JPH0258481A - Picture distortion correcting device for movable type ccd image pickup device - Google Patents

Picture distortion correcting device for movable type ccd image pickup device

Info

Publication number
JPH0258481A
JPH0258481A JP63208145A JP20814588A JPH0258481A JP H0258481 A JPH0258481 A JP H0258481A JP 63208145 A JP63208145 A JP 63208145A JP 20814588 A JP20814588 A JP 20814588A JP H0258481 A JPH0258481 A JP H0258481A
Authority
JP
Japan
Prior art keywords
ccd
alignment
image pickup
movable type
tilt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63208145A
Other languages
Japanese (ja)
Inventor
Tsukasa Morisato
司 森里
Kazuhide Noguchi
一秀 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP63208145A priority Critical patent/JPH0258481A/en
Publication of JPH0258481A publication Critical patent/JPH0258481A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To correct the distortion of a picture due to alignment and the tilt of a spin axis generated or changed after satellite launching by rotating a CCD in optical axis rotation. CONSTITUTION:In movable type CCD(charge coupled device) image pickup device 1, when it becomes an upward abnormal locus for an angle theta, a detecting part 4 detects a drift angle theta by a picture data output (c) of the CCD 1 and outputs a correcting requesting signal (d) to rotate the CCD 1 for the angle thetacounterclockwise to eliminate the drift angle theta to a control part 5. The control part 5 impresses a control voltage on piezo elements 3a to 3d corresponding to the correcting requesting signal (d), rotates the CCD 1 with expanding or shrinking and eliminates the drift angle. Thus, the distortion of a picture due to alignment and the tilt of a spin axis generated or changed after satellite launching can be corrected.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、可動型CCD (charge coupl
ed device)撮像器の画像歪補正装置に関する
[Detailed Description of the Invention] [Industrial Application Field] The present invention is directed to a movable CCD (charge couple).
ed device) relates to an image distortion correction device for an image pickup device.

特に、スピン衛星に搭載されるT D I (Time
 Dela7 and Integration)方式
恒星センサの画像補正に関し、恒星センサの衛星取り付
は時のアライメント誤差および衛星スピン軸のティルト
による画像の歪を、CCDの光軸まわりのアライメント
をピエゾ素子により変化させることで補正する装置に関
するものである。
In particular, TDI (Time
Regarding the image correction of the Dela7 and Integration) method stellar sensor, image distortion due to alignment error and tilt of the satellite spin axis can be corrected by changing the alignment around the optical axis of the CCD using a piezo element. The present invention relates to a correction device.

[従来の技術] TDI方式は、第2図に示すようにCCD l上のV方
向(恒星の像の移動する方向)に移動する星の画像に同
期させてCCDのビクセルのチャージ電荷aを矢印すに
示すように移動させて行き、画像データを取得する方式
である。
[Prior art] As shown in Fig. 2, the TDI method uses the charge a of the CCD's vixel to move in the direction of an arrow in synchronization with a star image moving in the V direction (the moving direction of the stellar image) on the CCD l. In this method, the image data is acquired by moving the object as shown in the figure.

従来、このようなTDI方式を用いたスピン衛星用恒星
センサのCCD部は、CODのチップ面に垂+ffな軸
、すなわち光軸に対して固定されていた。
Conventionally, the CCD section of a star sensor for a spin satellite using such a TDI method has been fixed with respect to an axis perpendicular to the chip surface of the COD, that is, the optical axis.

[解決すべき課題] E述した従来のスピン衛星用TDI方式恒星センサは、
衛星への取り付は時にアライメントの調整を行なってい
るが、アライメントの測定方法、測定装置等の制約を受
けることから、アライメント誤差をある値以下にするこ
とは不可能である。
[Problems to be solved] The conventional TDI type star sensor for spin satellites described in E.
When installing a satellite on a satellite, alignment is sometimes adjusted, but it is impossible to reduce the alignment error below a certain value due to restrictions on alignment measurement methods, measurement devices, etc.

また、打上げ後は無重力となるので、アライメント誤差
が拡大される場合もある。
Furthermore, since there is no gravity after launch, alignment errors may be magnified.

さらに、衛星のスピン軸についても、地上でスピン試験
を行うときのスピン軸と、打上げ後のスピン軸とは必ず
しも一致せず、誤差の中にはティルトも含まれることと
なる。
Furthermore, regarding the satellite's spin axis, the spin axis during a spin test on the ground does not necessarily match the spin axis after launch, and errors include tilt.

