JPH0257930A - Ultrasonic probe - Google Patents

Ultrasonic probe

Info

Publication number
JPH0257930A
JPH0257930A JP63208297A JP20829788A JPH0257930A JP H0257930 A JPH0257930 A JP H0257930A JP 63208297 A JP63208297 A JP 63208297A JP 20829788 A JP20829788 A JP 20829788A JP H0257930 A JPH0257930 A JP H0257930A
Authority
JP
Japan
Prior art keywords
stress
substance
wave
transversal
probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63208297A
Other languages
Japanese (ja)
Inventor
Hiroyuki Nishimori
西森 博幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Construction Machinery Co Ltd
Original Assignee
Hitachi Construction Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Construction Machinery Co Ltd filed Critical Hitachi Construction Machinery Co Ltd
Priority to JP63208297A priority Critical patent/JPH0257930A/en
Publication of JPH0257930A publication Critical patent/JPH0257930A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

PURPOSE:To enable execution of quick and precise measurement by disposing in the same case a pair of transversal-wave vibrators which are made adjacent on the same plane, made to intersect each other perpendicularly in the direction of vibration and employed for both transmission and reception. CONSTITUTION:When a substance 10 to be inspected is measured by a probe, the probe is brought into contact with the substance through the intermediary of a contact medium so that the probe is across a line y-y of the substance 10 whereon a round hole 10a is provided therein. When a stress sigma1 acts on the substance 10 in the direction X herein, stress concentration occurs at the edge of the round hole 10a and the stress on the line y-y is not fixed. When a transversal wave is made incident in the direction of the plate thickness of the substance 10 from each transversal-wave vibrator at each measuring position, a reflected wave from the base of the substance 10 is received and sonic speeds in the respective directions of vibration in the directions X and Y are measured simultaneously. The measured sonic speeds are compared with a known reference sonic speed on the basis of the principle of a double refraction effect of a transversal ultrasonic wave that a sonic speed difference between two transversal waves is proportional to a stress difference, and a stress at the given measuring position is determined from the stress difference.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は横波振動子を用いた超音波探触子に係わり、特
に構造物における板状部材のX、Y2方向の平面に作用
している応力を測定するのに好適な超音波探触子である
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an ultrasonic probe using a transverse wave transducer, and in particular, an ultrasonic probe that acts on a plane in two directions, X and Y, of a plate-like member in a structure. This is an ultrasonic probe suitable for measuring stress.

〔従来の技術〕[Conventional technology]

構造物部材に荷重が作用したときの応力およびその分布
状態や部材内に存在する残留応力等の超音波による測定
は、構造物の安全および寿命評価上重要で従来から各技
術分野で行われているが、このうち高精度の測定法とし
て被検体に入射した横波超音波パルスの複屈折効果を利
用する方法が開発され成程度の実用に供されている。複
屈折効果は、板状部材が平面応力状態にあるとき、主応
力方向に振動し板状部材の厚さ方向に伝搬する2つの横
波の速度差が主応力差に比例するという原理であり、Y
カット水晶振動子や電気機械結合係数の高いジルコンチ
タン酸鉛系セラミックの振動子などの横波振動子を使用
して測定する。従来の測定方法を第4図により説明する
。図において1は板状の被検体で、X方向に応力σl+
Y方向に応力σ2が作用している。厚さ(Z方向)はt
である。2は横波振動子で、図示しないケース内に背面
をダンパで保持されて収納されており、矢印で示すX方
向の振動方向を有している。横波振動子2が電気パルス
を受けると、板厚を方向に伝搬する横波S)+1を被検
体1に入射し、その底面で反射した反射波を受信する。
Ultrasonic measurements of stress when a load is applied to a structural member, its distribution state, and residual stress existing in the member are important for evaluating the safety and lifespan of structures, and have traditionally been carried out in various technical fields. However, as a highly accurate measurement method, a method that utilizes the birefringence effect of a transverse ultrasonic pulse incident on a subject has been developed and has been put into practical use to a certain extent. The birefringence effect is based on the principle that when a plate-like member is in a plane stress state, the speed difference between two transverse waves that vibrate in the principal stress direction and propagate in the thickness direction of the plate-like member is proportional to the principal stress difference. Y
Measurement is performed using a transverse wave resonator such as a cut crystal resonator or a resonator made of lead zirconate titanate ceramic with a high electromechanical coupling coefficient. A conventional measuring method will be explained with reference to FIG. In the figure, 1 is a plate-shaped test object with stress σl+ in the X direction.
A stress σ2 is acting in the Y direction. Thickness (Z direction) is t
It is. Reference numeral 2 denotes a transverse wave vibrator, which is housed in a case (not shown) with its back surface held by a damper, and has a vibration direction in the X direction indicated by the arrow. When the transverse wave transducer 2 receives an electric pulse, a transverse wave S)+1 propagating in the direction of the plate thickness is incident on the object 1, and a reflected wave reflected from the bottom surface thereof is received.

