JPH025798B2 - - Google Patents

Info

Publication number
JPH025798B2
JPH025798B2 JP56083135A JP8313581A JPH025798B2 JP H025798 B2 JPH025798 B2 JP H025798B2 JP 56083135 A JP56083135 A JP 56083135A JP 8313581 A JP8313581 A JP 8313581A JP H025798 B2 JPH025798 B2 JP H025798B2
Authority
JP
Japan
Prior art keywords
pitch
oil
catalyst
coal
toluene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56083135A
Other languages
Japanese (ja)
Other versions
JPS57198788A (en
Inventor
Yoshihiro Muronaka
Masayoshi Ioka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiyoda Chemical Engineering and Construction Co Ltd
Original Assignee
Chiyoda Chemical Engineering and Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiyoda Chemical Engineering and Construction Co Ltd filed Critical Chiyoda Chemical Engineering and Construction Co Ltd
Priority to JP56083135A priority Critical patent/JPS57198788A/en
Publication of JPS57198788A publication Critical patent/JPS57198788A/en
Publication of JPH025798B2 publication Critical patent/JPH025798B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Working-Up Tar And Pitch (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はトルエン不溶分7重量%以上を含むピ
ツチ状物を水素化処理し、該ピツチ状物を低分子
量化させると共に、該トルエン不溶分を可溶化さ
せるための改良方法に関するものである。 近年、石油に対する需要が著しく増加している
のに対して新規油田の発見及び開発が頭打ち傾向
を示していることから、世界的エネルギー不足が
到来している。これに対し新エネルギーあるいは
代替エネルギーに関する研究及び開発が活発に行
われ、とくに化石エネルギー中最大の埋蔵量を有
する石炭類の液化による代替燃料の製造について
は多数のプロセスが検討されている。 石炭の液化法においては、一般に多段処理法が
採用され、その第1段の処理においては、常温固
体のピツチ状物である一次石炭液化物が得られ
る。そして、この一次石炭液化物は、第2段以降
の処理において、水素化分解が水素化精製されて
燃料油に適した石炭液化油とされる。一次石炭液
化物は、その中にトルエン不溶分を含む芳香族炭
素比率(fa)の高いもので、非常に水素化処理し
にくいものである。従つて、従来の一次石炭液化
物の水素化処理においては、種々の困難が生じ、
このために、石炭液化プロセスの実用化が著しく
妨げられている。例えば一次石炭液化物は、これ
を低分子量化させると共に、その中に含まれるト
ルエン不溶分を可溶化させるために、触媒の存在
下、高温度及び加圧水素下において水素化処理す
ることが一般に行われているが、この場合、最も
解決困難な問題として、触媒に関する問題があ
る。従来、この種の触媒としては、アルミナに
Mo,Co,Niなどを担持した高価な脱硫触媒が用
いられているが、しかしながら、このような触媒
の場合、コーク発生量が多い上に、一次石炭液化
物中に含まれるトルエン不溶分や金属成分、さら
に発生したコークなどにより、その触媒活性が急
速に低下し、触媒交換を頻繁に行わなければなら
ないという問題がある。しかも、前記のような触
媒の場合、一次石炭液化物に対する水素化分解の
選択性が悪く、目的とする一次石炭液化物の低分
子量化及びその中に含まれるトルエン不溶分の水
素化分解の他に、一次石炭液化物を構成する縮合
芳香族への水素化及びその水素化分解、さらに、
芳香族系の媒体油を用いる時には、その媒体油も
水素化分解させるという問題を生じる。そして、
このような芳香核への水素化や水素化分解は、水
素消費量を著しく増大させ、石炭液化コストの上
昇原因の一つとなつている。 本発明者らは、石炭一次液化物のようなトルエ
ン不溶分を多量に含むピツチ状物の水素化処理に
おける前記問題を解決すべく種々研究を重ねた結
果、意外にも、アルミナやシリカ・アルミナのよ
うな酸性の多孔質担体ではなく、マグネシウムシ
リケートや、シリカなどの非酸性の多孔質担体に
水素化活性金属成分を担持させた触媒を用いるこ
とにより、その目的を達成し得ることを見出し、
本発明を完成するに到つた。 すなわち、本発明によれば、トルエン不溶分7
重量%以上を含むピツチ状物を、非酸性多孔質担
体に水素化活性金属成分を担持させた触媒の存在
下、高められた温度及び加圧水素下において水素
化処理し、該トルエン不溶分の少なくとも一部が
可溶化された生成物を得ることを特徴とするピツ
チ状物の水素化処理方法が提供される。 なお、本発明においていうピツチ状物とは、一
次石炭液化物、例えば、石炭の溶剤抽出処理によ
り得られたピツチ状物(脱灰炭)、石炭の水素化
処理により得られたピツチ状物の他、タールピツ
チ、石油ピツチ及び石油の水素化分解や残渣油の
熱処理から得られたピツチ状物、及びそれらの類
似物を意味する。また、トルエン不溶分は、ベン
ゼン不溶分と実質上同義であり、JIS規格による
ベンゼン不溶分の測定法に準じて測定されたもの
である。 本発明で用いる触媒は、非酸性の多孔質担体
に、水素化活性金属成分を担持させて形成したも
のである。この場合、非酸性多孔質担体とは、触
媒担体の表面酸性度の測定指示薬として用いられ
ているメチルレツドを担体表面に吸着させた場合
に、そのメチルレツドが非酸性、即ち、中性又は
塩基性を示す黄色を呈色するような多孔質担体を
意味する。このような非酸性の多孔質担体として
は、例えば、シリカ、マグネシウムシリケート、
カルシウムシリケート、マグネシア、酸化カルシ
ウム、酸化バリウム、希土類酸化物、ケイ酸アル
カリ、多孔質ガラスなどが挙げられる。本発明の
目的には、アルミナやシリカ・アルミナなどの酸
性物質の使用は不適当であるが、このような酸性
物質であつても、担体が実質的に酸性を示さない
ような量である限り、これらの物質の添加を妨げ
るものではない。 前記非酸性の多孔質担体に担持させる水素化活
性金属成分としては、一般の重質炭化水素の水素
化処理用触媒に関して用いられているものが採用
され、遷移金属類及び錫の中から選ばれた少なく
とも1種が用いられる。これらの金属類のうち、
殊に、Cu,Zn,Y,ランタナド、Sn,V,Cr,
Mo,W,Mn,Fe,Co及びNiの中から選ばれた
少なくとも1種の金属類は、本発明で用いる原料
重質炭化水素に対する水素化活性が大きく、しか
も安価に得られることから、好適なものである。
また、これらの金属類の担体に対する担持方法
は、従来慣用されている種々の方法が採用し得
る。触媒中における金属成分の形態は、酸化物、
硫化物あるいはそれらの混合物であつてもよい。
本発明で用いる触媒は、一般的に、10m2/g以
上、好ましくは150m2/g以上の比表面積、0.2
c.c./g以上、好ましくは0.5c.c./g以上の細孔容
積及び50〜500Å、好ましくは100〜300Åの平均
細孔直径を有するものである。 本発明において用いる時に好ましい触媒は、多
孔質マグネシウムシリケートに対して水素化活性
金属成分を担持させたものである。ここで多孔質
マグネシウムシリケートとは、セピオライト、パ
リゴルスカイト及びアタパルジヤイトのような多
孔質粘土鉱物と、これらを粉砕、混練あるいは酸
抽出等の化学的あるいは物理的処理を加えて変成
した物、あるいは水酸化アルミニウムゾル、アル
ミナシリカゾル、チタニアゾルあるいは他の粘土
鉱物等添加物を少量加えて成形した物等の全てを
含むものをいう。角閃石アスベスト鉱物はその
まゝでは細孔容積が極めて小さいマグネシウムシ
リケート鉱物であるが、公知の方法によつて容易
に多孔質化することができ、本発明の目的を満足
する担体の1つである。最も望ましい多孔質マグ
ネシウムシリケートは、得られる触媒の性能ある
いは触媒調整の容易さを考慮するとセピオライ
ト、パリゴルスカイト及びアタパルジヤイトとい
うことができる。これらはいずれも珪素の結合様
式がいわゆる複鎖構造を有する繊維状粘土鉱物と
して知られ、セピオライトは、マグネシウムある
いは希土類元素の一部が、他の金属によつて置換
されたものも知られているが主としてマグネシア
及びシリカから構成される。また、パリゴルスカ
イト及びアタパルジヤイトも、セピオライトと同
様の複鎖構造を持つ多孔質粘土鉱物であり、本発
明の目的に使用可能である。これらのうちでは特
にセピオライトが、担体として優れた特徴を有
し、最も望ましい。即ち、(1)得られる触媒が、比
表面積及び細孔容積が大きく、高活性であり、し
かも鉄、チタン等の金属類の堆積によつて劣化し
にくいこと、(2)セピオライト中のマグネシウムの
一部が他の金属によつて容易に変換され易く、担
持する金属の分散が極めて良好であり、高活性触
媒が安価に得られる、等を挙げることができる。 多孔質マグネシウムシリケート触媒に、担持す
る金属類は、遷移金属類及び錫からなる群から選
ばれた1種以上が用いられる。これらの金属類の
うち、Cu,Zn,Y,ランタニド、Sn,V,Cr,
Mo,W,Mn,Fe,Co,及びNiから選ばれた1
種以上を担持した触媒は、石炭類の水素化分解活
性が大きく、かつ比較的安価に得られるなどの理
由のために好適である。これらの担持金属類の種
類あるいは組合せは、マグネシウムシリケートの
種類、原料ピツチ状物類、性状あるいは反応方
法、条件などに応じて適宜選ばれる。また金属担
持量も多くの因子によつて決められ、極めて広範
囲であるが、通常、金属として合計0.1重量%、
好ましくは0.5〜10重量%の範囲で任意に選ばれ
る。これらの金属類は通常、硝酸塩、硫酸塩、塩
化物、金属酸塩、錯塩あるいはその他の溶媒可溶
性化合物の形で使用される。溶媒としては実用及
び安全性などの観点から通常、水が用いられる
が、メタノール、アセトンあるいは液体アンモニ
アなどの非水溶媒を用いることもできる。金属類
の担持方法としては浸漬、スプレー散布法、混練
法など公知の任意の方法が用いられる。また成形
触媒では金属類の担持を成形工程前の段階で行つ
てもよく又分割して行つてもよい。本発明者らは
セピオライトなどのマグネシウムシリケート担体
にイオン交換法によつて担持された金属は極めて
高度にかつ均一に分散しており、担持量が極めて
少ない場合においても高分子量の縮合芳香族炭化
水素やトルエン不溶分などの水素化分解反応に対
して高活性を示すことを見出している。担体にイ
オン交換法によつて担持できる金属類としては周
期律表b,b,a及び鉄族金属の他に、
V,Cr,Snなどが挙げられる。これらの金属は
塩化物、硫酸塩、硝酸塩などの金属鉱酸塩、珪酸
塩、酢酸塩などの有機酸塩あるいはアンミン錯塩
などの水溶液として用いられるが、必要に応じて
任意の塩類あるいは酸を加えてPHを1〜7に調整
して使用する。 イオン交換法により金属を担持させる場合、担
持金属は担体を構成するマグネシウム等と交換、
担持されることが要件であり、担体中のマグネシ
ウム等と置換されることなく、単に付着あるいは
吸着している金属は、置換されている金属に比べ
て金属重量当り活性が低い。従つてかかる付着あ
るいは吸着している金属は洗浄等によつて回収
し、再使用して効果的に置換せしめるのが望まし
い。 イオン交換法によつて担持することができる金
属と、担持できない金属とを同一の担体に担持す
る場合に、多段工程によつて担持状態を変えて担
持することも可能である。例えばイオン交換法に
よつて第1の金属群を担持した後、第2の金属群
をアンモニアあるいはアミン水溶液などの塩基性
ないし、中性溶液として担持する方法である。 本発明者らの検討によると、多孔質マグネシウ
ムシリケート担体のうち、特にセピオライトは上
記のイオン交換法を用いて金属類を担持するのに
最も望ましい。これはセピオライトの比表面積及
び細孔容積が大きいことの他に、パリゴルスカイ
トあるいはアタパルジヤイトなどの多孔質マグネ
シウムシリケートに比べて、活性金属によつてイ
オン交換されやすく、イオン交換によつて担持さ
れる金属量が多いことなどによると推測される。
イオン交換によつてセピオライトに担持される金
属のうち、Fe,Ni,Co,Cu,Zn,V,Cr,Sn
は、高活性触媒が得られるので特に好適である。
これらの金属類をイオン交換によつて担持した
後、Mo,Wなどをさらに担持してもよい。 本発明において用いる原料ピツチ状物は、芳香
族炭素比率(fa)が0.5以上、殊に、0.6〜0.8の範
囲にあり、450℃以上の沸点を有する成分が60重
量%以上、殊に、70〜100重量%の範囲にありか
つトルエン不溶分を7重量%以上、殊に、20〜70
重量%を含有する軟化点50〜400℃を有する。こ
のようなピツチ状物には、前記したような石炭系
及び/又は石油系の種々のピツチ状物が包含され
る。ピツチ状物は、その種類によつては、水分や
灰分を含むことがあるが、これらの不純物成分
は、ピツチ状物の水素化処理後、生成物の固液分
離操作を困難にするので、予め乾燥処理や、灰分
除去処理を施して、ピツチ状物から除去しておく
のがよい。 本発明は、前記したピツチ状物を水素化処理
し、その低分子量化と共に、その中に含まれるト
ルエン不溶分の少なくとも一部(実質的量)は可
溶化させるものであるが、この場合、ピツチ状物
は、一般的には、その取扱い性と反応性を高める
ために、実質的にトルエン可溶性の芳香族系炭化
水素油からなる媒体油中に分散させて水素化処理
工程に供給される。即ち、ピツチ状物を100メツ
シユパス以下の粘度あるいは150μ以下の粒径に
微粉砕し、媒体油に分散させてスラリー状とし、
これを水素化処理工程に供給する。媒体油として
は、実質的にトルエン可溶性であり、沸点200〜
550℃を有し、芳香族炭素比率(fa)が0.5以上の
芳香族系炭化水素油が用いられ、例えば、石炭液
化油、分解油、石油残渣油、コールタール、アン
トラセン油、アルキルナフタレン、テトラリンな
