JPH0257947A - Specimen cell for atr spectrochemical analysis - Google Patents

Specimen cell for atr spectrochemical analysis

Info

Publication number
JPH0257947A
JPH0257947A JP63208528A JP20852888A JPH0257947A JP H0257947 A JPH0257947 A JP H0257947A JP 63208528 A JP63208528 A JP 63208528A JP 20852888 A JP20852888 A JP 20852888A JP H0257947 A JPH0257947 A JP H0257947A
Authority
JP
Japan
Prior art keywords
reflecting
central hole
total reflector
specimen
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63208528A
Other languages
Japanese (ja)
Inventor
Osamu Yoshikawa
治 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP63208528A priority Critical patent/JPH0257947A/en
Publication of JPH0257947A publication Critical patent/JPH0257947A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • G01N21/552Attenuated total reflection

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Optical Measuring Cells (AREA)

Abstract

PURPOSE:To improve timewise resolution and to make the volume compact by a constitution wherein a total reflecting body has a tubular shape and a specimen flows through the central hole of said body. CONSTITUTION:A total reflecting body 1 has a round rod shape. A central hole 1a is formed along the central line. The outer surface is made to be a mirror reflecting surface by metal plating. Both ends are finished as conical surfaces. The material of the body comprises a material such as Ge having transparency in an infrared region and high refractive index. The inner surface of the central hole 1a is smoothly finished to the degree so that the smooth reflecting surface is provided for the infrared rays. Flowing pipes of specimen liquid are connected to the opening at both ends of the central hole 31a. The pipes are fixed with pushing metal fixtures. Measuring light is orthogonally inputted into the reflecting body 1 through one conical surface of the reflecting body 1 as shown with arrow lines in the Figure. Reflection is repeated between reflecting mirror surface 1b at the outer surface of the body and the inner surface of the central hole 1a. Then the light is outputted through the other conical surface. Since the specimen is made to flow in the reflecting body, the volume of the cell can be made small in comparison with a device wherein the specimen is made to flow along the outside of a cell.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は全反射吸収スペクトル法(ATR)による分光
分析装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a spectroscopic analysis device using total reflection absorption spectroscopy (ATR).

(従来の技術) 試料溶液を固体面に接触させ、両者の境界面に光を入射
させて全反射を起させると、入射光のエネルギーの一部
は境界を越えて滲出し、全反射光は幾分減光し、その減
光のスペクトルは試料に固有であるので、これを利用し
て試料の分析を行うことができる。これが全反射吸収ス
ペクトル法であるが、従来この分析法を実行する装置と
して第3図に示すような装置が提案されている。図は赤
外ATR用の装置における試料セルの部分を示しており
、1は全反射体でゲルマニウム等の赤外域で透明高屈折
率の材料で作られ、両端を円錐形にした丸棒である。2
は試料セルの外筒で全反射体を囲んでおり、試料溶液は
入口2aから流入し、出口2bから流出するようになっ
ている。全反射体1の一端の円錐面に垂直に円錐面状光
束を入射させ、試料溶液と全反射体1との境界面で繰返
し全反射させ、全反射体1の他端の円錐面から出射する
光束について吸収スペクトルを測定するようになってい
る。
(Prior art) When a sample solution is brought into contact with a solid surface and light is incident on the interface between the two to cause total reflection, part of the energy of the incident light oozes out across the boundary, and the total reflected light is The light attenuates somewhat, and the spectrum of the attenuation is unique to the sample, so this can be used to analyze the sample. This is the total reflection absorption spectroscopy, and an apparatus as shown in FIG. 3 has been proposed as an apparatus for carrying out this analytical method. The figure shows the sample cell part of an infrared ATR device. 1 is a total reflector, which is a round rod made of germanium or other transparent material with a high refractive index in the infrared region, and has conical ends. . 2
The outer cylinder of the sample cell surrounds the total reflector, and the sample solution flows in from the inlet 2a and flows out from the outlet 2b. A conical light beam is incident perpendicularly to the conical surface at one end of the total reflector 1, is totally reflected repeatedly at the interface between the sample solution and the total reflector 1, and is emitted from the conical surface at the other end of the total reflector 1. The absorption spectrum of the luminous flux is measured.