横波振動子2は被検体1のよく研磨された表面1aに接
触媒質を介して当接されている。この状態で横波5)I
Iの音速を測定したのち1点線で示すように横波振動子
2の向きを90°変えて振動方向を矢印で示すX方向に
し。
The transverse wave transducer 2 is brought into contact with the well-polished surface 1a of the subject 1 via a couplant. In this state, the transverse wave 5) I
After measuring the sound speed of I, change the direction of the transverse wave oscillator 2 by 90 degrees as shown by the one-dot line so that the vibration direction is in the X direction shown by the arrow.

前記と同様に板厚tの方向に伝搬する横波SH2を被検
体1に入射し、その底面で反射する反射波を受信させ横
波SH2の音速を測定する。この場合も横波振動子2が
被検体1の表面1aに接触媒質を介して密着するように
当接して行う。被検体1の弾性限度内においては測定し
た横波SHIの音速は応力σiに、横波S)+2の音速
は応力σ2にそれぞれ比例するから、横波5)ll*s
H2の各音速差は応力σ1.σ2の各応力差に比例し、
例えば応力σ亀とそれに対する音速が既知の場合などに
は音速を測定することにより容易にかつ精度よく測定し
た音速に対する未知の応力σ重を知ることができる。
Similarly to the above, the transverse wave SH2 propagating in the direction of the plate thickness t is incident on the object 1, and the reflected wave reflected from the bottom surface is received, and the sound speed of the transverse wave SH2 is measured. In this case as well, the transverse wave transducer 2 is brought into close contact with the surface 1a of the subject 1 via the couplant. Within the elastic limit of the object 1, the sound velocity of the measured transverse wave SHI is proportional to the stress σi, and the sound velocity of the transverse wave S)+2 is proportional to the stress σ2, so the transverse wave 5)ll*s
Each sound velocity difference of H2 is a stress σ1. Proportional to each stress difference of σ2,
For example, when the stress σ weight and the corresponding sound velocity are known, by measuring the sound speed, it is possible to easily and accurately know the unknown stress σ weight with respect to the measured sound speed.

しかし前記測定においては横波振動子2と被検体1との
間の確実な音響結合を保持することが前提であり、これ
が得られない場合は測定精度はもちろん測定の成否が問
題となる。このため横波振動子2を被検体表面1aに密
着させて測定しなければならないが、前述の如くX方向
の横波SHIの音速測定時とX方向の横波SH2の音速
測定時とでは密着状態が異なり同一条件下での測定が行
いにくく、また応力σ1.σ2が形状の差により変化す
る場合にはその変化に応じて複数の位置を適宜のピッチ
で測定することになるが、各測定ピッチごとに横波振動
子2の被検体1に対する着脱および90’の向き変えを
しなければならず、その都度密着状態を確認する必要が
あるから測定に長時間を要するほか、前記密着状態の変
化も加わり測定の再現性が悪く測定値のばらつきが大き
くなって精度のよい測定ができない問題点を有していた
However, in the above-mentioned measurement, it is a prerequisite to maintain reliable acoustic coupling between the transverse wave vibrator 2 and the subject 1, and if this cannot be achieved, not only the measurement accuracy but also the success or failure of the measurement become a problem. For this reason, measurements must be made with the shear wave transducer 2 in close contact with the surface 1a of the test object, but as mentioned above, the state of close contact is different when measuring the sound speed of the shear wave SHI in the X direction and when measuring the sound speed of the shear wave SH2 in the X direction. It is difficult to measure under the same conditions, and the stress σ1. If σ2 changes due to differences in shape, measurements will be taken at multiple positions at appropriate pitches depending on the change. It takes a long time to measure because the orientation has to be changed and the state of contact needs to be checked each time, and the changes in the state of contact also lead to poor reproducibility of measurements and large variations in measured values, resulting in poor accuracy. The problem was that good measurements could not be made.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