どが挙げられる。ピツチ状物と媒体油との混合比
率は、混合物の流動性及び目的とするピツチ状物
の水素化分解率によつて任意に決められるが、通
常、無水、無灰基準のピツチ状物1重量部に対
し、0.1〜3重量部の割合である。 本発明における水素化処理条件は、縮合芳香族
系炭化水素の性状や、所望する生成油の性状に応
じて異なるが、一般的には、水素圧30〜350Kg/
cm2、好ましくは100〜200Kg/cm2、処理温度350〜
500℃、好ましくは380〜450℃である。供給原料
の空間速度(LHSV)は、0.1〜2.0Hr-1である。
反応方式としては、固定床、流動床、移動床、移
動床などが任意に採用される。 本発明によれば、ピツチ状物は、低分子量化さ
れると共に、その中に含まれるトルエン不溶分は
可溶化され、著しく減少される。さらに、本発明
によれば、ピツチ状物中のキノリン不溶成分も減
少させることができる。本発明により得られる生
成物は、原料ピツチ状物の種類及び水素化条件に
よつて広範囲に変化させることができ、例えば、
燃料油又は燃料油原料として好適な液状油の他、
軽度の水素化処理によつて、炭素材として好適な
ピツチ状物を得ることも可能である。本発明によ
れば、前記したように、芳香族への水素化を抑制
しながら、ピツチ状物を、水素化分解し、低分子
量化と、トルエン不溶分の水素化分解を同時に達
成することができ、従つて、本発明による生成物
は、従来の方法とは異なり、その水素/炭素比
(H/C)の増加率は少なく、また、芳香族炭素
比率(fa)は、従来の方法の場合のように著しく
減少するようなことはなく、原料ピツチ状物のそ
れと同程度かむしろ上昇する傾向を示す。例え
ば、芳香族炭素比率(fa)が0.6〜0.8のピツチ状
物からは、芳香族炭素比率(fa)が0.7〜0.9の範
囲の水素化処理生成物を得ることが可能である。 本発明による生成物は、従来公知の方法に従つ
て、任意に処理することが可能である。例えば、
生成物を固液分離した後、、生成油分をさらに水
素化処理して精製した後、軽質分を分離し、重質
分を前段の水素化処理工程に循環する方法、生成
油分を水素化精製した後、媒体油を分離し、媒体
油を第1段の水素化処理工程に循環する方法、あ
るいは生成油から媒体油を分離し、再使用のため
に循環する方法などがある。 本発明において用いる触媒は、従来の酸性の多
孔質担体に水素化活性金属成分を担持させたもの
とは異なり、非酸性の多孔質担体に金属成分を担
持させたものを用いることから、前記したような
種々の利点を有するものであるが、以下にその触
媒の作用効果についてさらに詳しく述べる。な
お、本発明において非酸性担体を用いることによ
り前記のような特異な効果が得られる理由につい
ては未だ明確には解明されていないが、ピツチ状
物は芳香族性に極めて富み、塩基的な作用をする
ために、酸性触媒の場合には、触媒上に特に芳香
族性の高いトルエン不溶分などの触媒汚染成分が
吸着されて、固体酸によつて重縮合しやすく、そ
のために触媒の活性低下や、コーク発生などの不
都合を生じやすいのに対し、非酸性担体の場合、
このような不都合が著しく抑制されることによる
ものと考えられる。 (1) 本発明の触媒は、芳香族核自体の水素化分解
を抑制しながら、ピツチ状物を構成する縮合芳
香族系炭化水素のみをより低分子量のものに水
素化分解する選択性に著しくすぐれている。従
つて、本発明の触媒を用いてピツチ状物の水素
化処理を行う時には、媒体油の水素化分解は回
避され、水素消費量は著しく減少される。従来
のアルミナや、シリカ・アルミナ系の触媒を用
いる時には、ピツチ状物の水素化分解の他に、
芳香族核への水素添加及び水素化分解を多量生
じ、さらに媒体油の水素化を生起させることか
ら、水素消費量が莫大なものとなる。 (2) 本発明の触媒によれば、アスフアルテン以上
の重質成分(キノリン不溶分、トルエン不溶
分、n―ペプタン不溶分)を迅速かつ選択的に
反応させることができるので、その重質成分が
選択的に水素化分解された炭素材原料として好
適なピツチ状物を得ることが可能である。従来
の触媒、例えばCo―Mo―Al2O3ではこのよう
な選択性がないために、炭素材原料として好適
な生成物を得ることができない。 (3) 本発明の触媒は、コーク発生量が少なく、触
媒層の閉塞トラブルなどが生じにくい利点を有
している。本発明者らの実験によると、石油系
炭化水素の水素化処理に好適な従来のアルミナ
やアルミナ・シリカ系の触媒の場合、ピツチ状
物の水素化処理に際しては、ピツチの発生が著
しく、反応器がコークにより汚染されやすい上
に、触媒活性が短時間で低下することが認めら
れた。従つて、例えば、固定床触媒層の場合に
は、コークの蓄積により触媒層が閉塞し、運転
が続けられない状態になる。 (4) 本発明の触媒は、ピツチ状物中のキノリン不
溶分を水素化する能力にすぐれ、水素化活性が
長時間にわたつて保持される。通常のアルミナ
やシリカ・アルミナを担体とし、これにPt,
Pd,Mo,Co,Niなどの金属成分を担持させ
た従来の高価な水素化処理用触媒は、キノリン
不溶分を水素化する能力が乏しく、このために
触媒細孔がキノリン不溶分により閉塞され、水
素化活性の低下が著しい。従つて、触媒交換に
よるコストが大きくなり、経済的ではない。 次に本発明の好ましい実施態様として、本発明
を石炭の一次液化物の水素化処理に適用した例を
図面と共に詳述する。 図面において、石炭粉末は、ライン1から混合
槽21に導入され、混合槽21において、ライン
7から循環された媒体油と混合される。ここで、
充分に混合及び調合された石炭スラリーは、ライ
ン2を経て、水添熱分解塔22へ供給される。こ
こでは、ライン12を通つて、水素製造装置26
から水素が同時に供給されている。水添熱分解塔
22で熱分解された原料石炭スラリーは、ライン
3を経由して、固液分離工程23へ送られる。こ
の固液分離としては、例えば、沈降分離が用いら
れるが、これに制限されない。ここで分離された
固形分は、ライン11を通つて、水素製造工程2
6へと搬送される。一方、液状物は、ライン4を
通じて本発明による触媒反応塔22へ供給され
る。ここでは、反応塔の下部からライン13によ
り水素が供給され、水素化反応が行われる。生成
物のうち、ガスはライン6から系外に取り出され
るか、生成炭化水素油は、ライン5を経由して、
蒸留塔25へ送られ、沸点の差異によつて各留分
に分けられる。媒体油はライン7を経て混合槽へ
供給され、原料スラリー調製のために供される。
ライン8,9により、それぞれナフサ分及び重質
油分が取り出され、種々の用途に供される。水素
製造装置26からは、灰分(Ash)がライン14
から取出される。 次に、本発明を実施例によりさらに詳細に説明
する。なお、以下に示された%及びppmは特記さ
れない限り重量基準による。 実施例 1 下記表1に性状を示した芳香族炭素比率が0.75
なる溶剤抽出炭を、表2に性状を示した触媒を用
い、水素化分解した。触媒は特開昭52−95598号
及び特開昭52−113901号公報等に開示した方法に
より、セピオライトを原料として調製した。粒径
は1/16インチのものを用いた。このセピオライト
の500℃焼成体にメチルレツドのエタノール溶液
を吸着させた時の着色は黄色である。(PKa=
4.8)
The present invention relates to an improved method for hydrogenating a pitch-like material containing 7% by weight or more of toluene-insoluble matter to reduce the molecular weight of the pitch-like material and solubilizing the toluene-insoluble matter. In recent years, while the demand for oil has increased significantly, the discovery and development of new oil fields has plateaued, resulting in a global energy shortage. In response, research and development regarding new or alternative energy is being actively conducted, and in particular, many processes are being considered for the production of alternative fuels by liquefying coal, which has the largest reserves of fossil energy. In coal liquefaction methods, a multi-stage treatment method is generally adopted, and in the first stage treatment, a primary coal liquefied product is obtained which is a pitch-like substance that is solid at room temperature. This primary coal liquefied product is then subjected to hydrocracking and hydrorefining in the second and subsequent stages of treatment to produce a coal liquefied oil suitable for fuel oil. Primary coal liquefied material contains toluene-insoluble matter and has a high aromatic carbon ratio (fa), making it extremely difficult to hydrotreat. Therefore, various difficulties arise in the conventional hydrotreatment of primary coal liquefaction.
This has significantly hindered the practical application of coal liquefaction processes. For example, primary coal liquefied products are generally hydrotreated in the presence of a catalyst at high temperatures and under pressurized hydrogen in order to reduce the molecular weight and solubilize the toluene-insoluble components contained therein. However, in this case, the most difficult problem to solve is that of the catalyst. Conventionally, this type of catalyst has been made of alumina.
Expensive desulfurization catalysts that support Mo, Co, Ni, etc. are used, but such catalysts not only generate a large amount of coke but also release toluene insolubles and metals contained in the primary coal liquefaction. There is a problem in that the catalytic activity rapidly decreases due to components, coke, etc., and the catalyst must be replaced frequently. Moreover, in the case of the above-mentioned catalyst, the selectivity of hydrocracking for the primary coal liquefied product is poor, and it is difficult to reduce the molecular weight of the primary coal liquefied product and to hydrocracking the toluene-insoluble components contained therein. In addition, hydrogenation to condensed aromatics constituting the primary coal liquefied product and its hydrocracking,
When an aromatic medium oil is used, a problem arises in that the medium oil is also hydrocracked. and,
Such hydrogenation and hydrocracking into aromatic nuclei significantly increases hydrogen consumption and is one of the causes of increased coal liquefaction costs. The present inventors have conducted various studies to solve the above-mentioned problems in the hydrogenation treatment of pitch-like materials containing a large amount of toluene-insoluble materials such as primary liquefied coal, and have surprisingly discovered that alumina, silica, alumina, etc. We have discovered that this objective can be achieved by using a catalyst in which a hydrogenation-active metal component is supported on a non-acidic porous carrier such as magnesium silicate or silica, rather than an acidic porous carrier such as