このようなアライメント誤差およびスピン軸のティルト
があると、TDI方式は前述したように、CCD上の恒
星像の移動方向(第2図V方向))に同期させてビクセ
ルのチャージ電荷を移動させて画像データを取得する方
式であるので、CCD)を移動する星の画像がCODの
V方向の同一ライン上を通らず、斜めに移動して行って
しまうこととなる。そして、このようにして取得した画
像データは1画像を卵のような形に歪ませてしまう、ま
た、月のような大きな天体の画像を取得するような場合
には1画像がポケでしまう。
If there is such an alignment error and a tilt of the spin axis, the TDI method, as described above, moves the charge of the vixel in synchronization with the moving direction of the stellar image on the CCD (direction V in Figure 2). Since this is a method of acquiring image data, images of stars moving through the CCD do not pass along the same line in the V direction of the COD, but instead move diagonally. The image data obtained in this way distorts one image into an egg-like shape, and when an image of a large celestial body such as the moon is obtained, one image becomes blank.

従来のスピン衛星用TDI方式恒星センサでは、CC6
が固定されているので、打J二げ後に生じあるいは変化
するアライメントおよびスピン軸のティルトよる画像の
歪を補正することができないという問題点があった。
In the conventional TDI type star sensor for spin satellites, CC6
Since this is fixed, there is a problem in that it is not possible to correct image distortion due to alignment and spin axis tilt that occurs or changes after hitting the J-2.

本発明はに述した問題点にがんがみてなされたもので、
打」二げ後に生じるあるいは変化するアライメントおよ
びスピン軸のティルトよる画像の歪を補11することの
できる+lrf動型CCD撮像器の画像歪捕I[“装置
の提供を目的とする。
The present invention has been made in view of the problems mentioned above.
The object of the present invention is to provide an image distortion capture device for a +lrf dynamic CCD imager capable of compensating for image distortion caused by alignment and spin axis tilt that occurs or changes after a second shot.

[!1題の解決り段] 、上記11的を達成するために木発す1のIir動型C
CD撮像器の画像歪補正装置は、CCDとCOD支持体
との間にあって前記CCDを支持体に対してCCDの光
軸まわりに回転可能に支持するピエゾぶ子と、前記CO
Dからの画像データにJ、tiづいてCCDのずれ角を
検出し補正要求信号を出力する検出部と、この検出部か
らの補i1E要求信号に)、’;、いて前記ずれ角をな
くすよう前記CCDを回転させるために前記ピエゾよ子
に印加する電圧を制御する制御部とを備えた構成としで
ある。
[! 1 problem solving stage], 1 Iir dynamic type C to be developed to achieve the above 11 objectives
An image distortion correction device for a CD imager includes a piezoelectric bracket that is located between a CCD and a COD support and supports the CCD rotatably about the optical axis of the CCD with respect to the support;
A detection unit that detects the deviation angle of the CCD based on the image data J, ti from D and outputs a correction request signal, and a supplementary i1E request signal from this detection unit), ';, to eliminate the deviation angle. The apparatus further includes a control section that controls a voltage applied to the piezoelectric element in order to rotate the CCD.

[実施例] 以下、本発明の一実施例について図面を参照して説1月
する。
[Embodiment] An embodiment of the present invention will be described below with reference to the drawings.

第1図は本発明に係る可動型CCD撮像器の画像歪補正
装置の一実施例を示す図である。
FIG. 1 is a diagram showing an embodiment of an image distortion correction device for a movable CCD imager according to the present invention.

lはCCDであり、2はCOD支持体である。1 is a CCD and 2 is a COD support.

3a、3b、3c、3dはピエゾ素子である。3a, 3b, 3c, and 3d are piezo elements.

これらピエゾ素子3a、3b、3c、3dは、CCD 
1とCCD支持体2との間にあって、CCD lのほぼ
四隅に配こされており、CCD 1を支持体2に対して
CCDの光軸0まわりに回転可能に支持している。
These piezo elements 3a, 3b, 3c, 3d are CCD
1 and the CCD support 2, and are arranged at approximately the four corners of the CCD 1, and support the CCD 1 rotatably around the optical axis 0 of the CCD with respect to the support 2.

4は検出部であり、CGDIからの画像データ出力Cに
基づいてCCD lのずれ角0を検出し補正要求信号d
を出力する。
4 is a detection unit which detects the deviation angle 0 of the CCD l based on the image data output C from the CGDI and outputs a correction request signal d.
Output.

5は制御部であり、検出部4からの補正要求信号dに基
いて、前記ずれ角0をなくすようCCD 1を回転させ
るためにピエゾ素子3a。
Reference numeral 5 denotes a control section, which includes a piezo element 3a for rotating the CCD 1 to eliminate the deviation angle 0 based on the correction request signal d from the detection section 4.