前記の如〈従来の板状部材に作用している平面応力の測
定は、測定の都度被検体表面に対する横波振動子の密着
状態が異なるため同一条件下での測定が行いに<<、特
に被検体の形状変化がある場合や測定部位が長い場合等
では、被検体表面に対し横波振動子を位置変えの都度着
脱して測定しなければならず、測定に長時間を要するだ
けでなく、測定の再現性が悪く精度のよい測定ができな
い問題点があった。
As mentioned above, in the conventional measurement of plane stress acting on a plate-shaped member, the state of contact of the shear wave vibrator with the surface of the specimen differs each time the measurement is performed, so it is difficult to perform measurements under the same conditions. In cases where the shape of the specimen changes or the measurement site is long, the shear wave transducer must be attached to and removed from the specimen surface each time the position is changed, which not only takes a long time but also There was a problem that the reproducibility was poor and accurate measurements could not be made.

本発明は前記従来技術の問題点を解消するものであって
、板状部材に作用している平面応力を、XまたはX方向
に横波振動子の向きを変えて測定する必要がなく、さら
に前記被検体に対する横波振動子の着脱回数も減らして
、良好な音響結合状態で迅速にかつ精度よく測定するこ
とができる超音波探触子を提供することを目的とする。
The present invention solves the problems of the prior art as described above, and it is not necessary to measure the plane stress acting on a plate-like member by changing the direction of the transverse wave vibrator in the X or X direction. It is an object of the present invention to provide an ultrasonic probe that can perform measurements quickly and accurately in a good acoustic coupling state by reducing the number of times a transverse wave transducer is attached to and detached from a subject.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、同一平面に隣接させ、かつ振動方向を直交さ
せた送受信兼用の1対の横波振動子を、同一ケース内に
配設した超音波探触子とすることにより、板状部材に作
用している平面応力を、XおよびX方向における被検体
表面に対する横波振動子の音響結合を良好にし、迅速に
かつ精度よく測定することができるようにしたものであ
る。
The present invention can act on a plate-shaped member by using an ultrasonic probe in which a pair of transverse wave transducers for transmitting and receiving, which are adjacent to each other on the same plane and whose vibration directions are orthogonal, are arranged in the same case. By improving the acoustic coupling of the transverse wave vibrator to the surface of the specimen in the X and X directions, the plane stress can be measured quickly and accurately.

〔作 用〕[For production]

X方向の振動方向とX方向の振動方向の各横波振動子を
1対とし、同一平面に隣接させて同一ケース内に配置し
た超音波探触子を、平板状の被検体上に接触媒質を介し
て密着させて当接し電気パルスを送信すると、各横波振
動子はそれぞれ被検体に横波を入射し被検体底面より反
射した反射波を受信する。この場合、各横波振動子にお
ける送受信は同時に行われるから各横波振動子で測定さ
れる音速もまた同時に測定され、それぞれの基準の既知
の音速との音速差からX、X方向のそれぞれの基準の既
知の応力との応力差が分り板厚方向の各応力を測定する
ことができる。そして超音波探触子の被検体に対する密
着状態は、各横波振動子が同一ケース内に隣接させて配
置されているから各横波振動子に同時に押圧力が加えら
れ均等になり易い。また同一ケース内に横波振動子の対
の数を増せば、その増加数に応じた範囲の被検体に対し
て前記と同一の作用が行われ、被検体の前記範囲におけ
る板厚方向の平均応力および板幅方向の応力分布が同時
に測定される。
A pair of transverse wave transducers, one for each vibration direction in the When the transverse wave transducers are brought into close contact with each other through the transducer and transmit electric pulses, each transverse wave transducer injects a transverse wave into the object and receives a reflected wave reflected from the bottom surface of the object. In this case, since transmission and reception in each shear wave transducer are performed simultaneously, the sound speed measured by each transverse wave transducer is also measured simultaneously, and from the sound speed difference between the known sound speed of each reference and the known sound speed of each reference, the sound speed of each reference in the By knowing the stress difference from the known stress, it is possible to measure each stress in the plate thickness direction. Since the transverse wave transducers are arranged adjacent to each other in the same case, the ultrasonic probe is in close contact with the subject, so that the pressing force is applied to each transverse transducer at the same time, so that the state of contact of the ultrasonic probe with the subject can be made uniform. Furthermore, if the number of pairs of transverse wave oscillators is increased in the same case, the same effect as described above will be performed on the test object in a range corresponding to the increased number, and the average stress in the plate thickness direction in the range of the test object will be and the stress distribution in the plate width direction are measured simultaneously.