The present invention has now been completed. That is, according to the present invention, toluene insoluble matter 7
% by weight or more is hydrogenated at elevated temperature and under pressurized hydrogen in the presence of a catalyst in which a hydrogenation-active metal component is supported on a non-acidic porous carrier to remove at least the toluene-insoluble content. A method for hydrotreating pitches is provided, characterized in that a partially solubilized product is obtained. In addition, the pitch-like material as used in the present invention refers to a primary coal liquefied product, for example, a pitch-like material obtained by solvent extraction treatment of coal (deashed coal), a pitch-like material obtained by hydrotreating coal. In addition, it refers to tar pitch, petroleum pitch, pitch-like materials obtained from hydrocracking of petroleum or heat treatment of residual oil, and similar products thereof. Further, the toluene insoluble content has substantially the same meaning as the benzene insoluble content, and was measured according to the method for measuring benzene insoluble content according to JIS standards. The catalyst used in the present invention is formed by supporting a hydrogenation-active metal component on a non-acidic porous carrier. In this case, a non-acidic porous carrier means that when methyl red, which is used as an indicator for measuring the surface acidity of a catalyst carrier, is adsorbed onto the surface of the carrier, the methyl red becomes non-acidic, that is, neutral or basic. This refers to a porous carrier that develops a yellow color. Examples of such non-acidic porous carriers include silica, magnesium silicate,
Examples include calcium silicate, magnesia, calcium oxide, barium oxide, rare earth oxides, alkali silicates, and porous glass. For the purpose of the present invention, it is inappropriate to use acidic substances such as alumina, silica/alumina, etc. However, even if such acidic substances are used, as long as the amount of such acidic substances is such that the carrier does not exhibit substantial acidity. , does not preclude the addition of these substances. As the hydrogenation-active metal component supported on the non-acidic porous carrier, those used in general catalysts for hydrogenation of heavy hydrocarbons are used, and selected from transition metals and tin. At least one kind is used. Among these metals,
In particular, Cu, Zn, Y, lanthanad, Sn, V, Cr,
At least one metal selected from Mo, W, Mn, Fe, Co, and Ni is preferable because it has high hydrogenation activity for the raw material heavy hydrocarbon used in the present invention and can be obtained at low cost. It is something.
Furthermore, various conventionally used methods can be used to support these metals on the carrier. The form of the metal component in the catalyst is oxide,
It may be a sulfide or a mixture thereof.
The catalyst used in the present invention generally has a specific surface area of 10 m 2 /g or more, preferably 150 m 2 /g or more, and a specific surface area of 0.2
It has a pore volume of cc/g or more, preferably 0.5 cc/g or more, and an average pore diameter of 50 to 500 Å, preferably 100 to 300 Å. A preferred catalyst for use in the present invention is one in which a hydrogenation-active metal component is supported on porous magnesium silicate. Here, porous magnesium silicate refers to porous clay minerals such as sepiolite, palygorskite, and attapulgite, and products modified by chemical or physical processing such as crushing, kneading, or acid extraction, or aluminum hydroxide. This term includes all types of sol, alumina-silica sol, titania sol, and products formed by adding small amounts of additives such as other clay minerals. Amphibole asbestos mineral is a magnesium silicate mineral with an extremely small pore volume as it is, but it can be easily made porous by a known method, and is one of the supports that satisfies the purpose of the present invention. be. The most desirable porous magnesium silicates are sepiolite, palygorskite, and attapulgite, considering the performance of the resulting catalyst or the ease of catalyst preparation. All of these are known as fibrous clay minerals in which silicon bonds have a so-called double-chain structure, and sepiolite is also known to have some of the magnesium or rare earth elements replaced by other metals. is mainly composed of magnesia and silica. Further, palygorskite and attapulgite are also porous clay minerals having a double-chain structure similar to sepiolite, and can be used for the purpose of the present invention. Among these, sepiolite is particularly desirable as it has excellent characteristics as a carrier. That is, (1) the resulting catalyst has a large specific surface area and pore volume, is highly active, and is resistant to deterioration due to the accumulation of metals such as iron and titanium; (2) the magnesium content in sepiolite is A portion of the catalyst is easily converted by other metals, the supported metals are extremely well dispersed, and highly active catalysts can be obtained at low cost. As the metal supported on the porous magnesium silicate catalyst, one or more selected from the group consisting of transition metals and tin is used. Among these metals, Cu, Zn, Y, lanthanide, Sn, V, Cr,
1 selected from Mo, W, Mn, Fe, Co, and Ni
A catalyst supporting more than one species is suitable because it has a high hydrocracking activity for coals and can be obtained at a relatively low cost. The type or combination of these supported metals is appropriately selected depending on the type of magnesium silicate, the raw material pit, the properties, the reaction method, conditions, etc. The amount of metal supported is also determined by many factors and varies over a wide range, but usually a total of 0.1% by weight of metal,
It is preferably arbitrarily selected within the range of 0.5 to 10% by weight. These metals are usually used in the form of nitrates, sulfates, chlorides, metal salts, complex salts or other solvent-soluble compounds. Water is usually used as the solvent from the viewpoint of practicality and safety, but nonaqueous solvents such as methanol, acetone, or liquid ammonia can also be used. As a method for supporting metals, any known method such as dipping, spraying, kneading, etc. can be used. Further, in the case of a shaped catalyst, the metals may be supported at a stage before the shaping process, or may be carried out in parts. The present inventors have discovered that metals supported on magnesium silicate supports such as sepiolite by ion exchange are extremely highly and uniformly dispersed, and even when the supported amount is extremely small, high molecular weight condensed aromatic hydrocarbons can be produced. It has been found that it exhibits high activity in the hydrogenolysis reaction of toluene-insoluble matter. In addition to periodic table b, b, and a and iron group metals, metals that can be supported on a carrier by ion exchange method include
