JPH0257993A - Radar target detecting apparatus - Google Patents

Radar target detecting apparatus

Info

Publication number
JPH0257993A
JPH0257993A JP20868188A JP20868188A JPH0257993A JP H0257993 A JPH0257993 A JP H0257993A JP 20868188 A JP20868188 A JP 20868188A JP 20868188 A JP20868188 A JP 20868188A JP H0257993 A JPH0257993 A JP H0257993A
Authority
JP
Japan
Prior art keywords
video
sigma
signal
radar
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20868188A
Other languages
Japanese (ja)
Inventor
Yoshiki Morita
森田 良樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP20868188A priority Critical patent/JPH0257993A/en
Publication of JPH0257993A publication Critical patent/JPH0257993A/en
Pending legal-status Critical Current

Links

Landscapes

  • Radar Systems Or Details Thereof (AREA)

Abstract

PURPOSE:To restrain the decrease in a target detecting rate located between a beam and a beam by correcting the gain of a SIGMA video with an amplitude ratio between the SIGMA video and a DELTA video which are obtained with the patterns of the sum and the difference in a radar antenna, and thereafter performing video quantization. CONSTITUTION:A radar target detecting apparatus has a gain corrector 3, a video quantizer 1 and a correlator 2. A SIGMA video signal which is obtained with the sum pattern of a radar antenna and a DELTA video signal which is obtained with the difference pattern of the radar antenna are inputted into the corrector 3. The corrector 3 computes an amplitude ratio DELTA/SIGMA between the DELTA video and the SIGMA video with a divider. The result is outputted into a correcting coefficient generator. In a multiplier, the amplitude value of the SIGMA video is multiplied by the correcting coefficient which is outputted from the correcting coefficient generator so as to obtain a SIGMA' video signal. The signal is outputted into the quantizer 1. When the SIGMA' video signal exceeds a threshold value, the signal is detected as a hit signal in the quantizer 1. The correlation operation of a distance, an elevation angle and an azimuth angle is performed by using a synchronizing signal from the radar with respect to the hit signal in the correlator 2. Synthesis of the hit signals from the same target and the extraction of the distance, the altitude, the bearing and the like of the target are performed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明はレーダの受信ビデオから目標を検出するレー
ダ目標検出装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a radar target detection device for detecting a target from a received video of a radar.

〔従来の技術〕[Conventional technology]

第4図は従来の一般的なレーダ目標検出装置の構成を示
すものであり、図において1はビデオ量子化器、2はビ
デオ量子化器1の出力であるヒツト信号と、レーダ装置
からの各種同期信号を用いて目標の検出及び情報の抽出
を行なう相関器である。
Figure 4 shows the configuration of a conventional general radar target detection device. This is a correlator that uses synchronization signals to detect targets and extract information.

第5図はビデオ量子化器1の細部構成を示すものであり
、11は比較器であり、12は闇値発生回路である。
FIG. 5 shows the detailed configuration of the video quantizer 1, in which 11 is a comparator and 12 is a dark value generating circuit.

次に動作について説明する。Next, the operation will be explained.

レーダ装置からのビデオ信号を比較器11によって闇値
との比較を行ない、閾値を越えたものをヒツト信号とし
て検出する。この闇値は閾値発生回路12によって作成
し、その方式は種々であるが、ビデオ信号の一定区間の
平均レベルに所定の係数を掛ける方式が一般的である。
A video signal from a radar device is compared with a dark value by a comparator 11, and a signal exceeding a threshold value is detected as a hit signal. This dark value is created by the threshold value generation circuit 12, and there are various methods, but a common method is to multiply the average level of a certain section of the video signal by a predetermined coefficient.