〔実施例〕〔Example〕

本発明の実施例を第1図ないし第3図を参照して説明す
る。第1図は一部断面した側面図、第2図は第1図の■
−■断面図、第3図は円穴を有し応力集中が作用する被
検体に対する測定例の説明図である。図において第4図
と同一符号は同じものを示す。3はケースで、−開放面
を有しその面に横波振動子2が同一平面に隣接させて配
置されている。4は横波振動子2の背面に保持体を兼ね
て取付けられたダンパ、5は横波振動子2の外端面に取
付けられている摩耗防止用の保護膜、6はケース3に取
付けられている接栓である。本実施例における横波振動
子2は振動方向を直交させた4個の2対がケース3内に
整列して配設されている。
Embodiments of the present invention will be described with reference to FIGS. 1 to 3. Figure 1 is a partially sectional side view, Figure 2 is the same as Figure 1.
-■ sectional view and FIG. 3 are explanatory diagrams of measurement examples for a test object having a circular hole and on which stress concentration acts. In the figure, the same reference numerals as in FIG. 4 indicate the same parts. Reference numeral 3 denotes a case, which has an open surface on which the transverse wave vibrator 2 is arranged adjacently on the same plane. 4 is a damper attached to the back of the transverse wave transducer 2, which also serves as a holder; 5 is a protective film for preventing wear attached to the outer end surface of the transverse wave transducer 2; and 6 is a contact attached to the case 3. It's a stopper. In the present embodiment, the transverse wave vibrator 2 includes four pairs of transverse wave vibrators 2 whose vibration directions are perpendicular to each other, which are arranged in a case 3 in alignment.

前記構成の探触子により第3図に示す平板状の被検体1
0を測定する場合、まず探触子を被検体10の円穴10
aを設けたy−y線をまたぐように接触媒質を介して当
接させる。この場合の探触子の当接状態は、4個の横波
振動子2がケース3内に同一平面でかつ隣接して配置さ
れているから、探触子に加えられる押圧力が各横波振動
子2に対して均等に作用し、各横波振動子2は同じ密着
状態にさせられ音響結合が良好になる。被検体10に図
のX方向に応力σ貫が作用していると1円穴10aの縁
に応力集中を生じ図示のようにy−y線上の応力は一定
ではない。そして一般に探触子寸法は被検体10の幅よ
り小さいから探触子をy−y線に沿わせて移動して測定
することになる。各測定位置において各横波振動子2か
ら被検体10の板厚方向に対して横波を入射すると、被
検体10の底面より反射した反射波を受信してX方向お
よびY方向の各振動方向に対する音速が同時に測定され
る。測定された音速は、2つの横波の音速差が応力差に
比例するという前記横波超音波パルスの複屈折効果の原
理により基準の既知の音速と比較され、応力差からその
測定位置における応力が求められる。
The flat object 1 shown in FIG. 3 is detected using the probe configured as described above.
When measuring 0, first insert the probe into the circular hole 10 of the object 10.
A is brought into contact via the couplant so as to straddle the y-y line provided with a. In this case, the contact state of the probe is such that the four shear wave transducers 2 are arranged on the same plane and adjacent to each other in the case 3, so that the pressing force applied to the probe is applied to each shear wave transducer. 2, and each transverse wave vibrator 2 is brought into the same close contact state, resulting in good acoustic coupling. When a stress σ is applied to the test object 10 in the X direction in the figure, stress is concentrated on the edge of the circular hole 10a, and the stress on the y-y line is not constant as shown in the figure. Since the size of the probe is generally smaller than the width of the subject 10, the probe is moved along the y-y line for measurement. When a transverse wave is incident in the thickness direction of the object 10 from each shear wave vibrator 2 at each measurement position, the reflected waves reflected from the bottom surface of the object 10 are received, and the sound velocity in each vibration direction of the X direction and the Y direction is are measured simultaneously. The measured sound speed is compared with a reference known sound speed based on the principle of the birefringence effect of the transverse ultrasound pulse, in which the sound speed difference between two shear waves is proportional to the stress difference, and the stress at the measurement position is determined from the stress difference. It will be done.