(発明が解決しようとする課題) 上述した従来のATR分光分析用試料セルは棒状の全反
射体を外筒が囲んで、全反射体と外筒との間に試料溶液
を流通させるので、セルの容積はなるべく小さ(作って
も15μe程度となる。今このようなセルを液体クロマ
トグラフの流出液の連続分析に用いる場合を考えると、
液体クロマトグラフのキャリヤ流量は1 m e /分
程度であるので、セル内の溶液が全部入れ替わるには約
1秒かかることになる。即ちこの場合分析の時間分解能
は1秒程度となる。他方分光手段としてフーリエ変換型
赤外分光光度計を用いると、時間分解能は0.2秒程度
であるので、液体クロマトグラフとフーリエ変換型分光
光度計とを結合した装置に対して上述従来例のATR分
光分析用フローセルを用いた場合の時間分解能は不足し
ている。
(Problems to be Solved by the Invention) In the conventional sample cell for ATR spectroscopy described above, the rod-shaped total reflector is surrounded by an outer cylinder, and the sample solution is passed between the total reflector and the outer cylinder. The volume of the cell should be as small as possible (approximately 15μe even if made.If we consider the case where such a cell is used for continuous analysis of liquid chromatograph effluent,
Since the carrier flow rate of a liquid chromatograph is about 1 m e /min, it takes about 1 second to completely replace the solution in the cell. That is, in this case, the time resolution of analysis is about 1 second. On the other hand, when a Fourier transform infrared spectrophotometer is used as a spectroscopic means, the time resolution is about 0.2 seconds, so the above-mentioned conventional method is not suitable for a device combining a liquid chromatograph and a Fourier transform spectrophotometer. The time resolution when using a flow cell for ATR spectroscopy is insufficient.

本発明は時間分解能の高い、つまり容積の小さなATR
用フローセルを提供しようとするものである。
The present invention is an ATR with high time resolution, that is, with a small volume.
The aim is to provide a flow cell for

(課題を解決するための手段) 棒状の全反射体の軸線に沿って中心孔を貫設し、全反射
体の外周面を鏡反射面とし、上記中心孔に試料を流通さ
せるようにすると共に全反射体の一端面から光を入射さ
せ、全反射体内で外周面と中心孔内面との間で繰返し反
射させて全反射体の他端面から光を出射させ、その光を
測定系に導くようにした。
(Means for solving the problem) A central hole is provided along the axis of a rod-shaped total reflector, the outer peripheral surface of the total reflector is made a mirror reflection surface, and a sample is allowed to flow through the center hole. Light enters from one end surface of the total reflector, is repeatedly reflected between the outer peripheral surface and the inner surface of the center hole within the total reflector, and is emitted from the other end surface of the total reflector, and the light is guided to the measurement system. I made it.

(作用) 本発明においては全反射体は筒状となり、試料が中心孔
を流通するので、全反射体の外側を試料が流通するのに
比し、セルの容積を著しく小さくすることができる。
(Function) In the present invention, the total reflector is cylindrical and the sample flows through the central hole, so the volume of the cell can be significantly reduced compared to when the sample flows outside the total reflector.

(実施例) 第1図に本発明の一実施例の試料セルを示す。(Example) FIG. 1 shows a sample cell according to an embodiment of the present invention.

1は全反射体で丸棒形であり、中心線に沿って中心孔1
aが貫通させてあり、外周面は金属メツキにより鏡反射
面1bとしである。両端は円錐面に仕上げである。全反
射体1の材質はGeのような赤外域で透明性と高い屈折
率を持つ材料が用いられ、中心孔内面は赤外光に対して
平滑な反射面となる程度の平滑仕上げにしである。中心
孔1aの両端開口には夫々試料溶液の流通管3が接続さ
れている。4は上記流通管の接続部を中心孔1aの両端
に固定する押え金具である。測定用の光は図矢線のよう
に全反射体1の一端の円錐面に垂直に全反射体1内に入
射せしめられ、全反射体内で外周面と中心孔内面との間
で反射を繰返し他端円錐面から出射せしめられる。
1 is a total reflector in the shape of a round bar, with a central hole 1 along the center line.
a is passed through, and the outer peripheral surface is plated with metal to form a mirror reflecting surface 1b. Both ends are finished with conical surfaces. The material of the total reflector 1 is a material that is transparent and has a high refractive index in the infrared region, such as Ge, and the inner surface of the center hole is finished with a smooth finish to the extent that it becomes a smooth reflective surface for infrared light. . A sample solution flow tube 3 is connected to each opening at both ends of the center hole 1a. Reference numeral 4 designates presser fittings for fixing the connecting portions of the above-mentioned flow pipe to both ends of the center hole 1a. The light for measurement is made to enter the total reflector 1 perpendicularly to the conical surface at one end of the total reflector 1 as shown by the arrow in the figure, and is repeatedly reflected within the total reflector between the outer peripheral surface and the inner surface of the center hole. The light is emitted from the conical surface at the other end.