3b、3c、3dに印加する電圧を制御する6例えば、
CCDIを第1図上反時計回りに回転させるためには、
ピエゾ素子3a、3dに、これを膨張させるような制御
電圧を印加し、ピエゾ素子3b、3cには、これを収縮
させるような制御−1t圧をそれぞれ印加する。
6 for controlling the voltage applied to 3b, 3c, and 3d, for example,
To rotate the CCDI counterclockwise in Figure 1,
A control voltage that causes the piezo elements 3a and 3d to expand is applied, and a control -1t pressure that causes the piezo elements 3b and 3c to contract is applied to each of the piezo elements 3b and 3c.

以上のような可動型CCD撮像器の画像歪袖止装ごにお
いて、今、第1図に示すように角度0だけ上向きの異常
軌跡となったとすると、検出部4がCCD 1の画像デ
ータ出力Cによりずれ角Qを検出し、このずれ角0をな
くすべ(CCDIを反時、f1回りに角度θだけ回転さ
せる丸めの補正要に信V)dを制御部5へ出力する。
In the image distortion prevention system of the movable CCD imager as described above, if an abnormal trajectory is now directed upward by an angle of 0 as shown in FIG. Detects the deviation angle Q, and outputs the deviation angle d to the control unit 5 to eliminate this deviation angle 0 (requires rounding correction by rotating the CCDI counterclockwise around f1 by an angle θ).

すると、制御部5は補正要求信号dに応じ、ピエゾ7も
子3a、3dに、これを膨張させるような制御Jl電圧
を印加し、ピエゾ素%3b、3cには、これを収縮させ
るような制御電圧をそれぞれ印加する。
Then, in response to the correction request signal d, the control unit 5 applies a control voltage Jl to the piezo elements 3a and 3d to expand them, and applies a control voltage Jl to the piezo elements 3b and 3c to cause them to contract. Apply control voltages respectively.

モして、これらピエゾ素子の膨張または収縮によってC
CD lが回転し、ずれ角がなくなって、画像の歪が解
消されることとなる。
Due to the expansion or contraction of these piezo elements, C
The CD l rotates, the deviation angle disappears, and the image distortion is eliminated.

なお、蹟常ltILgAがf向きになった場合には、同
様にしてピエゾ素T−3a、3dに、これを収縮させる
ような制御部/Eが印加され、ヒ゛エン゛素了3b、3
cには、これを膨張させるような制御電圧が印加されて
、CCD1が時計方向に回転しずれ角がなくなることと
なる。
In addition, when the normal ltILgA is in the f direction, a control section /E that contracts the piezo elements T-3a and 3d is similarly applied to the piezo elements T-3a and 3d, and the piezo elements T-3b and 3d are
A control voltage is applied to c to expand it, so that the CCD 1 rotates clockwise and the deviation angle disappears.

[R,ilの効果] 以上説明したように本発明は、CCDを光軸回りに回転
させることにより、打ち上げ後に生じるまたは変化する
アライメントおよびスピン軸のティルトによる画像の歪
みを打ち上げ後においても補正することができるので、
画像データのより一層の高精度化、高分解能化を図るこ
とが出来るという効果がある。
[Effects of R, il] As explained above, the present invention corrects image distortion caused by alignment and spin axis tilt that occurs or changes after launch by rotating the CCD around the optical axis even after launch. Because you can
This has the effect of further increasing the accuracy and resolution of image data.

また、地上での7ライメ/ト精度に高精度を要求しなく
てもよいので、アライメントの測定方法、ホイ定装置に
対する訪約が少なくてすみ、アライメントに要する面間
を短縮することができるという効果がある。
In addition, since there is no need to require high accuracy than the 7 line/meter accuracy on the ground, there are fewer visits to the alignment measurement method and measurement equipment, and the distance between surfaces required for alignment can be shortened. effective.

さらに、打ち−1−げ後のスピン軸のティルト角も大き
くすることができ、衛星の姿勢制御に対する制約がゆる
くなるので、姿勢制御の開発スケジュールの短縮、開発
コストの低減をも図ることができるという効果がある。
Furthermore, the tilt angle of the spin axis after launch can be increased, which loosens constraints on the attitude control of the satellite, making it possible to shorten the attitude control development schedule and reduce development costs. There is an effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る可動型CC04A1像器の画像歪
補正装置の一実施例を示す図、第2図はTDI方式を説
明するためのCCDの拡大図である。 1 : CCD 2:CCD支持体 3a〜3d:ピエゾ素子 4:検出部 5:制御部 代理人 弁理士 渡 辺 喜 平
FIG. 1 is a diagram showing an embodiment of an image distortion correction device for a movable CC04A1 imager according to the present invention, and FIG. 2 is an enlarged view of a CCD for explaining the TDI method. 1: CCD 2: CCD support 3a to 3d: Piezo element 4: Detection section 5: Control section Agent Patent attorney Kihei Watanabe

Claims (1)

