JPH0257836A - Heat pipe type heat-storage water tank - Google Patents

Heat pipe type heat-storage water tank

Info

Publication number
JPH0257836A
JPH0257836A JP63209302A JP20930288A JPH0257836A JP H0257836 A JPH0257836 A JP H0257836A JP 63209302 A JP63209302 A JP 63209302A JP 20930288 A JP20930288 A JP 20930288A JP H0257836 A JPH0257836 A JP H0257836A
Authority
JP
Japan
Prior art keywords
heat
tube
heat exchange
heat exchanger
heat storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63209302A
Other languages
Japanese (ja)
Inventor
Makoto Hori
誠 堀
Aritaka Tatsumi
辰己 有孝
Toru Kurosawa
亨 黒沢
Shigeji Konno
今野 茂二
Kyosuke Nagata
恭介 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP63209302A priority Critical patent/JPH0257836A/en
Publication of JPH0257836A publication Critical patent/JPH0257836A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/0034Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using liquid heat storage material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/0226Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with an intermediate heat-transfer medium, e.g. thermosiphon radiators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PURPOSE:To improve the heat-exchanging efficiency by providing condensed liquid drip protection parts around the external surface of an upper heat transfer tube above the inlets of heat exchange tubes, a working liquid drip guide parts each having a specified taper at the conjunction points of an upper sleeve pipe and the heat exchange tubes. CONSTITUTION:A heat siphon type heat exchanger 3 is submerged in heat carrier water 2, and condensed liquid drip protection parts 5 are provided around the external surface of an upper heat transfer tube 3a. The condensed liquid drip protection parts 5 are arranged above each of two or more inlets of heat transfer tube 3a, thereby condensed liquid 3g condensed above the inlets of the heat transfer tube 3a is dripped on the internal surface of a sleeve pipe 3b so that condensed liquid is prevented from directly dripping into a lower sleeve pipe 3d. Working liquid drip guides 6 are provided at the conjunction points of the upper sleeve pipe and heat exchange tubes 3e, and each furnished with a sloped plane having a slope of T/R >0.25 ; T indicates the length of taper, and R the inside diameter of the upper sleeve pipe 3b. The working liquid drip guides make the condensed liquid flow down along the internal surface of the heat exchange tubes through the tapered planes without being retained in the upper sleeve pipe.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はヒートパイプ式蓄熱水槽装置に関し、特に、上
部伝熱管から生じる凝縮液を無駄なく熱交換管の壁面に
供給することにより、熱交換性能を向上させたヒートパ
イプ式蓄熱水槽装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a heat pipe type heat storage water tank device, and in particular, the present invention relates to a heat pipe type heat storage water tank device, and in particular, by supplying the condensed liquid generated from the upper heat exchanger tube to the wall surface of the heat exchange tube without waste, the heat exchange is improved. This invention relates to a heat pipe type heat storage water tank device with improved performance.

〔従来の技術〕[Conventional technology]