第2図は上記試料セルをセットした分析装置の全体を示
す。Cが上述した試料セルで鎖線は中心孔1aの中心線
である。5はカセグレン反射鏡で中心に孔を穿った凹面
の主鏡5aとこれと対向させた凸面鏡の補助鏡5bとよ
りなっている。分光器Mの出射光は図の紙面に垂直であ
り、鏡6により図で下方に反射され、鏡7a、7b、7
cで反射されてカセグレン鏡5の主鏡の中心孔を通して
補助鏡5bに入射せしめられ、5bで反射された光が主
鏡5aで反射されて、試料セルの全反射体1の一端円錐
面に入射せしめられる。上記光学系は赤外分光顕微鏡の
光学系を用いたもので、試料セルCは同顕微鏡の試料台
8に取付けられる。鏡7bと70との間に光束移動用の
透明体10があって、この傾を変えることによりカセグ
レン主鏡5aの集光位置が移動し、同主鏡の反射光が試
料セルの全反射体1の一端の円錐面に正しく軸対称的に
入射するように調整される。全反射体1端面の円錐面頂
角は上記カセグレン主鏡1aの反射光の集光角に合せて
あり、光は全反射体1の端面に垂直に入射して光の反射
損失が最少になるようにしである。全反射体1の他端か
ら出射した光は5と同じ構成のカセグレン反射鏡5゛を
逆進して補助!15b’により細い光束となって光検出
器9に入射せしめられる。分光器Mとしてフーリエ変換
型赤外分光器が用いられる。分光器の一走査期間中の光
検出器9の出力の時間的な記録は試料溶液の全反射吸収
スペクトルのインターフェログラムである。
FIG. 2 shows the entire analyzer in which the sample cell described above is set. C is the sample cell mentioned above, and the chain line is the center line of the center hole 1a. Reference numeral 5 denotes a Cassegrain reflecting mirror consisting of a concave primary mirror 5a with a hole in the center and an auxiliary convex mirror 5b facing it. The emitted light from the spectrometer M is perpendicular to the paper plane of the figure, is reflected downward in the figure by mirror 6, and mirrors 7a, 7b, 7
The light reflected by the main mirror 5a is reflected by the primary mirror 5a, and is incident on the conical surface of one end of the total reflector 1 of the sample cell. It is made to be incident. The above optical system uses the optical system of an infrared spectroscopic microscope, and the sample cell C is attached to the sample stage 8 of the microscope. There is a transparent body 10 between the mirrors 7b and 70 for moving the light beam, and by changing the inclination of this body, the light converging position of the Cassegrain primary mirror 5a moves, and the reflected light from the primary mirror is directed to the total reflector of the sample cell. The beam is adjusted so that it is incident on the conical surface at one end of 1 in an axially symmetrical manner. The apex angle of the conical surface of the end face of the total reflector 1 is matched to the condensing angle of the reflected light from the Cassegrain primary mirror 1a, and the light is incident perpendicularly to the end face of the total reflector 1, minimizing reflection loss of light. That's how it is. The light emitted from the other end of the total reflector 1 is assisted by traveling backwards through the Cassegrain reflector 5, which has the same configuration as 5! 15b', the light beam becomes a narrow beam and is made incident on the photodetector 9. A Fourier transform infrared spectrometer is used as the spectrometer M. The temporal record of the output of the photodetector 9 during one scan period of the spectrometer is an interferogram of the total internal reflection absorption spectrum of the sample solution.