次いで相関器2でヒツト信号についてレーダからの同期
信号を用いて距離、仰角及び方位角の相関処理を行なっ
て、同一目標からのヒツト信号の統合及び目標の距離、
高度及び方位等の抽出を行なう。相関器2で検出した目
標情報はさらに計算器等に入力され、必要に応じて目標
の追尾計算や表示処理に使用される。
Next, the correlator 2 performs correlation processing on the distance, elevation angle, and azimuth angle of the human signal using the synchronization signal from the radar, thereby integrating the human signals from the same target and determining the distance of the target.
Extract altitude, direction, etc. The target information detected by the correlator 2 is further input to a calculator or the like, and is used for target tracking calculations and display processing as necessary.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来のレーダ目標検出装置は以上のように構成されてお
り、ファンビームのような広いビームで走査するレーダ
では問題は生じないが、細いペンシルビームを用いて空
間を離散的に走査するレーダの場合にはビームの中心で
捉えた目標のビデオとビームの中心からはずれて捉えた
目標のビデオを同じ闇値で検出することになり、特にビ
ームとビームの谷間に位置する目標の検出率が低下する
という問題が生ずる。このため空間の走査速度を犠牲に
するか、ビーム幅を拡げて測定精度を犠牲にするかしな
ければならなかった。
Conventional radar target detection devices are configured as described above, and although there is no problem with radars that scan with a wide beam such as a fan beam, there is a problem with radars that scan space discretely with a narrow pencil beam. In this case, the video of the target captured at the center of the beam and the video of the target captured away from the center of the beam are detected with the same darkness value, and the detection rate of targets located between the beams is particularly low. This problem arises. For this reason, it was necessary to either sacrifice spatial scanning speed or increase the beam width and sacrifice measurement accuracy.

この発明は上記のような問題点を解消するためになされ
たもので、ビームとビームの谷間に位置する目標の検出
率の低下を少なくできるレーダ目標検出装置を得ること
を目的とする。
The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a radar target detection device that can reduce the decrease in detection rate of targets located between beams.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係るレーダ目標検出装置は、レーダ・アンテ
ナの和パターンで得られたビデオ信号(以下Σビデオと
呼ぶ)の利得を、該Σビデオの振幅とレーダ・アンテナ
の差パターンで得られたビデオ信号(以下Δビデオと呼
ぶ)の振幅との比に基づいて補正する利得補正回路を、
ビデオ量子化回路の前に付加したものである。
The radar target detection device according to the present invention converts the gain of a video signal (hereinafter referred to as Σ video) obtained by a sum pattern of radar antennas into the gain of a video signal obtained by a difference pattern between the amplitude of the Σ video and a radar antenna. A gain correction circuit that corrects based on the ratio of the amplitude of the signal (hereinafter referred to as Δ video),
This is added before the video quantization circuit.

〔作用〕[Effect]

この発明においては、利得補正回路はΔビデオとΣビデ
オの振幅比から目標のビーム中心からのずれ角を求め、
そのずれ角に応じてΣビデオの利得を上げてビーム中心
からはずれたことによるΣビデオの減衰分を補償するよ
うに作用する。
In this invention, the gain correction circuit calculates the deviation angle from the target beam center from the amplitude ratio of Δ video and Σ video,
The gain of the Σ video is increased in accordance with the deviation angle to compensate for the attenuation of the Σ video due to deviation from the beam center.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図は本発明の一実施例によるレーダ目標検出装置を
示し、図において、3は利得補正器、1はビデオ量子化
器、2は相関器である。
FIG. 1 shows a radar target detection apparatus according to an embodiment of the present invention, in which 3 is a gain corrector, 1 is a video quantizer, and 2 is a correlator.

第2図は利得補正器3のさらに詳細な構成を示したもの
であり、31は除算器、32は補正係数発生器、33は
乗算器である。
FIG. 2 shows a more detailed configuration of the gain corrector 3, in which 31 is a divider, 32 is a correction coefficient generator, and 33 is a multiplier.

次に動作について説明する。Next, the operation will be explained.