冷暖房用空調システムにおいて、水の潜熱あるいは顕熱
を利用する従来の蓄熱水槽装置として、例えば、ヒート
パイプ式蓄熱水槽装置があり、ヒートパイプの等温性に
より熱伝達の効率が大幅に改良されている。このシステ
ムは、第4図に示すように、と−トサイフォン式熱交換
器3 (図示せず)を水中に沈設し、氷蓄熱時には上部
に配設した上部鞘管3b中の上部伝熱管3a表面を冷却
し、上部鞘管3b中の作動液3f (ここでは蒸気)を
3gで示すように凝縮させ、第5図に示すように凝縮し
た作動液3fを通す熱交換管3eに接触する水を氷結さ
せる。また、温水蓄熱時には下部の作動液3fを通する
下部鞘管3d中の下部伝熱管3cで冷媒を凝縮させるこ
とにより下部鞘管3d中の作動液3rを蒸発させ、蒸発
した作動液3fを通す熱交換管3eに接触する水を加熱
する。このようにして、冷房用氷蓄熱(潜熱利用)およ
び暖房用温水蓄熱(顕熱利用)が一つの蓄熱水槽のヒー
トサイフオン式熱交換器によって効率良く行われる。
In air conditioning systems for heating and cooling, conventional heat storage water tank devices that utilize the latent heat or sensible heat of water include, for example, heat pipe type heat storage water tank devices, which greatly improve heat transfer efficiency due to the isothermal nature of the heat pipes. . As shown in FIG. 4, this system has a totosiphon type heat exchanger 3 (not shown) submerged in water, and an upper heat transfer tube 3a in an upper sheath tube 3b disposed at the top during ice storage. The surface is cooled, and the working fluid 3f (steam in this case) in the upper sheath pipe 3b is condensed as shown by 3g, and as shown in FIG. to freeze. In addition, during hot water heat storage, the refrigerant is condensed in the lower heat transfer tube 3c in the lower sheath pipe 3d through which the lower working fluid 3f passes, thereby evaporating the working fluid 3r in the lower sheath pipe 3d, and allowing the evaporated working fluid 3f to pass through. The water in contact with the heat exchange tube 3e is heated. In this way, ice heat storage for cooling (use of latent heat) and hot water heat storage for heating (use of sensible heat) are efficiently performed by the heat siphon type heat exchanger of one heat storage water tank.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、従来のヒートパイプ式蓄熱水槽装置によると、
上部伝熱管3aは平滑あるいは連続したスパイラル状の
溝もしくは突起を有した構成であり、冷房用水蓄熱時に
おいて、第5図に示すように、上部伝熱管3aで凝縮し
た液3gの中に熱交換管3eの壁面に接触しないで下部
鞘管3dに直接落下するものがあった。このため、凝縮
液3gは熱交換管3eにより熱交換されることなく下部
鞘管3dに蓄積され、かつ、下部鞘管3dから熱交換管
3eへの作動液3fの供給が不充分となるため、熱交換
管3e内面の液ぬれ性が低下し、図示の如く熱交換管3
8表面の氷厚6が不均一となる。このため、システム全
体の効率が大幅に低下すると言う問題があった。この現
象は熱交換管3eが大型になる程顕著であり、直接落下
による効率低下の影響も大きくなる。一方、上部鞘管3
bと熱交換管3eの接合面は直角に近い構成であり、上
部伝熱管3a外面で生じた凝縮液3gは上部鞘管3bに
滞留し、その結果、液膜厚が増大し、上部鞘管3bの蒸
発性能が低下すると言う問題があった。また、凝縮液3
gが上部鞘管3bから熱交換管3e内壁へ流下しにくい
ため、熱交換管3eの管内熱伝達率が低下する傾向もあ
った。さらに、暖房用温水蓄熱時には、上部鞘管3b内
面で生じた凝縮液3gが上部鞘管3bに滞留して上部鞘
管3bの液膜、厚が増大し、上部鞘管3bの凝縮性能が
低下するため、システム全体の暖房能力も減少すると言
う問題があった。
However, according to the conventional heat pipe type heat storage water tank device,
The upper heat exchanger tube 3a has a structure with smooth or continuous spiral grooves or protrusions, and when storing water for cooling, heat is exchanged into the liquid 3g condensed in the upper heat exchanger tube 3a, as shown in FIG. Some of them fell directly into the lower sheath tube 3d without contacting the wall surface of the tube 3e. For this reason, the condensed liquid 3g is accumulated in the lower sheath tube 3d without being heat exchanged by the heat exchange tube 3e, and the supply of the working fluid 3f from the lower sheath tube 3d to the heat exchange tube 3e is insufficient. , the liquid wettability of the inner surface of the heat exchange tube 3e decreases, and as shown in the figure, the heat exchange tube 3
8 The ice thickness 6 on the surface becomes non-uniform. For this reason, there was a problem in that the efficiency of the entire system was significantly reduced. This phenomenon becomes more pronounced as the heat exchange tube 3e becomes larger, and the influence of efficiency reduction due to direct drop also becomes greater. On the other hand, upper sheath tube 3
b and the heat exchange tube 3e have a nearly right-angled joint surface, and the condensed liquid 3g generated on the outer surface of the upper heat exchanger tube 3a stays in the upper sheath tube 3b, and as a result, the liquid film thickness increases and the upper sheath tube There was a problem that the evaporation performance of 3b deteriorated. Also, condensate 3
Since it was difficult for g to flow down from the upper sheath tube 3b to the inner wall of the heat exchange tube 3e, the internal heat transfer coefficient of the heat exchange tube 3e also tended to decrease. Furthermore, during hot water heat storage for heating, 3 g of condensate generated on the inner surface of the upper sheath tube 3b stays in the upper sheath tube 3b, increasing the liquid film and thickness of the upper sheath tube 3b, and reducing the condensation performance of the upper sheath tube 3b. Therefore, there was a problem in that the heating capacity of the entire system was also reduced.