Examples include V, Cr, and Sn. These metals are used in the form of aqueous solutions such as metal mineral salts such as chlorides, sulfates, and nitrates, organic acid salts such as silicates and acetates, or ammine complex salts, but optional salts or acids may be added as necessary. Adjust the pH to 1 to 7 before use. When supporting metals by the ion exchange method, the supported metals are exchanged with magnesium etc. that constitute the carrier,
A metal that is required to be supported is simply attached or adsorbed without being replaced by magnesium or the like in the carrier, and the activity per metal weight is lower than that of the substituted metal. Therefore, it is desirable to recover such attached or adsorbed metals by cleaning or the like and reuse them to effectively replace them. When a metal that can be supported by an ion exchange method and a metal that cannot be supported are supported on the same carrier, it is also possible to support the metals in different supported states through a multi-stage process. For example, after the first metal group is supported by an ion exchange method, the second metal group is supported as a basic or neutral solution such as an ammonia or amine aqueous solution. According to studies conducted by the present inventors, among porous magnesium silicate carriers, sepiolite is the most desirable for supporting metals using the above-mentioned ion exchange method. This is because, in addition to the large specific surface area and pore volume of sepiolite, it is more easily ion-exchanged by active metals than porous magnesium silicate such as palygorskite or attapulgite, and the amount of metal supported by ion exchange is higher. It is assumed that this is due to the fact that there are many
Among the metals supported on sepiolite by ion exchange, Fe, Ni, Co, Cu, Zn, V, Cr, Sn
is particularly suitable since a highly active catalyst can be obtained.
After supporting these metals by ion exchange, Mo, W, etc. may be further supported. The raw material pitch used in the present invention has an aromatic carbon ratio (fa) of 0.5 or more, especially in the range of 0.6 to 0.8, and contains 60% by weight or more of components having a boiling point of 450°C or more, especially 70% by weight or more. ~100% by weight, and the toluene insoluble content is 7% by weight or more, especially 20 to 70% by weight.
It has a softening point of 50-400℃ containing % by weight. Such pitch-like materials include various coal-based and/or petroleum-based pitch-like materials as described above. Depending on the type, pitches may contain moisture and ash, but these impurity components make solid-liquid separation of the product difficult after hydrogenation of pitches. It is best to remove it from the pitch-like material by drying or removing ash in advance. In the present invention, the above-mentioned pitch-like material is hydrogenated to lower its molecular weight and to solubilize at least a portion (substantial amount) of the toluene-insoluble matter contained therein. Pitches are generally supplied to the hydrotreating process by being dispersed in a medium oil consisting of an aromatic hydrocarbon oil that is substantially soluble in toluene in order to improve its handling and reactivity. . That is, a pitch-like material is finely pulverized to a viscosity of 100 mesh passes or less or a particle size of 150 μ or less, and dispersed in a medium oil to form a slurry.
This is supplied to the hydrogenation process. As a medium oil, it is substantially soluble in toluene and has a boiling point of 200~
Aromatic hydrocarbon oils having a temperature of 550°C and an aromatic carbon ratio (fa) of 0.5 or more are used, such as coal liquefied oil, cracked oil, petroleum residue oil, coal tar, anthracene oil, alkylnaphthalene, and tetralin. Examples include. The mixing ratio of pitches and medium oil can be arbitrarily determined depending on the fluidity of the mixture and the desired hydrolysis rate of pitches, but usually, the weight of pitches per weight on an anhydrous and ash-free basis The ratio is 0.1 to 3 parts by weight. Hydrotreating conditions in the present invention vary depending on the properties of the condensed aromatic hydrocarbon and the desired properties of the produced oil, but generally the hydrogen pressure is 30 to 350 kg/
cm2 , preferably 100~200Kg/ cm2 , processing temperature 350~
500°C, preferably 380-450°C. The feedstock space velocity (LHSV) is between 0.1 and 2.0 Hr -1 .
As the reaction method, fixed bed, fluidized bed, moving bed, moving bed, etc. are arbitrarily adopted. According to the present invention, the pitch-like material is reduced in molecular weight, and the toluene-insoluble matter contained therein is solubilized and significantly reduced. Furthermore, according to the present invention, quinoline-insoluble components in the pitch-like material can also be reduced. The products obtained according to the present invention can vary widely depending on the type of raw material pitch and the hydrogenation conditions, for example:
In addition to liquid oil suitable as fuel oil or fuel oil raw material,
It is also possible to obtain a pitch-like material suitable as a carbon material by mild hydrogenation treatment. According to the present invention, as described above, it is possible to hydrogenolyze a pitch-like material while suppressing hydrogenation to aromatics, thereby simultaneously achieving lower molecular weight and hydrogenolysis of toluene-insoluble components. Therefore, unlike the conventional method, the product according to the present invention has a lower increase rate in its hydrogen/carbon ratio (H/C) and a lower aromatic carbon ratio (fa) than in the conventional method. It does not decrease significantly as in the case, but rather shows a tendency to increase at the same level as that of the raw material pitch. For example, from a pitch having an aromatic carbon ratio (fa) of 0.6 to 0.8, it is possible to obtain a hydrotreated product with an aromatic carbon ratio (fa) in the range of 0.7 to 0.9. The products according to the invention can be optionally processed according to conventionally known methods. for example,