全反射体lは長さ5mmで中心孔径を1mmとした場合
、中心孔容積は約4μeである。従って試料溶液の流量
が1ml!/分である場合時間分解能は0.25秒とな
る。中心孔径を0.7mmとすれば時間分解能は略々0
.12秒となる。本発明試料セルは上述したようにフロ
ーセルとしてのみ使用し得るものではな(、単なる試料
セルとしても使用できることは云うまでもなく、この場
合試料を中心孔内に保持するため両端に栓をすればよく
、成る程度表面張力の大きな溶液の場合枠なしでも表面
張力により試料液を中心孔内に保持してお(ことができ
る。
When the total reflector l has a length of 5 mm and a center hole diameter of 1 mm, the center hole volume is about 4 μe. Therefore, the flow rate of the sample solution is 1ml! /minute, the time resolution is 0.25 seconds. If the center hole diameter is 0.7 mm, the time resolution is approximately 0.
.. It will be 12 seconds. The sample cell of the present invention can be used not only as a flow cell as described above (it goes without saying that it can also be used as a simple sample cell, but in this case, plugs can be placed at both ends to hold the sample in the center hole). In the case of a solution with a relatively large surface tension, the sample liquid can be held in the center hole by the surface tension even without a frame.

(発明の効果) 本発明に係るATR分光分析用試料セルは上述したよう
に全反射体に中心孔を貫通させて、この中心孔を試料容
器とするものであり、中心孔はmm以下の径にすること
も容易であり、長さも数mm程度でよいから容積はきわ
めて小さ(、微量試料の分析が可能となり、流通試料の
時間変化に対する時間分解能も向上できる。
(Effects of the Invention) As described above, in the sample cell for ATR spectroscopic analysis according to the present invention, the total reflector passes through the center hole and uses this center hole as a sample container, and the center hole has a diameter of less than mm. It is easy to use, and the length is only about a few mm, so the volume is extremely small (it is possible to analyze very small amounts of samples, and it is also possible to improve the temporal resolution of changes in circulating samples over time).

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例のATR分光分析用試料セル
の縦断側面図、第2図は上記セルを用いたATR分光分
析装置の一例の全体部、第3図はATR分析用試料セル
の従来例の縦断側面図である。 1・・・全反射体、1a・・・中心孔、1b・・・メツ
キ鏡面、3・・・試料流通管、4・・・押え金具、C・
・・試料セル、5,5′・・・カセグレン鏡、6・・・
鏡、M・・・分光器、8・・・試料台、9・・・光検出
器。 代理人  弁理士 縣  浩 介
FIG. 1 is a vertical cross-sectional side view of a sample cell for ATR spectroscopic analysis according to an embodiment of the present invention, FIG. 2 is an overall view of an example of an ATR spectroscopic analyzer using the above cell, and FIG. 3 is a sample cell for ATR spectroscopic analysis. FIG. 3 is a longitudinal sectional side view of a conventional example. DESCRIPTION OF SYMBOLS 1... Total reflector, 1a... Center hole, 1b... Plated mirror surface, 3... Sample flow tube, 4... Holder fitting, C.
...Sample cell, 5,5'...Cassegrain mirror, 6...
Mirror, M...Spectroscope, 8...Sample stand, 9...Photodetector. Agent Patent Attorney Kosuke Agata

Claims (1)

【特許請求の範囲】[Claims] 棒状全反射体の中心線に沿って試料保持用中心孔を貫設
し、この中心孔内面を全反射面とし、外周面を反射鏡面
とし、全反射体の一端面から全反射体内に光を入射させ
、全反射体内で外周面と中心孔内面との間で反射を繰返
させ、全反射体の他端面から上記光を出射させるように
したことを特徴とするATR分光分析用試料セル。
A central hole for holding a sample is provided along the center line of the rod-shaped total reflector, the inner surface of the center hole is a total reflection surface, the outer peripheral surface is a reflective mirror surface, and light is transmitted into the total reflector from one end surface of the total reflector. A sample cell for ATR spectroscopic analysis, characterized in that the light enters the total reflector, is repeatedly reflected between the outer circumferential surface and the inner surface of the center hole within the total reflector, and is emitted from the other end surface of the total reflector.
JP63208528A 1988-08-23 1988-08-23 Specimen cell for atr spectrochemical analysis Pending JPH0257947A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63208528A JPH0257947A (en) 1988-08-23 1988-08-23 Specimen cell for atr spectrochemical analysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63208528A JPH0257947A (en) 1988-08-23 1988-08-23 Specimen cell for atr spectrochemical analysis

