の乾
燥段における乾燥速度は、乾燥ガス量の0.8乗と、
温度差(乾燥ガスと脱水ケーキとの温度差)との
積に比例することが経験的に知られており、本発
明においては乾燥ガス量が増加するだけでなく、
更に相対湿度が引下げられる効果も加算されるの
で、脱水ケーキは乾燥段において急速に乾燥する
こととなり、燃焼段において迅速に焼却される。
その結果完全燃焼に近い状況となり、かつサーマ
ルジヤンプを確実にするので、不完全燃焼ガスの
発生が抑制される。なお冷却用ガスとしての空気
吹込量は乾燥条件により変動するが、一般的には
ケーキ燃焼空気量の30〜40%とすれば十分であ
る。また乾燥段下部3,4で550℃以下に冷却さ
れた脱水ケーキをサーマルジヤンプさせて短時間
に750〜900℃に加熱し、上部燃焼段2の温度低下
や燃焼段の下部への移行を防止するため、熱風炉
6から送入される熱風の発熱量を例えば10%程度
増加させることが好ましい。
To set such a heat curve, for example, as shown in Fig. 2, the lower drying stage 3, directly above the upper combustion stage 2, It is effective to blow a cooling gas such as air into the cooling fan 5 into the cooling fan 5 . In this way, the cooling gas is supplied to the lower part of the drying stage 3, 4.
When the combustion gas is blown into the upper combustion stage 2, the combustion gas rising from the upper combustion stage 2 is cooled and rapidly lowered to a temperature of 550° C. or less, making it possible to extremely narrow the temperature range in which the incomplete combustion gas is produced. In addition, by blowing in such cooling gas, the amount of drying gas passing through the drying stage (the sum of the amount of combustion gas and the amount of cooling gas) increases, and the relative humidity of the cooling gas is much higher than that of the combustion gas. Therefore, the relative humidity of the drying gas is much lower than in the conventional case where only combustion gas is used as drying gas. For example, when adding cooling gas, the relative humidity is 70 ~80%. Generally, the drying rate in the drying stage of a multistage incinerator is the amount of drying gas raised to the 0.8th power.
It is empirically known that the temperature is proportional to the product of the temperature difference (the temperature difference between the dry gas and the dehydrated cake), and in the present invention, not only the amount of dry gas increases, but also the amount of dry gas increases.
Furthermore, since the effect of lowering the relative humidity is added, the dehydrated cake dries quickly in the drying stage and is quickly incinerated in the combustion stage.
As a result, a situation close to complete combustion is achieved, and a thermal jump is ensured, so that generation of incomplete combustion gas is suppressed. Note that the amount of air blown as the cooling gas varies depending on the drying conditions, but generally it is sufficient to set it to 30 to 40% of the amount of cake combustion air. In addition, the dehydrated cake cooled to below 550°C in the lower parts of the drying stages 3 and 4 is heated to 750 to 900°C in a short period of time through a thermal jump, thereby preventing the temperature drop in the upper combustion stage 2 and the transfer to the lower part of the combustion stage. Therefore, it is preferable to increase the calorific value of the hot air sent from the hot air stove 6 by, for example, about 10%.