【特許請求の範囲】 CCDとCCD支持体との間にあって前記 CCDを支持体に対してCCDの光軸まわりに回転可能
に支持するピエゾ素子と、前記CCDからの画像データ
に基づいてCCDのずれ角を検出し補正要求信号を出力
する検出部と、この検出部からの補正要求信号に基いて
前記ずれ角をなくすよう前記CCDを回転させるために
前記ピエゾ素子に印加する電圧を制御する制御部とを備
えたことを特徴とする可動型CCD撮像器の画像歪補正
装置。
[Scope of Claims] A piezo element that is located between a CCD and a CCD support and supports the CCD rotatably about the optical axis of the CCD with respect to the support, and a piezo element that is configured to shift the CCD based on image data from the CCD. a detection unit that detects the angle and outputs a correction request signal; and a control unit that controls a voltage applied to the piezo element in order to rotate the CCD so as to eliminate the deviation angle based on the correction request signal from the detection unit. An image distortion correction device for a movable CCD imager, comprising:
JP63208145A 1988-08-24 1988-08-24 Picture distortion correcting device for movable type ccd image pickup device Pending JPH0258481A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63208145A JPH0258481A (en) 1988-08-24 1988-08-24 Picture distortion correcting device for movable type ccd image pickup device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63208145A JPH0258481A (en) 1988-08-24 1988-08-24 Picture distortion correcting device for movable type ccd image pickup device

Publications (1)

Publication Number Publication Date
JPH0258481A true JPH0258481A (en) 1990-02-27

Family

ID=16551382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63208145A Pending JPH0258481A (en) 1988-08-24 1988-08-24 Picture distortion correcting device for movable type ccd image pickup device

Country Status (1)

Country Link
JP (1) JPH0258481A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2809911A1 (en) * 2000-06-06 2001-12-07 Centre Nat Etd Spatiales Spacecraft sensor pointing unit is piezoelectric compensates motion allows longer time constant cheaper detectors
EP1638317A3 (en) * 2004-09-18 2007-08-15 Deutsche Telekom AG Image stabilization device
DE10233639B4 (en) * 2001-07-31 2008-01-17 Hewlett-Packard Development Co., L.P., Houston Optical image scanner with adjustable focus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2809911A1 (en) * 2000-06-06 2001-12-07 Centre Nat Etd Spatiales Spacecraft sensor pointing unit is piezoelectric compensates motion allows longer time constant cheaper detectors
WO2001095614A1 (en) * 2000-06-06 2001-12-13 Centre National D'etudes Spatiales Image pick-up device on board a space craft, space craft and image sensing method comprising same
US6798984B2 (en) 2000-06-06 2004-09-28 Centre National D'etudes Spatiales Image pick-up device on board a space craft, space craft and image sensing method comprising same
DE10233639B4 (en) * 2001-07-31 2008-01-17 Hewlett-Packard Development Co., L.P., Houston Optical image scanner with adjustable focus
EP1638317A3 (en) * 2004-09-18 2007-08-15 Deutsche Telekom AG Image stabilization device
US8289406B2 (en) 2004-09-18 2012-10-16 Deutsche Telekom Ag Image stabilization device using image analysis to control movement of an image recording sensor

Similar Documents

Publication Publication Date Title
EP0833127A1 (en) Angular-velocity detection apparatus
CN115311365B (en) High-precision on-orbit geometric positioning method for long-line-column swing scanning camera
US5444481A (en) Method of calibrating a CCD camera
US10277819B2 (en) Method for calibrating driving amount of actuator configured to correct blurring of image taken by camera
JPH0258481A (en) Picture distortion correcting device for movable type ccd image pickup device
CN100470387C (en) Image forming apparatus
US5634145A (en) Apparatus for inspecting blur correction camera, blur correction camera, and method of inspecting blur correction camera
US7330312B2 (en) Image blur compensation device
JP3454497B2 (en) Projection exposure method and apparatus
Tchernykh et al. Space application of a self-calibrating optical processor for harsh mechanical environment
JP2006119008A (en) Temperature characteristic adjusting method of gyroscopic sensor, and gyroscopic sensor
CN115046571A (en) Star sensor installation error correction method and device based on remote sensing image
JPH10221022A (en) Size and shape measuring error correction method
JPH11238113A (en) Image input device
JP2005136743A (en) Position adjusting instrument and position adjusting method for image pickup device
JP3460735B2 (en) Adjustment device, shake correction camera, and adjustment method
JPH10150596A (en) Video camera
WO2018074230A1 (en) Chip module, signal processing method for same, and electronic device
JP2000142594A (en) High frequency range attidute control method and device for artificial satellite
JPH08247758A (en) Range-finding device
JP2000238319A (en) Optical scanning device
JPH10281737A (en) Method for synthesizing wave front
JPS63241415A (en) Star sensor
JP3433994B2 (en) Camera stabilizer
JPH08210855A (en) Azimuth measurer