After solid-liquid separation of the product, the produced oil is further refined by hydrotreating, the light fraction is separated, and the heavy fraction is recycled to the previous hydrotreating step, the produced oil is hydrorefined. After that, there is a method in which the medium oil is separated and the medium oil is recycled to the first stage hydrotreating step, or a method in which the medium oil is separated from the produced oil and recycled for reuse. The catalyst used in the present invention is different from the conventional acidic porous carrier supporting a hydrogenation-active metal component, as it uses a non-acidic porous carrier supporting a metal component. Although it has various advantages, the effects of the catalyst will be described in more detail below. Although the reason why the above-mentioned unique effect is obtained by using a non-acidic carrier in the present invention has not yet been clearly elucidated, the pitch-like material is extremely rich in aromatic properties and has a basic effect. In order to achieve this, in the case of acidic catalysts, catalyst contamination components such as highly aromatic toluene-insoluble components are adsorbed onto the catalyst and easily polycondensed with the solid acid, resulting in a decrease in catalyst activity. However, in the case of non-acidic carriers,
This is thought to be due to the fact that such inconveniences are significantly suppressed. (1) The catalyst of the present invention has remarkable selectivity for hydrogenolyzing only the condensed aromatic hydrocarbons constituting pitch-like substances into lower molecular weight products while suppressing the hydrogenolysis of the aromatic nucleus itself. It is excellent. Therefore, when hydrotreating pits using the catalyst of the present invention, hydrocracking of the medium oil is avoided and hydrogen consumption is significantly reduced. When using conventional alumina or silica/alumina catalysts, in addition to hydrogenolysis of pitch-like materials,
Since a large amount of hydrogenation and hydrogenolysis to aromatic nuclei occurs, and further hydrogenation of the medium oil occurs, the amount of hydrogen consumed becomes enormous. (2) According to the catalyst of the present invention, it is possible to rapidly and selectively react heavy components of asphaltenes or higher (quinoline insoluble components, toluene insoluble components, n-peptane insoluble components), so that the heavy components can be reacted quickly and selectively. It is possible to obtain a pitch-like material suitable as a selectively hydrocracked carbon material raw material. Conventional catalysts, such as Co--Mo--Al 2 O 3 , do not have such selectivity and therefore cannot provide products suitable as carbon material raw materials. (3) The catalyst of the present invention has the advantage that the amount of coke generated is small and troubles such as clogging of the catalyst layer are less likely to occur. According to experiments conducted by the present inventors, in the case of conventional alumina or alumina-silica catalysts suitable for hydrotreating petroleum-based hydrocarbons, when hydrotreating pit-like materials, the formation of pits is significant and the reaction It was observed that the vessel was easily contaminated by coke and that the catalyst activity decreased in a short period of time. Therefore, for example, in the case of a fixed bed catalyst bed, the catalyst bed becomes clogged due to the accumulation of coke, making it impossible to continue operation. (4) The catalyst of the present invention has an excellent ability to hydrogenate quinoline-insoluble components in pitch-like materials, and maintains hydrogenation activity for a long period of time. Using ordinary alumina or silica/alumina as a carrier, Pt,
Conventional expensive hydrotreating catalysts supporting metal components such as Pd, Mo, Co, and Ni have poor ability to hydrogenate quinoline-insoluble components, and as a result, catalyst pores are blocked by quinoline-insoluble components. , the hydrogenation activity decreased significantly. Therefore, the cost of replacing the catalyst increases and is not economical. Next, as a preferred embodiment of the present invention, an example in which the present invention is applied to the hydrogenation treatment of primary liquefied coal will be described in detail with reference to the drawings. In the drawing, coal powder is introduced from line 1 into a mixing tank 21, where it is mixed with medium oil circulated from line 7. here,
The thoroughly mixed and prepared coal slurry is supplied to the hydrogenation pyrolysis tower 22 via line 2. Here, the hydrogen production device 26 is passed through the line 12.
Hydrogen is simultaneously supplied from The raw coal slurry pyrolyzed in the hydrogenation pyrolysis tower 22 is sent to the solid-liquid separation step 23 via the line 3. As this solid-liquid separation, for example, sedimentation separation is used, but it is not limited thereto. The solid content separated here passes through line 11 to hydrogen production step 2.
6. On the other hand, the liquid is supplied through line 4 to the catalytic reaction column 22 according to the present invention. Here, hydrogen is supplied through line 13 from the lower part of the reaction tower, and a hydrogenation reaction is carried out. Of the products, gas is taken out of the system through line 6, or generated hydrocarbon oil is taken out through line 5,
It is sent to a distillation column 25 and divided into fractions based on differences in boiling point. The medium oil is supplied to the mixing tank via line 7 and is used for preparing raw material slurry.
Naphtha and heavy oil are taken out through lines 8 and 9, respectively, and are used for various purposes. From the hydrogen production device 26, ash is transferred to the line 14.
taken from. Next, the present invention will be explained in more detail with reference to Examples. Note that the percentages and ppm shown below are based on weight unless otherwise specified. Example 1 The aromatic carbon ratio, whose properties are shown in Table 1 below, is 0.75.
The solvent-extracted coal was hydrogenolyzed using a catalyst whose properties are shown in Table 2. The catalyst was prepared using sepiolite as a raw material by the method disclosed in JP-A-52-95598 and JP-A-52-113901. The particle size used was 1/16 inch. This sepiolite calcined at 500°C is colored yellow when an ethanol solution of methyl red is adsorbed. (PKa=
4.8)