第2図に示されるように、多段焼却炉において
は乾燥段における乾燥速度の向上や燃焼段におけ
る脱水ケーキの急激な燃焼に伴う炉内温度の急上
昇を防止する等の目的で排ガスの一部をフアン7
を介して冷却段8や燃焼段に循環させることがあ
る。しかし前述したとおり、本発明によれば冷却
用ガスの吹込みにより乾燥速度が増加されてお
り、また排ガス温度は従来の300℃から約50〜100
℃低下して、200〜250℃となるから、排ガス循環
の量を減少させることができ、排ガス循環用送風
機等の付帯機器を小型化することができる。更に
また燃焼段温度の急上昇を防止するために排ガス
循環させる場合にも、排ガス温度が従来よりも50
〜100℃程度低下しているので、少量でより迅速
に燃焼温度を低下させることができる効果もあ
る。なお、冷却用ガスとして空気を用いると冷却
用空気中の酸素により乾燥段が従来よりも大幅に
酸素リツチとなり、燃焼ガスを含む乾燥ガス中に
おいて、不完全燃焼ガスの発生が抑制され、又
は、不完全燃焼ガスの分解が促進される。また、
冷却用ガスは空気に限定されるものではなく、例
えば、排ガスを除湿処理または除湿・脱硫処理後
の排ガス等を冷却用ガスとして用いることができ
ることは言うまでもない。この場合には、前記処
理により排ガス量の減少が図られるので後続の排
ガス処理設備規模の増大を抑制することができ
る。
As shown in Figure 2, in multistage incinerators, part of the exhaust gas is used to improve the drying rate in the drying stage and to prevent the temperature inside the furnace from rising rapidly due to rapid combustion of the dehydrated cake in the combustion stage. fan 7
It may be circulated to the cooling stage 8 or the combustion stage via the cooling stage 8 or the combustion stage. However, as mentioned above, according to the present invention, the drying speed is increased by blowing cooling gas, and the exhaust gas temperature is reduced from the conventional 300°C to about 50-100°C.
Since the temperature decreases to 200 to 250°C, the amount of exhaust gas circulation can be reduced, and ancillary equipment such as exhaust gas circulation blowers can be downsized. Furthermore, when exhaust gas is circulated to prevent a sudden rise in combustion stage temperature, the exhaust gas temperature is 50% lower than before.
Since the temperature has been lowered by approximately 100°C, it has the effect of lowering the combustion temperature more quickly with a small amount. In addition, when air is used as the cooling gas, the drying stage becomes much more oxygen-rich than before due to the oxygen in the cooling air, and the generation of incomplete combustion gas is suppressed in the drying gas containing combustion gas, or Decomposition of incompletely combusted gases is promoted. Also,
It goes without saying that the cooling gas is not limited to air, and for example, exhaust gas after dehumidifying or dehumidifying/desulfurizing the exhaust gas can be used as the cooling gas. In this case, since the amount of exhaust gas is reduced by the treatment, it is possible to suppress an increase in the scale of subsequent exhaust gas treatment equipment.

第3図は好ましいヒートカーブを得るために、
第2図に説明した手段のほかに更に上部燃焼段2
及び下部燃焼段9からの抽気を付加した例を示し
たものである。このような抽気は高発熱量の脱水
汚泥を焼却することによる燃焼段温度の温度の上
昇を防止することを主たる目的として行われるも
のではあるが、冷却フアン5による冷却用ガスの
吹込み量を減少させることができるうえ、排ガス
の総量を減少させることができる効果もある。
Figure 3 shows how to obtain a preferable heat curve.
In addition to the means explained in FIG.
This shows an example in which bleed air from the lower combustion stage 9 is added. Although the main purpose of this air extraction is to prevent the combustion stage temperature from increasing due to incineration of dehydrated sludge with a high calorific value, the amount of cooling gas blown by the cooling fan 5 is Not only can this be reduced, but it also has the effect of reducing the total amount of exhaust gas.

更に第4図は冷却用ガス中にスプレー装置12
により水をスプレーして冷却効果を高めた例を示
したものである。この場合には、乾燥段での燃え
上がり現象を防止し、過度的な不完全燃焼ガスの
発生を防止することができる。
Furthermore, FIG. 4 shows a spray device 12 in the cooling gas.
This shows an example of spraying water to improve the cooling effect. In this case, it is possible to prevent a flare-up phenomenon in the drying stage and to prevent excessive generation of incomplete combustion gas.