ただし本実施例においてはY方向に応力が作用していな
いため、前記音速は測定されるものの音速差が発生せず
したがって応力差もないからY方向には応力が作用して
いないことを逆に知ることができる。y−y線の測定が
終ると第3図に示すような応力集中を含む応力分布が得
られる。
However, in this example, no stress is acting in the Y direction, so although the sound speed is measured, there is no sound speed difference, and therefore there is no stress difference, so it can be said that no stress is acting in the Y direction. You can know. When the measurement of the y-y line is completed, a stress distribution including stress concentration as shown in FIG. 3 is obtained.

前記実施例における探触子は、振動方向を直交させた4
個の2対の横波振動子2を同一ケース3内に配設したが
、これを横波振動子2の対の数を多数にし、それを同一
のケース3内に配設した探触子としてもよい。この場合
の測定は、多数の各対になった横波振動子2における音
速を同時に測定できる。例えば第3図のy−y線全長に
わたり横波振動子2を配置した探触子にすれば、探触子
を移動することなくy−y線上に当接するだけで短時間
に前記測定ができる。また振動方向の向きは、第2図に
示すように隣接する各横波振動子2がすべて直交して1
対になる配置に限定されることはなく、片側をすべて同
じ向き例えばX方向とし、他の側をすべて直交する向き
例えばY方向として配置してもよい。さらに多数の対の
横波振動子2を例えば格子状のように縦、横両方向に多
数配設した探触子にした場合は、探触子の面積の範囲に
おける応力がX方向、Y方向とも同時測定でき、広範囲
の測定を一層短時間に行うことができる効果がある。
The probe in the above embodiment has four probes whose vibration directions are orthogonal to each other.
Two pairs of shear wave transducers 2 are arranged in the same case 3, but this can also be used as a probe in which the number of pairs of shear wave transducers 2 is increased and they are arranged in the same case 3. good. In this case, the sound velocity in each of a large number of pairs of transverse wave transducers 2 can be measured simultaneously. For example, if a probe is used in which the transverse wave transducer 2 is arranged along the entire length of the y-y line in FIG. 3, the measurement can be carried out in a short time simply by touching the y-y line without moving the probe. In addition, the direction of vibration is such that all adjacent shear wave oscillators 2 are orthogonal to each other, as shown in FIG.
The arrangement is not limited to pairwise arrangement, but may be arranged such that one side is all oriented in the same direction, for example, in the X direction, and all the other sides are arranged in a perpendicular direction, for example, in the Y direction. Furthermore, in the case of a probe in which many pairs of transverse wave transducers 2 are arranged in both the vertical and horizontal directions in a grid pattern, the stress within the area of the probe is applied simultaneously in the X direction and the Y direction. It has the effect of being able to perform measurements over a wide range in a shorter time.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明に係わる超音波探触子は送受
信兼用の1対もしくは複数の対の横波振動子を、同一平
面に隣接させ、かつ振動方向を直交させて同一ケース内
に配設するようにしたから。
As explained above, the ultrasonic probe according to the present invention has one or more pairs of transverse wave transducers for transmitting and receiving functions arranged adjacent to each other on the same plane and with their vibration directions perpendicular to each other in the same case. Because I did it like that.

板状部材に作用している平面応力を、X方向およびY方
向に於ける被検体表面に対する横波振動子の音響結合を
良好にし、迅速に精度よく測定することができる実用上
顕著な効果を有する。
It has a remarkable practical effect of being able to quickly and accurately measure the plane stress acting on a plate-shaped member by improving the acoustic coupling of the transverse wave vibrator to the surface of the specimen in the X and Y directions. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係わる超音波探触子の実施例の一部断
面した側面図、第2図は第1図の■−■断面図、第3図
は被検体の測定例の説明図である。 第4図は従来の測定方法の例の説明図である。 特許出願人   日立建機株式会社 代理人弁理士  秋 本 正 実 (外1名) 第 ブ 図 3・−ケ一人
Fig. 1 is a partially sectional side view of an embodiment of the ultrasonic probe according to the present invention, Fig. 2 is a sectional view taken along the line ■-■ of Fig. 1, and Fig. 3 is an explanatory diagram of an example of measurement of a subject. It is. FIG. 4 is an explanatory diagram of an example of a conventional measuring method. Patent Applicant Hitachi Construction Machinery Co., Ltd. Representative Patent Attorney Masami Akimoto (1 other person)