従って、本発明の目的とするところは、上部伝熱管から
生しる凝縮液が下部鞘管に直接滴下することなく、熱交
換管内壁面を伝わって落下するようにしたヒートパイプ
式蓄熱水槽装置を提供することである。
Therefore, the object of the present invention is to provide a heat pipe type heat storage water tank device in which the condensed liquid generated from the upper heat exchanger tube does not drip directly onto the lower sheath tube, but falls along the inner wall surface of the heat exchange tube. It is to provide.

本発明の他の目的は、凝縮液が上部鞘管に滞留すること
なく、容易に熱交換管内壁面に流下するヒートパイプ式
蓄熱水槽装置を提供することである。
Another object of the present invention is to provide a heat pipe type heat storage water tank device in which condensed liquid easily flows down to the inner wall surface of the heat exchange tube without remaining in the upper sheath tube.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は以上に述べた目的を実現するため、熱交換管の
入口直上の上部伝熱管外面に、テープあるいは切欠きの
入った管等から成る凝縮液滴下防止部を設け、必要に応
じて上部鞘管と熱交換管の接合位置にテーパ長さと上部
鞘管内径との比が0.25以上のテーバ面を有する作動
液滴下導入部を設けたヒートパイプ式蓄熱水槽装置を提
供するものである。
In order to achieve the above-mentioned object, the present invention provides a condensate drip prevention section made of tape or a tube with notches on the outer surface of the upper heat exchanger tube just above the inlet of the heat exchanger tube, and as necessary, Provided is a heat pipe type heat storage water tank device in which a working fluid drip introduction part having a tapered surface with a ratio of taper length to upper sheath pipe inner diameter of 0.25 or more is provided at a joint position of a sheath pipe and a heat exchange pipe. .

即ち、本発明のヒートパイプ式蓄熱水槽装置は、蓄熱水
槽の水中に設けられて下部に作動液をプールするととも
に上部にその蒸気を収容する密閉容器と、密閉容器の上
部を貫通して前記蒸気中を通され、かつ、テープあるい
は切欠きの入った管等から成る凝縮液滴下防止部を有す
る上部伝熱管と、密閉容器の下部を貫通して前記作動液
中を通される下部伝熱管と、氷蓄熱時には前記上部伝熱
管に接続され、温水蓄熱時には前記下部伝熱管に接続さ
れる冷凍サイクル手段とを有する。前記密閉容器は、上
部伝熱管を通す上部鞘管、下部伝熱管を通す下部鞘管、
および上部鞘管と下部鞘管を連結して配置された複数の
熱交換管を有し、前記テープあるいは切欠きの入った管
等から成る凝縮液滴下防止部は、熱交換管の入口直上の
位置に設けられており、上部鞘管と熱交換管の接合位置
に、テーパ長さと上部鞘管内径との比が0.25以上の
テーパ面を有する作動液滴下導入部が設けられている。
That is, the heat pipe type heat storage water tank device of the present invention includes a closed container that is provided underwater in the heat storage tank and pools the working fluid in the lower part and stores the steam in the upper part; an upper heat transfer tube that is passed through the inside and has a condensate drip prevention part made of a tape or a tube with a notch, etc., and a lower heat transfer tube that passes through the lower part of the closed container and passes through the working fluid. , a refrigeration cycle means connected to the upper heat transfer tube during ice heat storage and connected to the lower heat transfer tube during hot water heat storage. The sealed container includes an upper sheath tube through which the upper heat exchanger tube passes, a lower sheath tube through which the lower heat exchanger tube passes,
and a plurality of heat exchange tubes arranged by connecting an upper sheath tube and a lower sheath tube, and the condensate drip prevention section made of the tape or a tube with a notch, etc. is located directly above the inlet of the heat exchange tube. A working fluid drip introducing portion having a tapered surface with a ratio of the taper length to the inner diameter of the upper sheath tube of 0.25 or more is provided at the joining position of the upper sheath tube and the heat exchange tube.