本発明法による第2図の多段焼却炉における不
完全燃焼ガス発生量を、同一の炉における従来法
による不完全燃焼ガス発生量と対比するために、
操炉条件を同一として2時間ずつ3回にわたる実
測を行つた。その結果、本発明法によれば多段焼
却炉からの一酸化炭素の排出量を減少させること
が確認された。更にシアン化水素やアンモニアの
排出量を従来の数分の1にまで減少させることも
確認された。
In order to compare the amount of incomplete combustion gas generated in the multistage incinerator shown in FIG. 2 by the method of the present invention with the amount of incomplete combustion gas generated by the conventional method in the same furnace,
Measurements were conducted three times for 2 hours each under the same furnace operation conditions. As a result, it was confirmed that the method of the present invention reduces the amount of carbon monoxide discharged from a multistage incinerator. Furthermore, it has been confirmed that the amount of hydrogen cyanide and ammonia emissions can be reduced to a fraction of the conventional amount.

(発明の効果) 本発明は以上の説明からも明らかなように、多
段焼却炉の上部燃焼段を750〜900℃に保持しつつ
乾燥段下部を550℃以下に抑制することにより不
完全燃焼ガスの生成を防ぎ、とりわけ一酸化炭素
の排出量を減少させるとともに、シアン化水素や
アンモニアの排出量も従来の数分の1にまで減少
させることに成功したものである。また本発明の
方法によれば、乾燥段下部の冷却及びこれをカバ
ーするための補助燃料の増加等によつて炉自体の
運転コストは多少増加するが、従来のようにスク
ラバ排水からシアン化水素を除去するための排水
処理工程を必要としないため、全体としてのラン
ニングコストを従来よりも大幅に引下げることが
可能となつた。更にまた本発明によれば乾燥速度
を向上させることにより安定な操炉を行うことも
できる。よつて本発明は従来の問題点を一掃した
下水汚泥の焼却法として、産業の発展に寄与する
ところは極めて大きいものである。
(Effects of the Invention) As is clear from the above explanation, the present invention maintains the upper combustion stage of a multistage incinerator at 750 to 900°C while suppressing the lower part of the drying stage to 550°C or less, thereby reducing incomplete combustion. In particular, this technology succeeded in preventing the formation of carbon monoxide and reducing emissions of hydrogen cyanide and ammonia to a fraction of conventional levels. In addition, according to the method of the present invention, although the operating cost of the furnace itself increases somewhat due to cooling of the lower part of the drying stage and an increase in auxiliary fuel to cover this, hydrogen cyanide is removed from the scrubber wastewater as in the conventional method. Since there is no need for a wastewater treatment process, overall running costs can be significantly reduced compared to conventional methods. Furthermore, according to the present invention, stable furnace operation can be achieved by increasing the drying rate. Therefore, the present invention greatly contributes to the development of industry as a sewage sludge incineration method that eliminates the problems of the conventional method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の焼却法における炉内の温度分
布の一例を示すグラフ、第2図は本発明方法を実
施するための装置を示すフローシート、第3図及
び第4図はその変形例を示すフローシート、第5
図は従来の冷却法における炉内の温度分布の一例
を示すグラフである。 1:多段焼却炉、2:上部燃焼段、3,4:乾
燥段下部。
Figure 1 is a graph showing an example of the temperature distribution in the furnace in the incineration method of the present invention, Figure 2 is a flow sheet showing an apparatus for carrying out the method of the present invention, and Figures 3 and 4 are variations thereof. Flow sheet showing 5th
The figure is a graph showing an example of the temperature distribution inside the furnace in a conventional cooling method. 1: Multistage incinerator, 2: Upper combustion stage, 3, 4: Lower drying stage.