ここでレーダ・アンテナの和パターンで得られたビデオ
信号(Σビデオ)及びレーダ・アンテナの差パターンで
得られたビデオ信号(Δビデオ)は目標の測角精度を高
める為に用いるモノパルス測角方式のアンテナで得られ
るもので、第6図に示す関係があり、ΔビデオとΣビデ
オの振幅比Δ/Σによりビームの中心からのずれ角1Δ
θ1を求めることができる。そこで、そのずれ角1Δθ
に応じてΣビデオの利得を上げてビーム中心からはずれ
たことによるΣビデオの減衰分(第7図の和パターン参
照、Δθが大きい捏和パターンが減衰している)を補償
するため、レーダからのΣビデオを利得補正器3にて補
正する。
Here, the video signal obtained from the sum pattern of the radar antenna (Σ video) and the video signal obtained from the difference pattern of the radar antenna (Δ video) are the monopulse angle measurement method used to improve the angle measurement accuracy of the target. There is a relationship shown in Figure 6, and the deviation angle 1Δ from the beam center is
θ1 can be found. Therefore, the deviation angle 1Δθ
In order to compensate for the attenuation of the Σ video due to deviation from the beam center by increasing the gain of the Σ video according to the The gain corrector 3 corrects the Σ video.

即ち、利得補正器3では除算器31にてΔビデオとΣビ
デオの振幅比Δ/Σを計算し、その結果を補正係数発生
器32へ出力する。補正係数発生器32は例えばROM
 (Read 0nly Memory)で構成され、
除算器31の計算結果に応じて第7図の破線で示される
利得補正量に相当する補正係数を発生する。乗算器33
はΣビデオの振幅値にこの補正係数を乗算してΣ′ビデ
オとしてビデオ量子化器1へ出力する。
That is, in the gain corrector 3, the divider 31 calculates the amplitude ratio Δ/Σ of Δ video and Σ video, and outputs the result to the correction coefficient generator 32. The correction coefficient generator 32 is, for example, a ROM.
(Read Only Memory)
According to the calculation result of the divider 31, a correction coefficient corresponding to the gain correction amount shown by the broken line in FIG. 7 is generated. Multiplier 33
multiplies the amplitude value of the Σ video by this correction coefficient and outputs it to the video quantizer 1 as a Σ' video.

ビデオ量子化器1は従来例で述べたと全く同じ動作を行
ない、Σ″ビデオ信号対して闇値との比較を行ない、闇
値を越えたものをヒツト信号として検出する。次いで相
関器2でヒツト信号についてレーダからの同期信号を用
いて距離、仰角及び方位角の相関処理を行なって同一目
標からのヒツト信号の統合及び目標の距離、高度及び方
位等の抽出を行なう。相関器2で検出した目標情報はさ
らに計算器等に入力され必要に応じて目標の追尾計算や
表示処理に使用される。
The video quantizer 1 performs exactly the same operation as described in the conventional example, and compares the Σ'' video signal with the dark value, and detects the signal exceeding the dark value as a human signal. Correlation processing of distance, elevation angle, and azimuth angle is performed on the signal using a synchronization signal from the radar to integrate human signals from the same target and extract target distance, altitude, azimuth, etc. Detected by correlator 2 The target information is further input to a calculator or the like and used for target tracking calculations and display processing as necessary.

なお、上記実施例では常にΣビデオの利得補正を行なう
ものを示したが、Δビデオに一定レベル以上の有為な信
号が有るときのみ利得補正を行なうようにしても良い、
この場合には真に利得補正が必要なときのみに利得補正
を行なうようにでき、Δビデオが雑音によって変動する
場合にΣビデオに無用の補正を行なうことを防止できる
In addition, in the above embodiment, the gain correction of Σ video is always performed, but the gain correction may be performed only when there is a significant signal of a certain level or higher in the Δ video.
In this case, gain correction can be performed only when gain correction is truly necessary, and it is possible to prevent unnecessary correction from being performed on Σ video when Δ video fluctuates due to noise.