【表】【table】

【表】 原料スラリーは、溶剤抽出炭を粉砕した後、媒
体油としてのα―メチルナフタレンと混合するこ
とにより調合したが、α―メチルナフタレンと溶
剤抽出炭との重量比は、87.5:12.5であつた。こ
の原料スラリーを200メツシユ篩にかけ、これを
用いた。反応は、流通式反応装置を用いた。反応
条件を表3に示す。反応温度を約120時間毎に増
加させた。
[Table] The raw material slurry was prepared by pulverizing solvent-extracted charcoal and then mixing it with α-methylnaphthalene as a medium oil.The weight ratio of α-methylnaphthalene and solvent-extracted charcoal was 87.5:12.5. It was hot. This raw material slurry was passed through a 200 mesh sieve and used. A flow reactor was used for the reaction. The reaction conditions are shown in Table 3. The reaction temperature was increased approximately every 120 hours.

【表】 次に、生成油(残渣油)の収率と性状を表4に
示す。なお、生成油の13C―NMRのスペクトル
図から、この生成物の芳香族炭素比率(fa)が大
きいことが確認された(約0.66〜0.68)。また、
媒体油として用いたα―メチルナフタレンの液化
反応後のガスクロマトグラフを検討した結果、こ
のα―メチルナフタレンには水素化が起つていな
いことが判明した。 第2図に、原料中に含まれるプレアスフアルテ
ン(キノリン可溶で、トルエン不溶)及びアスフ
アルテンの反応転化率(重量%)の温度変化を示
す。曲線1はプレアスフアルテン及び曲線2はア
スフアルテンについての結果を示す。
[Table] Next, Table 4 shows the yield and properties of the produced oil (residual oil). Furthermore, from the 13 C-NMR spectrum of the produced oil, it was confirmed that the aromatic carbon ratio (fa) of this product was large (approximately 0.66 to 0.68). Also,
As a result of examining gas chromatography after the liquefaction reaction of α-methylnaphthalene used as a medium oil, it was found that no hydrogenation had occurred in this α-methylnaphthalene. FIG. 2 shows temperature changes in the reaction conversion rate (% by weight) of preasphaltene (quinoline soluble, toluene insoluble) and asphaltene contained in the raw material. Curve 1 shows the results for preasphaltenes and curve 2 for asphaltenes.

【表】 表5に生成油(残渣油)中に含まれるキノリン
不溶分(QI)と灰分(Ash)との比率QI/Ashを
反応温度との関係で示す。これよりQI/Ash比は
反応温度と共に低下していることから、キノリン
不溶性炭化水素分が触媒層に単に付着して減少す
るのではなく、少なくとも一部は可溶化して減少
することが認められる。
[Table] Table 5 shows the ratio QI/Ash of quinoline insoluble content (QI) and ash content (Ash) contained in the produced oil (residual oil) in relation to the reaction temperature. Since the QI/Ash ratio decreases with the reaction temperature, it is recognized that the quinoline-insoluble hydrocarbon content does not simply adhere to the catalyst layer and decrease, but that at least a portion of it is solubilized and decreases. .

【表】 なお、表4から本実験においては灰分及びキノ
リン不溶分の一部が触媒層で沈澱分離しているこ
とが判るが、これは本実験においては、触媒層内
の液線速度が小さいのに対して、灰分やキノリン
不溶分の沈降速度が(又は粒径が)大きかつたた
めと推定される。従つて、触媒層高が充分大きい
反応器を用いた場合においては、原料中の灰分等
の固形分がそのまま生成物に含まれると考えられ
る。 表6に水素化処理後の触媒の物性と、触媒上の
沈着物の炭素と水素の分析(触媒重量を基準とし
た炭素及び水素の重量%)を示す。この表6の結
果から、450時間の反応後においても、触媒性状
の変化は少ないことがわかる。
[Table] Table 4 shows that in this experiment, part of the ash and quinoline insoluble components were precipitated and separated in the catalyst layer, but this was because the liquid linear velocity in the catalyst layer was small in this experiment. This is presumably due to the fact that the sedimentation rate (or particle size) of ash and quinoline-insoluble matter was large. Therefore, when a reactor with a sufficiently large catalyst layer height is used, it is considered that solid content such as ash in the raw material is contained in the product as it is. Table 6 shows the physical properties of the catalyst after the hydrogenation treatment and the analysis of carbon and hydrogen deposited on the catalyst (weight % of carbon and hydrogen based on the weight of the catalyst). From the results in Table 6, it can be seen that there is little change in the catalyst properties even after 450 hours of reaction.

【表】 実施例 2 実施例1と同じ反応条件で、水素圧力を104
Kg/cm2として、同一の方法で液化反応を、反応温
度が399℃で行つた。各留分の転化率を表7に示
す。 この場合、生成油中のトルエン不溶分は15.0重
量%であつた。
[Table] Example 2 Under the same reaction conditions as Example 1, hydrogen pressure was increased to 104
Kg/cm 2 , the liquefaction reaction was carried out in the same manner at a reaction temperature of 399°C. Table 7 shows the conversion rate of each fraction. In this case, the toluene insoluble content in the produced oil was 15.0% by weight.

【表】 実施例 3 実施例1と同じ反応条件で、LHSVが0.2、反
応温度が399℃で液化反応を行つた。各留分の転
化率を表8に示す。 この場合、生成油中のトルエン不溶分は4.4重
量%であつた。
[Table] Example 3 A liquefaction reaction was carried out under the same reaction conditions as in Example 1, with an LHSV of 0.2 and a reaction temperature of 399°C. Table 8 shows the conversion rate of each fraction. In this case, the toluene insoluble content in the produced oil was 4.4% by weight.