この作動液滴下導入部は、凝縮液が上部鞘管に滞留する
ことなく、テーパ面を介して容易に熱交換管内壁面に流
下するようにしている。
This working fluid drip introduction section allows the condensed fluid to easily flow down to the inner wall surface of the heat exchange tube via the tapered surface without remaining in the upper sheath tube.

また、凝縮液滴下防止部は上部伝熱管から生じる凝縮液
が下部鞘管に直接落下するのを防いでおり、全ての凝縮
液が一旦上部鞘管に落下後、熱交換管に流れるようにし
ている。このようなヒートパイプ式蓄熱水槽装置は、氷
蓄熱時には前記上部伝熱管へ0℃以下のブラインを流す
か、あるいは前記冷凍サイクル手段より前記上部伝熱管
へ冷媒を流して0℃以下で蒸発させる蒸発器を構成し、
温水蓄熱時には前記下部伝熱管へ所定の温度の熱媒を流
すか、あるいは前記冷凍サイクル手段より冷媒を流して
凝縮器を構成している。尚、前述の比が0.25以下に
なると傾斜がゆるやかになって従来の直角の形状に近く
なるため液の導入効果が減少する。このとき前述の内径
は凝縮液の量のパラメータに関係する。
In addition, the condensate drip prevention part prevents the condensate generated from the upper heat exchanger tube from directly falling into the lower sheath tube, and allows all the condensate to fall to the upper sheath tube and then flow to the heat exchange tube. There is. Such a heat pipe type heat storage water tank device is used for ice storage by flowing brine at 0°C or lower into the upper heat transfer tube, or by flowing a refrigerant from the refrigeration cycle means into the upper heat transfer tube to evaporate at a temperature below 0°C. configure the vessel,
During hot water heat storage, a heat medium at a predetermined temperature is passed through the lower heat transfer tube, or a refrigerant is passed from the refrigeration cycle means to form a condenser. It should be noted that when the above-mentioned ratio is less than 0.25, the slope becomes gentle and becomes close to the conventional right-angled shape, which reduces the effect of introducing the liquid. The aforementioned internal diameter then depends on the parameter of the amount of condensate.

〔実施例〕〔Example〕

以下本発明のヒートパイプ式蓄熱水槽装置を詳細に説明
する。
Hereinafter, the heat pipe type heat storage water tank device of the present invention will be explained in detail.

第1図(a)、 (blおよび第2図は本発明の一実施
例を示し、伝熱用水2を満たした蓄熱水槽1と、蓄熱水
槽1の中に沈設されたヒートサイフオン式熱交換器3と
、コンプレッサ4a。
FIGS. 1(a), (bl) and FIG. 2 show an embodiment of the present invention, including a heat storage water tank 1 filled with heat transfer water 2, and a heat siphon type heat exchanger submerged in the heat storage water tank 1. container 3 and compressor 4a.

熱交換器(氷蓄熱時にはコンデンサ、温水蓄熱時にはエ
バポレータとして動作する)4b。
Heat exchanger (operates as a condenser when storing ice heat and as an evaporator when storing hot water heat) 4b.

膨張弁4c、および配管4dより成る冷凍サイクル4か
ら構成される。
It is composed of a refrigeration cycle 4 consisting of an expansion valve 4c and piping 4d.