Claims (1)

【特許請求の範囲】 1、同一平面に隣接させ、かつ振動方向を直交させた送
受信兼用の1対の横波振動子を、同一ケース内に配設し
たことを特徴とする超音波探触子。 2、前記1対の横波振動子が、同一ケース内に整列して
複数組設置されている特許請求の範囲第1項記載の超音
波探触子。
[Claims] 1. An ultrasonic probe characterized in that a pair of transverse wave transducers for transmitting and receiving, which are adjacent to each other on the same plane and whose vibration directions are orthogonal, are arranged in the same case. 2. The ultrasonic probe according to claim 1, wherein a plurality of pairs of transverse wave transducers are arranged in the same case.
JP63208297A 1988-08-24 1988-08-24 Ultrasonic probe Pending JPH0257930A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63208297A JPH0257930A (en) 1988-08-24 1988-08-24 Ultrasonic probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63208297A JPH0257930A (en) 1988-08-24 1988-08-24 Ultrasonic probe

Publications (1)

Publication Number Publication Date
JPH0257930A true JPH0257930A (en) 1990-02-27

Family

ID=16553917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63208297A Pending JPH0257930A (en) 1988-08-24 1988-08-24 Ultrasonic probe

Country Status (1)

Country Link
JP (1) JPH0257930A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0792038A (en) * 1993-09-28 1995-04-07 Hitachi Ltd Method and device for evaluating stress
JP2017075849A (en) * 2015-10-15 2017-04-20 株式会社日立製作所 Ultrasonic checkup apparatus, and ultrasonic checkup method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0792038A (en) * 1993-09-28 1995-04-07 Hitachi Ltd Method and device for evaluating stress
JP2017075849A (en) * 2015-10-15 2017-04-20 株式会社日立製作所 Ultrasonic checkup apparatus, and ultrasonic checkup method

Similar Documents

Publication Publication Date Title
JPH0525045B2 (en)
Royer et al. Quantitative imaging of transient acoustic fields by optical heterodyne interferometry
Papadakis Absolute measurements of ultrasonic attenuation using damped nondestructive testing transducers
JPH0257930A (en) Ultrasonic probe
JP2004037436A (en) Method of measuring sound elastic stress by surface sh wave and measuring sensor
Palmer et al. Optical probing of acoustic emission waves
US4238725A (en) Apparatus for checking the direction of polarization of shear-wave ultrasonic transducers
JPS61254849A (en) Stress measuring method
JPH0854378A (en) Method for evaluating surface crack of concrete
JP3014204U (en) 2-wave ultrasonic sensor
US3596505A (en) Ultrasonic search unit with radial mode motion transducer
SU1460620A1 (en) Method of measuring the mean ultrasound velocity in positively nonhomogeneous layer
JPH02184754A (en) Probe for propagation speed measurement of surface wave
JP4087730B2 (en) Stress anisotropy detection method and stress diagnosis method
Alleyne et al. The measurements and prediction of Lamb wave interaction with defects
RU1772721C (en) Ultrasonic contact transducer
Mitchell et al. The Vibrational Response of a Thick, Circular, Piezoelectric Plate
Pei et al. Plate thickness and transducer distance dual inversion with dry contact ultrasonic Lamb wave transducers
Habeger Jr . Ultrasonic Determinations of Paper Stiffness Parameters
SU1569696A1 (en) Transducer for ultrasonic inspection
SU1518781A1 (en) Method of ultrasnic inspection of characteristics of unidirectional irregularities of surface of articles
Gunawan et al. Numerical and experimental studies on the scattering of lamb waves in a bent plate
JP3482390B2 (en) Ultrasonic measuring method, ultrasonic probe and ultrasonic measuring device
SU1201752A1 (en) Ultrasound transducer
Li The phase relations between the first arrivals of compressional and shear waves, and their signification to full wave logging