このようにした本発明の他の実施例による利得補正回路
の構成を第3図に示す0図において、34はレベル検定
回路であり、Δビデオの振幅が一定レベル以上にあると
きスイッチ35により乗算器33の出力を選択し、それ
以外は入力のΣビデオをそのまま出力するように動作す
る。
The configuration of the gain correction circuit according to another embodiment of the present invention is shown in FIG. 33, and otherwise outputs the input Σ video as is.

〔発明の効果〕〔Effect of the invention〕

以上のようにこの発明によれば、ΔビデオとΣビデオの
振幅比によりΣビデオの利得を補正したのちビデオ量子
化を行なうようにしたので、細いビームを高速で走査す
るレーダに対してもビームとビームの谷間にある目標の
検出率の低下を抑えることができる効果がある。
As described above, according to the present invention, video quantization is performed after correcting the gain of Σ video using the amplitude ratio of Δ video and Σ video. This has the effect of suppressing a decrease in the detection rate of targets located in the valley of the beam.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例によるレーダ目標、検出装
置を示す構成図、第2図はこの発明の利得補正回路を示
す構成図、第3図はこの発明の他の実施例による利得補
正回路を示す構成図、第4図は従来例によるレーダ目標
検出装置を示す構成図、第5図は従来及びこの発明の実
施例によ゛るビデオ量子化器を示す構成図、第6図はΔ
ビデオとΣビデオの振幅比Δ/Σからビーム中心からの
ずれ角1Δθ1を算出する原理を示す説明図、第7図は
ビーム中心からのずれ角と利得補正量の関係を示す説明
図である。 1はビデオ量子化器、11は比較器、12は闇値発生回
路、2は相関器、3は利得補正器(利得補正手段)、3
工は除算器(振幅比演算手段)、32は補正係数発生器
、33は乗算器である。 なお図中同一符号は同−又は相当部分を示す。
FIG. 1 is a block diagram showing a radar target and detection device according to an embodiment of the present invention, FIG. 2 is a block diagram showing a gain correction circuit according to the present invention, and FIG. 3 is a block diagram showing a gain correction circuit according to another embodiment of the present invention. FIG. 4 is a block diagram showing a conventional radar target detection device, FIG. 5 is a block diagram showing a video quantizer according to the conventional example and an embodiment of the present invention, and FIG. 6 is a block diagram showing the circuit. Δ
An explanatory diagram showing the principle of calculating the deviation angle 1Δθ1 from the beam center from the amplitude ratio Δ/Σ of video and Σ video. FIG. 7 is an explanatory diagram showing the relationship between the deviation angle from the beam center and the gain correction amount. 1 is a video quantizer, 11 is a comparator, 12 is a dark value generation circuit, 2 is a correlator, 3 is a gain corrector (gain correction means), 3
32 is a correction coefficient generator, and 33 is a multiplier. Note that the same reference numerals in the figures indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims] (1)レーダ目標検出装置において、 レーダ・アンテナの和パターンで得られたビデオ信号と
差パターンで得られたビデオ信号の振幅比をとる振幅比
演算手段と、 上記振幅比に応じて和パターンで得られたビデオ信号の
利得を補正する利得補正手段とを備えたことを特徴とす
るレーダ目標検出装置。
(1) In a radar target detection device, an amplitude ratio calculating means for calculating the amplitude ratio of a video signal obtained by a sum pattern of the radar antenna and a video signal obtained by a difference pattern; A radar target detection device comprising: gain correction means for correcting the gain of the obtained video signal.
JP20868188A 1988-08-23 1988-08-23 Radar target detecting apparatus Pending JPH0257993A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20868188A JPH0257993A (en) 1988-08-23 1988-08-23 Radar target detecting apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20868188A JPH0257993A (en) 1988-08-23 1988-08-23 Radar target detecting apparatus

Publications (1)

Publication Number Publication Date
JPH0257993A true JPH0257993A (en) 1990-02-27

Family

ID=16560305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20868188A Pending JPH0257993A (en) 1988-08-23 1988-08-23 Radar target detecting apparatus