第1図(b)の断面図に示すように、ヒートサイフオン
式熱交換器3は、上部伝熱管3aを内部に有する上部鞘
管3bと、下部伝熱管3cを内部に有する下部鞘管3d
と、上部鞘管3bおよび下部鞘管3dを連結する複数の
熱交換管3eがら成る一つの密閉空間を構成しており、
該密閉空間にはフロン等の作動液3f (液体および蒸
気)が封入されている。また、第3図(al、 (b)
As shown in the cross-sectional view of FIG. 1(b), the heat siphon heat exchanger 3 includes an upper sheath tube 3b having an upper heat exchanger tube 3a therein, and a lower sheath tube 3d having a lower heat exchanger tube 3c therein.
and a plurality of heat exchange tubes 3e that connect the upper sheath tube 3b and the lower sheath tube 3d, forming one sealed space,
A working fluid 3f (liquid and vapor) such as fluorocarbon is sealed in the sealed space. Also, Figure 3 (al, (b)
.

(C1,(d)において後述するが、上部伝熱管3aの
熱交換管3eの入口直上の位置には凝縮液滴下防止部5
が設けられており゛、また、上部鞘管3bと熱交換管3
eの接合位置にテーパ状の作動液滴下導入部6が設けら
れている。
(As will be described later in C1 and (d), a condensate drip prevention part 5 is located at a position directly above the inlet of the heat exchange tube 3e of the upper heat exchange tube 3a.
are provided, and an upper sheath pipe 3b and a heat exchange pipe 3 are provided.
A tapered working fluid drip introducing portion 6 is provided at the joining position e.

第3図(alはと一トサイフォン式熱交換器および上部
伝熱管3aから生じる凝縮液3gの水蓄、熱時の凝縮液
の滴下状態を示しており、同様に同図(blは温水蓄熱
時の滴下状態を示している。伝熱用水2内に沈設された
ヒートサイフオン式熱交換器3の上部伝熱管3aの外面
には凝縮液滴下防止部5が設けられている。凝縮液滴下
防止部5は、複数の伝熱管3aの入口直上にそれぞれ配
置されており、これにより、伝熱管3aの入口直上で凝
縮した凝縮液3gを上部鞘管3b内面に滴下させ、下部
鞘管3dに直接落下するのを防いでいる。その構成は、
テープ状あるいは板状のもの(第3図(C1)、あるい
は管5に切欠き5aを設けたもの(第3図(d))等が
適当であるが、これに限定することはない。また、上部
鞘管3bと熱交換管3eの接合位置にテーパ長さTと上
部鞘管3b内径Rとの比T/Rが0.25以上のテーパ
面を有する作動液滴下導入部6が設けられている。同図
(alの7は熱交換によって生成される氷を示す。
Figure 3 (al indicates water storage of 3 g of condensate generated from the totoichi siphon heat exchanger and upper heat exchanger tube 3a, and the dripping state of the condensate during heating; similarly, the same figure (bl indicates hot water heat storage). A condensate drip prevention portion 5 is provided on the outer surface of the upper heat transfer tube 3a of the heat siphon heat exchanger 3 submerged in the heat transfer water 2.Condensate dripping The prevention part 5 is arranged directly above the inlet of the plurality of heat transfer tubes 3a, and thereby causes the condensate 3g condensed directly above the inlet of the heat transfer tube 3a to drip onto the inner surface of the upper sheath tube 3b and into the lower sheath tube 3d. It prevents it from falling directly.The structure is as follows:
A tape-shaped or plate-shaped one (Fig. 3 (C1), or one in which a notch 5a is provided in the tube 5 (Fig. 3 (d)), etc. is suitable, but it is not limited to this. , a working fluid drip introduction part 6 having a tapered surface with a ratio T/R of taper length T and inner diameter R of the upper sheath tube 3b of 0.25 or more is provided at the joining position of the upper sheath tube 3b and the heat exchange tube 3e. In the same figure (al 7 shows ice generated by heat exchange.

以上の構成において、■氷蓄熱時の動作、■温水蓄熱時
の動作をそれぞれ第1図(a)、 (bl。
In the above configuration, (1) operation during ice heat storage and (2) operation during hot water heat storage are shown in Figures 1(a) and (bl), respectively.

第2図、および、第3図(a)、 (b)、 fclを
用いて説明する。
This will be explained using FIG. 2, FIGS. 3(a) and 3(b), and fcl.