【表】 実施例 4,5 石炭粉末と、減圧残油とを400〜420℃において
加熱した後、灰分を沈降分離して得られた下記の
性状の石炭ピツチに、沸点が150〜250℃なるクレ
オソート油を重量比で1:1で加えたものを、
Mo,Ni担持シリカ触媒及びW,Ni担持塩基性マ
グネシアシリカ触媒を用いて、水素化処理した。
[Table] Examples 4 and 5 After heating coal powder and vacuum residual oil at 400-420°C, the ash content was separated by sedimentation, resulting in coal pitch having the following properties, with a boiling point of 150-250°C. Added creosote oil at a weight ratio of 1:1,
Hydrogenation treatment was carried out using a Mo, Ni supported silica catalyst and a W, Ni supported basic magnesia silica catalyst.

【表】 Mo,Ni担持シリカ触媒は、市販のシリカ微粉
体に水を加えて押出し成形したものを、400℃に
て、2時間焼成した後、常法に従つて、モリブデ
ン酸アンモン及び硝酸ニツケルのアンモニア性混
合水溶液を浸漬した後、500℃にて、1時間焼成
して得られた。W,Ni担持塩基性マグネシアシ
リカ触媒は、塩基性マグネシア微粉末と疎水性微
粉シリカを20:80重量比で混合した後、これにイ
ソプロパノールを加えて十分に混練し、押出し成
形し、400℃にて2時間焼成した。次に、これに
常法に従つて、硝酸ニツケル水溶液を含浸させた
後、500℃にて1時間焼成し、次いで、パラタン
グステン酸アンモン水溶液を含浸させた後、500
℃にて1時間焼成して得られた。各触媒の主な性
状を下記に示す。
[Table] Mo, Ni-supported silica catalyst was made by extruding commercially available silica fine powder by adding water and calcining it at 400℃ for 2 hours. It was obtained by immersing it in an ammoniacal mixed aqueous solution and then baking it at 500°C for 1 hour. The W,Ni-supported basic magnesia silica catalyst is prepared by mixing basic magnesia fine powder and hydrophobic fine silica powder at a weight ratio of 20:80, adding isopropanol to the mixture, thoroughly kneading it, extruding it, and heating it to 400°C. The mixture was baked for 2 hours. Next, this was impregnated with an aqueous solution of nickel nitrate according to a conventional method, and then fired at 500°C for 1 hour, and then impregnated with an aqueous solution of ammonium paratungstate.
It was obtained by firing at ℃ for 1 hour. The main properties of each catalyst are shown below.

【表】 ピツチ類の水素化処理は、実施例1と同様に流
通式反応装置を用い、水素圧140Kg/cm2、反応温
度400℃、液空間速度0.5Hr-1の反応条件下で行
い、反応開始後10〜20時間後の生成油を分析した
ところ、下記の結果が得られた。これより、非酸
性担体である多孔質シリカ及び強い塩基性を示す
多孔質マグネシアシリカ担体に金属を担持した触
媒が、芳香族炭素比率の高いトルエン不溶分の水
素分解に高い活性を示すと共に、これらのピツチ
類の製造工程に由来する可溶性金属類の除去に高
い活性を示すことが了解されよう。
[Table] Hydrogenation of pitts was carried out using a flow reactor as in Example 1 under the reaction conditions of hydrogen pressure 140 Kg/cm 2 , reaction temperature 400°C, and liquid hourly space velocity 0.5 Hr -1 . When the produced oil was analyzed 10 to 20 hours after the start of the reaction, the following results were obtained. These results show that catalysts in which metals are supported on porous silica, which is a non-acidic carrier, and porous magnesia silica, which exhibits strong basicity, show high activity in hydrogen decomposition of toluene-insoluble substances with a high proportion of aromatic carbon. It will be understood that this compound exhibits high activity in removing soluble metals derived from the manufacturing process of pitches.

【表】 比較例 実施例1において、本発明触媒の代わりに、表
12に性状を示した市販脱硫触媒を用い、実施例1
とほぼ同一の方法で実験を行つた。その結果、初
期においては、高活性を示したが、実施例1と同
じ450時間経過した時には、プレアスフアルテン
の転化率が70%、またアスフアルテンの転化率も
70%と大幅に活性の低下が認められた。表13に本
実験で得られた生成物収率及び各生成油性状を示
す。この試験結果から、温度上昇につれて、市販
触媒の水素化活性が低下しているのが見られる。
[Table] Comparative Example In Example 1, Table 1 was used instead of the catalyst of the present invention.
Example 1 Using the commercially available desulfurization catalyst whose properties are shown in
The experiment was carried out in almost the same way. As a result, high activity was shown in the initial stage, but after 450 hours, which was the same as in Example 1, the conversion rate of pre-asphaltene was 70%, and the conversion rate of asphaltene was also low.
A significant decrease in activity of 70% was observed. Table 13 shows the product yield and properties of each produced oil obtained in this experiment. The test results show that the hydrogenation activity of the commercial catalyst decreases as the temperature increases.

【表】【table】

【表】【table】

【表】 また、生成油の13C―NMRスペクトル図を検
討した結果、芳香族炭素の割合が相対的に低下し
ていることが確認された(約0.55〜0.60)。また、
液化反応後の媒体油(α―メチルナフタレン)の
ガスクロマトグラムを検討した結果、α―メチル
ナフタレンの水添反応が相当進んでいることが確
認された。 表14には、生成油中のQI/Ashの比を示す。温
度の上昇にもかかわらずQI/Ash比が一定、即
ち、QI分の水素化が起つていないことを示す。
[Table] Furthermore, as a result of examining the 13 C-NMR spectrum of the produced oil, it was confirmed that the proportion of aromatic carbon was relatively reduced (approximately 0.55 to 0.60). Also,
As a result of examining the gas chromatogram of the medium oil (α-methylnaphthalene) after the liquefaction reaction, it was confirmed that the hydrogenation reaction of α-methylnaphthalene had progressed considerably. Table 14 shows the QI/Ash ratio in the produced oil. The QI/Ash ratio remains constant despite the rise in temperature, indicating that hydrogenation of QI does not occur.

【表】 表15に液化反応後の触媒の物性と、触媒上の沈
着物の炭素、水素分析(触媒に対する%)の結果
を示す。
[Table] Table 15 shows the physical properties of the catalyst after the liquefaction reaction and the results of carbon and hydrogen analysis (% relative to the catalyst) of the deposits on the catalyst.

【表】 本発明の触媒と比較して市販触媒は、450時間
の反応後、著しい物性の変化を呈した。また触媒
上にも多量の炭素質を保持しており、灰分、QI
分との堆積とも併せて水素化活性の低下の原因と
なつている。
Table: Compared to the catalyst of the present invention, the commercially available catalyst exhibited significant changes in physical properties after 450 hours of reaction. In addition, the catalyst also retains a large amount of carbonaceous matter, resulting in ash and QI
This, together with the accumulation of water, is a cause of a decrease in hydrogenation activity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の実施態様の一例についての
フロー系統図を示し、第2図は原料中に含まれる
プレアスフアルテン及びアスフアルテンの反応転
化率の温度変化を示すグラフである。 21…混合槽、22…水添熱分解塔、23…固
液分離工程、24…触媒反応塔、25…蒸留塔、
26…水素製造装置。
FIG. 1 shows a flow diagram for an example of an embodiment of the present invention, and FIG. 2 is a graph showing temperature changes in reaction conversion rates of preasphaltene and asphaltene contained in raw materials. 21... Mixing tank, 22... Hydrogenation pyrolysis column, 23... Solid-liquid separation step, 24... Catalytic reaction column, 25... Distillation column,
26...Hydrogen production device.