Publications (1)

Publication Number Publication Date
JPH0257947A true JPH0257947A (en) 1990-02-27

Family

ID=16557681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63208528A Pending JPH0257947A (en) 1988-08-23 1988-08-23 Specimen cell for atr spectrochemical analysis

Country Status (1)

Country Link
JP (1) JPH0257947A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07227439A (en) * 1994-02-17 1995-08-29 Konbi Kk Training device
US5739537A (en) * 1995-12-21 1998-04-14 Perstorp Analytical, Inc. NIR absorbance measuring instrument with ATR probe
JP2012519311A (en) * 2009-03-02 2012-08-23 エムバイオ ダイアグノスティクス,インコーポレイティド Waveguide with integrated lens
WO2013125627A1 (en) 2012-02-23 2013-08-29 Kimura Masayuki Bicycle trainer
US9658222B2 (en) 2009-03-02 2017-05-23 Mbio Diagnostics, Inc. Planar waveguide based cartridges and associated methods for detecting target analyte
WO2024011021A1 (en) * 2022-07-08 2024-01-11 Daylight Solutions, Inc. Test cell assembly including attenuated total reflector

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07227439A (en) * 1994-02-17 1995-08-29 Konbi Kk Training device
US5739537A (en) * 1995-12-21 1998-04-14 Perstorp Analytical, Inc. NIR absorbance measuring instrument with ATR probe
JP2012519311A (en) * 2009-03-02 2012-08-23 エムバイオ ダイアグノスティクス,インコーポレイティド Waveguide with integrated lens
US9658222B2 (en) 2009-03-02 2017-05-23 Mbio Diagnostics, Inc. Planar waveguide based cartridges and associated methods for detecting target analyte
WO2013125627A1 (en) 2012-02-23 2013-08-29 Kimura Masayuki Bicycle trainer
WO2024011021A1 (en) * 2022-07-08 2024-01-11 Daylight Solutions, Inc. Test cell assembly including attenuated total reflector

Similar Documents

Publication Publication Date Title
US6108083A (en) Spectroscopic systems for the analysis of small and very small quantities of substance
US4595833A (en) Multiple internal reflection cell optical system for use in infrared spectrophotometry of liquid and fluidized samples
US7064836B2 (en) Brewster's angle flow cell for cavity ring-down spectroscopy
US5051551A (en) Immersion probe for infrared internal reflectance spectroscopy
US5065025A (en) Gas sample analysis provided by light pipe radiation structure
US5153679A (en) Apparatus and process for measuring light absorbance or fluorescence in liquid samples
US4645340A (en) Optically reflective sphere for efficient collection of Raman scattered light
CA1312741C (en) Mirror arrangement for a path of rays in a multiple reflection measuring unit
JPH09170981A (en) Light measuring type flowing device for small amount of sample volume
US4988195A (en) Internal reflectance apparatus and method using cylindrical elements
US4835389A (en) Internal reflection spectroscopy for deep container immersion
EP0615617A1 (en) Capillary flowcell for multiple wavelength detection
JPH04265844A (en) Optical probe
US3431424A (en) Optical fluid sampling device
US5584557A (en) High efficiency compact illumination system
JPH09264840A (en) Absorbancy meter
JPS5985945A (en) Liquid chromatograph device and its analysis method
GB2329707A (en) Infra-red absorption measurement
JPH0257947A (en) Specimen cell for atr spectrochemical analysis
JPS626521Y2 (en)
US5220401A (en) Multiple internal reflectance liquid sampling
JPH073318Y2 (en) Sensor head using photoexcited surface plasma vibration resonance
US5214286A (en) Horizontal multiple internal reflection accessory for internal reflection spectroscopy
JP2691366B2 (en) Concentration measuring method and concentration measuring device
Brown et al. Interfacing a fiber-optic probe to a diode array UV-visible spectrophotometer for drug dissolution tests