Claims (1)

【特許請求の範囲】[Claims] 1 多段焼却炉の上部燃焼段を750〜900℃に保持
しつつ乾燥段下部に冷却用ガスを吹込んで乾燥段
下部の温度を500℃以下に抑制することにより乾
燥段下部と上部燃焼段との間に200℃/段以上の
温度差を形成し、一酸化炭素及びシアン化水素ガ
スの発生を抑制しながら下水汚泥の焼却を行うこ
とを特徴とする下水汚泥の焼却法。
1. While maintaining the upper combustion stage of the multistage incinerator at 750 to 900°C, cooling gas is blown into the lower part of the drying stage to suppress the temperature at the lower part of the drying stage to 500°C or less, thereby reducing the temperature between the lower part of the drying stage and the upper combustion stage. A method for incinerating sewage sludge, which is characterized by forming a temperature difference of 200°C or more between stages and incinerating sewage sludge while suppressing the generation of carbon monoxide and hydrogen cyanide gas.
JP25409886A 1986-10-24 1986-10-24 Incineration of sludge in sewerage Granted JPS63108108A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25409886A JPS63108108A (en) 1986-10-24 1986-10-24 Incineration of sludge in sewerage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25409886A JPS63108108A (en) 1986-10-24 1986-10-24 Incineration of sludge in sewerage

Publications (2)

Publication Number Publication Date
JPS63108108A JPS63108108A (en) 1988-05-13
JPH0258526B2 true JPH0258526B2 (en) 1990-12-10

Family

ID=17260194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25409886A Granted JPS63108108A (en) 1986-10-24 1986-10-24 Incineration of sludge in sewerage

Country Status (1)

Country Link
JP (1) JPS63108108A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0682241U (en) * 1993-05-13 1994-11-25 積水化学工業株式会社 Vertical gutter mounting structure

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4855608A (en) * 1971-11-04 1973-08-04
JPS59122812A (en) * 1982-12-28 1984-07-16 Toshiba Corp Combustion controller of multi-stage incinerator
JPS6125965A (en) * 1984-07-17 1986-02-05 Hitachi Ltd Electronic control fuel injection pump

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4855608A (en) * 1971-11-04 1973-08-04
JPS59122812A (en) * 1982-12-28 1984-07-16 Toshiba Corp Combustion controller of multi-stage incinerator
JPS6125965A (en) * 1984-07-17 1986-02-05 Hitachi Ltd Electronic control fuel injection pump

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0682241U (en) * 1993-05-13 1994-11-25 積水化学工業株式会社 Vertical gutter mounting structure

Also Published As

Publication number Publication date
JPS63108108A (en) 1988-05-13

Similar Documents

Publication Publication Date Title
JP2002510550A (en) Closed cycle waste combustion
JP6612629B2 (en) Sludge incineration system
EP1379811B1 (en) Closed cycle waste combustion
JP3113628B2 (en) Method and apparatus for generating and utilizing gas from waste material
JPH0226614A (en) Deodoring and purification of wet exhaust gas with intermediate temperature generated by burning of wet waste sludge
JP5780806B2 (en) Sludge incineration treatment system and sludge incineration treatment method
JP5297066B2 (en) Pyrolysis gas treatment method and apparatus in sludge carbonization equipment
US4050390A (en) Method of treating sewage sludge
JP3806428B2 (en) Method and apparatus for carbonizing sludge and power generation method
JPH0258526B2 (en)
JPS62182516A (en) Burning method for fluidized bed type incinerator
JPS6370014A (en) Combustion-melting furnace of cyclone type for sewage sludge
JPH0214604B2 (en)
JP2004169954A (en) Operation method for waste incinerator and waste incinerator
JPH10169944A (en) Fluidized layer control method in waste thermal decomposition furnace
KR910005741Y1 (en) Apparatus for dry distillation
JP3014953B2 (en) Incinerator
SU672443A1 (en) Method of treating dehydrated residues of waste water
JPS6082712A (en) Incinerating method of waste
JPS5541366A (en) Treating method of ash produced in incinerating refuse and refuse incinerating system
KR20220163553A (en) Waste treatment system and process using the same
JP2729915B2 (en) Fluidized bed furnace cooling method
JPH06331123A (en) Control of amount of combustion air for incinerator for waste
JPH0154605B2 (en)
JPH0236853B2 (en) KANSOODEINOYOJURO