Claims (1)

【特許請求の範囲】 1 トルエン不溶分7重量%以上を含むピツチ状
物を、実質的にトルエン可溶性の芳香族系炭化水
素油からなる媒体油中に分散させて、非酸性多孔
質担体に水素化活性金属成分を担持させた触媒の
存在下、温度350〜500℃、水素圧30〜350Kg/cm2
の条件で水素化処理し、該トルエン不溶分の少な
くとも一部が可溶化された生成物を得ることを特
徴とするピツチ状物の水素化処理方法。 2 ピツチ状物は軟化点50〜400℃を有する特許
請求の範囲第1項の方法。 3 ピツチ状物はその60重量%以上が沸点450℃
以上の成分からなり、かつ芳香族炭素比率(fa)
が0.5以上である特許請求の範囲第1項又は第2
項の方法。 4 ピツチ状物は石炭及び/又は石油から誘導さ
れたものである特許請求の範囲第1項〜第3項い
ずれかの方法。 5 ピツチ状物は石炭の溶剤抽出により得られた
ピツチ状物及び/又は石炭の水素化処理により得
られたピツチ状物である特許請求の範囲第1項〜
第3項のいずれかの方法。 6 触媒は比表面積10m2/g以上、細孔容積0.2
c.c./g以上及び平均細孔径50〜500Åを有する特
許請求の範囲第1項〜第5項のいずれかの方法。 7 非酸性多孔質担体はマグネシアシリケートで
ある特許請求の範囲第1項〜第6項のいずれかの
方法。 8 マグネシアシリケートがセピオライトである
特許請求の範囲第7項の方法。 9 媒体油は石炭液化油、コールタール、アント
ラセン油、クレオソート油、石油分解油及びアル
キルナフタレンの中から選ばれる少なくとも1種
である特許請求の範囲第1項〜第8項のいずれか
の方法。
[Claims] 1. A pitch-like material containing 7% by weight or more of toluene-insoluble matter is dispersed in a medium oil consisting of an aromatic hydrocarbon oil that is substantially soluble in toluene, and hydrogen is applied to a non-acidic porous carrier. In the presence of a catalyst supporting active metal components, temperature 350-500℃, hydrogen pressure 30-350Kg/cm 2
1. A method for hydrogenating a pitch-like material, the method comprising hydrogenating a pitch-like material under the following conditions to obtain a product in which at least a portion of the toluene-insoluble matter is solubilized. 2. The method according to claim 1, wherein the pitch-like material has a softening point of 50 to 400°C. 3 More than 60% of the pitch-like material has a boiling point of 450℃
Consisting of the above components, and aromatic carbon ratio (fa)
Claim 1 or 2 in which is 0.5 or more
Section method. 4. The method according to any one of claims 1 to 3, wherein the pitch-like material is derived from coal and/or petroleum. 5. The pitch-like material is a pitch-like material obtained by solvent extraction of coal and/or a pitch-like material obtained by hydrotreating coal.
Any method in Section 3. 6 The catalyst has a specific surface area of 10 m 2 /g or more and a pore volume of 0.2
cc/g or more and an average pore diameter of 50 to 500 Å. 7. The method according to any one of claims 1 to 6, wherein the non-acidic porous carrier is magnesia silicate. 8. The method of claim 7, wherein the magnesia silicate is sepiolite. 9. The method according to any one of claims 1 to 8, wherein the medium oil is at least one selected from coal liquefied oil, coal tar, anthracene oil, creosote oil, petroleum cracked oil, and alkylnaphthalene. .
JP56083135A 1981-05-30 1981-05-30 Hydrogenation of pitch-like material Granted JPS57198788A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56083135A JPS57198788A (en) 1981-05-30 1981-05-30 Hydrogenation of pitch-like material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56083135A JPS57198788A (en) 1981-05-30 1981-05-30 Hydrogenation of pitch-like material

Publications (2)

Publication Number Publication Date
JPS57198788A JPS57198788A (en) 1982-12-06
JPH025798B2 true JPH025798B2 (en) 1990-02-05

Family

ID=13793751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56083135A Granted JPS57198788A (en) 1981-05-30 1981-05-30 Hydrogenation of pitch-like material

Country Status (1)

Country Link
JP (1) JPS57198788A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0686595B2 (en) * 1982-12-28 1994-11-02 旭化成工業株式会社 Pyrolysis method of coal
JPS59155493A (en) * 1983-02-23 1984-09-04 Mitsubishi Petrochem Co Ltd Preparation of meso phase pitch
JPS6151091A (en) * 1984-08-17 1986-03-13 Chiyoda Chem Eng & Constr Co Ltd Hydrotreatment of coal tar pitch
JPS618136A (en) * 1984-06-22 1986-01-14 Nippon Steel Chem Co Ltd Catalyst for hydrotreating pitch
JPS6169888A (en) * 1984-09-12 1986-04-10 Nippon Kokan Kk <Nkk> Production of super-needle coke
DE3581777D1 (en) * 1984-09-12 1991-03-28 Nippon Kokan Kk HYDROGENATING CATALYST FOR CARBON TEAR, METHOD FOR HYDROGENATING CARBON TAR WITH THE CATALYST, AND METHOD FOR PRODUCING SUPER NEEDLE COCONUT FROM THE HYDROGENATING PRODUCT OF CARBON TAR.
KR101359266B1 (en) * 2012-06-04 2014-02-06 오씨아이 주식회사 Method for Preparing of Coal Pitch

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5272705A (en) * 1975-12-16 1977-06-17 Chiyoda Chem Eng & Constr Co Ltd Hydrogenation of hydrocarbon
JPS5554036A (en) * 1978-10-14 1980-04-21 Chiyoda Chem Eng & Constr Co Ltd Preparing of catalyst for hydrogenation process

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5272705A (en) * 1975-12-16 1977-06-17 Chiyoda Chem Eng & Constr Co Ltd Hydrogenation of hydrocarbon
JPS5554036A (en) * 1978-10-14 1980-04-21 Chiyoda Chem Eng & Constr Co Ltd Preparing of catalyst for hydrogenation process

Also Published As

Publication number Publication date
JPS57198788A (en) 1982-12-06

Similar Documents

Publication Publication Date Title
CN101927167B (en) Compound coal tar hydrogenation catalyst and preparation method thereof
US4082695A (en) Catalyst for residua demetalation and desulfurization
US7727381B2 (en) Hydrocracking catalyst and method of hydrocracking heavy oil
US3876523A (en) Catalyst for residua demetalation and desulfurization
US3891541A (en) Process for demetalizing and desulfurizing residual oil with hydrogen and alumina-supported catalyst
US4212771A (en) Method of preparing an alumina catalyst support and catalyst comprising the support
US3531398A (en) Hydrodesulfurization of heavy petroleum distillates
GB2142930A (en) A process for cracking a heavy hydrocarbon
US3931052A (en) Alumina-supported catalyst for residua demetalation and desulfurization
CA1317585C (en) Hydrocracking of heavy oils in presence of iron-coal slurry
CA2659752A1 (en) A highly stable heavy hydrocarbon hydrodesulfurization catalyst and methods of making and use thereof
CA1169841A (en) Process for upgrading residual oil and catalyst for use therein
EP3104968B1 (en) Process for hydrocracking heavy oil and oil residue
US4294687A (en) Lubricating oil process
US4422959A (en) Hydrocracking process and catalyst
CA2489184A1 (en) A process for the hydroprocessing of heavy hydrocarbon feeds using at least two reactors
US3926784A (en) Plural stage residue hydrodesulfurization process with hydrogen sulfide addition and removal
CA1153720A (en) Upgrading of hydrocarbon feedstock
JP2778961B2 (en) Method for two-stage catalytic hydrogenation of coal
US4740487A (en) Composite catalyst of ruthenium of zeolite and a group VI and/or group VIII metal on refractory
EP0070125B1 (en) Crystalline silica zeolite-containing catalyst and hydrocarbon hydroprocess utilizing the catalyst
US20170260463A1 (en) Process for hydrocracking heavy oil and oil residue with a non-metallised carbonaceous additive
JPH025798B2 (en)
US4508615A (en) Multi-stage process for demetalation, desulfurization and dewaxing of petroleum oils
JPS5950276B2 (en) Method for hydrotreating mineral oils