Country Status (1)

Country Link
JP (1) JPH0257993A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0720225A (en) * 1993-06-30 1995-01-24 Nec Corp Ppi display of mono pulse radar
US20120127023A1 (en) * 2010-11-19 2012-05-24 Kazuya Nakagawa Method and device for processing signal, and radar device
US9682512B2 (en) 2009-02-06 2017-06-20 Nike, Inc. Methods of joining textiles and other elements incorporating a thermoplastic polymer material
US9732454B2 (en) 2009-02-06 2017-08-15 Nike, Inc. Textured elements incorporating non-woven textile materials and methods for manufacturing the textured elements
US10138582B2 (en) 2009-02-06 2018-11-27 Nike, Inc. Thermoplastic non-woven textile elements

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0720225A (en) * 1993-06-30 1995-01-24 Nec Corp Ppi display of mono pulse radar
US9682512B2 (en) 2009-02-06 2017-06-20 Nike, Inc. Methods of joining textiles and other elements incorporating a thermoplastic polymer material
US9732454B2 (en) 2009-02-06 2017-08-15 Nike, Inc. Textured elements incorporating non-woven textile materials and methods for manufacturing the textured elements
US10131091B2 (en) 2009-02-06 2018-11-20 Nike, Inc. Methods of joining textiles and other elements incorporating a thermoplastic polymer material
US10138582B2 (en) 2009-02-06 2018-11-27 Nike, Inc. Thermoplastic non-woven textile elements
US10174447B2 (en) 2009-02-06 2019-01-08 Nike, Inc. Thermoplastic non-woven textile elements
US10625472B2 (en) 2009-02-06 2020-04-21 Nike, Inc. Methods of joining textiles and other elements incorporating a thermoplastic polymer material
US10982364B2 (en) 2009-02-06 2021-04-20 Nike, Inc. Thermoplastic non-woven textile elements
US10982363B2 (en) 2009-02-06 2021-04-20 Nike, Inc. Thermoplastic non-woven textile elements
US20120127023A1 (en) * 2010-11-19 2012-05-24 Kazuya Nakagawa Method and device for processing signal, and radar device
CN102540147A (en) * 2010-11-19 2012-07-04 古野电气株式会社 Signal processing device, radar device, signal processing method and procedure
US8665140B2 (en) * 2010-11-19 2014-03-04 Furuno Electric Company Limited Method and device for processing signal, and radar device

Similar Documents

Publication Publication Date Title
US10175348B2 (en) Use of range-rate measurements in a fusion tracking system via projections
US7339517B2 (en) Radar
US4825213A (en) Simultaneous triple aperture radar
JP2003177175A (en) Radar device, image acquisition method, control method based on image information and monitoring method using millimeter wave
KR101524141B1 (en) Apparatus and method for detecting target
JP2010197178A (en) Pulse compression device
EP3399334B1 (en) Object detecting device and sensor device
CN109782290B (en) Automatic underwater sound target position tracking method for preventing tracking deviation
EP0560744B1 (en) Method for tracking a radar target
JPH0257993A (en) Radar target detecting apparatus
Oprisan et al. Tracking systems for automotive radar networks
JP3541889B2 (en) Target tracking device
JP2005189107A (en) Radar system
JP7306030B2 (en) Target motion estimation device and target motion estimation method
JP3335832B2 (en) Radar receiver
JP2002071795A (en) Radar device for acquiring and tracking target
KR20150055279A (en) Vehicle radar using azimuth high resolution processing algorithm and operating method thereof
JP2009014508A (en) Secondary monitoring radar device and control method
JP2830596B2 (en) Monopulse angle measuring circuit
Eltrass An enhanced approach for clutter removal and target imaging in throughwall radar systems
JP2003227872A (en) Synthetic aperture radar apparatus
JP3832139B2 (en) Radar signal processor
JP2014174068A (en) Radar device
JP2993482B2 (en) Radar equipment
JP2005233673A (en) Radar device