■氷蓄熱時の動作 氷蓄熱時において、コンプレッサ4a、熱交換管4b 
(この場合、コンデンサとして動作する)、膨張弁4 
c +および配管4dから成る冷凍サイクル4は、第1
図(a)に示すように配管され、ヒートサイフオン式熱
交換器λの上部伝熱管3aと連結される。このとき、上
部伝熱管3aは冷凍サイクル4のエバポレークとして動
作する。一方、下部伝熱管3Cは図示していない閉鎖手
段によって閉鎖され、冷凍サイクル4から切り離されて
いる。この状態で、冷凍サイクル4のコンプレッサ4a
で圧縮されて高温になった冷媒ガスが熱交換管4bに導
かれて、ここで大気と接して放熱冷却されて凝縮される
。この凝縮した冷媒ガスは膨張弁4Cを介してヒートサ
イフオン式熱交換器3の上部伝熱管3aに送り込まれる
。このとき、上部伝熱管3aはエバポレータとして作用
し、冷媒ガスは上部伝熱管3aの表面から気化熱を奪っ
て蒸発する。一方、水2の有する熱で蒸発した作動液3
fは上部伝熱管3aおよび上部鞘管3bの周囲で熱交換
を行い凝縮する。このとき、上部伝熱管3aの周囲で凝
縮した凝縮液3gは、液滴となって落下するが、熱交換
管3eの入口直上では、第3図(al、 (C)に示す
ように、上部伝熱管3a外面に設けられた凝縮液滴下防
止部5によって下部鞘管3dへの直接落下が防がれ、該
凝縮液3gは上部鞘管3bへ滴下される。これにより、
全ての凝縮液3gが上部伝熱管3aから上部鞘管3b、
熱交換管3eへと流れるため、熱交換管3e内面の液ぬ
れ性が向上し、熱交換管3eの蒸発性能が向上する。さ
らに、上部鞘管3bと熱交換管3eの接合位置に設けら
れた作動液滴下導入部6により、上部鞘管3bから熱交
換管3eへの液の流れが改善され、上部鞘管3bの液膜
層が減少し、上部鞘管3bの蒸発性能が向上するととも
に、熱交換管3eの液ぬれ性が改善される。従って、図
示の如く、より均一な氷層7を得ることができ、水槽2
に於ける製氷率を増大することができる。換言すれば、
ヒートサイフオン式熱交換器3における熱交換が効率良
く行われる。
■Operation during ice heat storage During ice heat storage, compressor 4a, heat exchange tube 4b
(in this case acts as a capacitor), expansion valve 4
The refrigeration cycle 4 consisting of the c + and the piping 4d is
It is piped as shown in Figure (a) and connected to the upper heat exchanger tube 3a of the heat siphon heat exchanger λ. At this time, the upper heat exchanger tube 3a operates as an evaporator of the refrigeration cycle 4. On the other hand, the lower heat exchanger tube 3C is closed by a closing means (not shown) and separated from the refrigeration cycle 4. In this state, the compressor 4a of the refrigeration cycle 4
The refrigerant gas, which has been compressed to a high temperature, is led to the heat exchange tube 4b, where it comes into contact with the atmosphere, is cooled by heat radiation, and is condensed. This condensed refrigerant gas is sent to the upper heat transfer tube 3a of the heat siphon type heat exchanger 3 via the expansion valve 4C. At this time, the upper heat exchanger tube 3a acts as an evaporator, and the refrigerant gas takes vaporization heat from the surface of the upper heat exchanger tube 3a and evaporates. On the other hand, the working fluid 3 evaporated due to the heat of the water 2
f performs heat exchange around the upper heat exchanger tube 3a and the upper sheath tube 3b and is condensed. At this time, the condensed liquid 3g that has condensed around the upper heat exchanger tube 3a falls as droplets, but just above the inlet of the heat exchanger tube 3e, as shown in FIGS. The condensate drip prevention part 5 provided on the outer surface of the heat transfer tube 3a prevents the condensate from directly falling into the lower sheath tube 3d, and the condensate 3g is dripped into the upper sheath tube 3b.
All the condensate 3g is transferred from the upper heat exchanger tube 3a to the upper sheath tube 3b,
Since it flows into the heat exchange tube 3e, the liquid wettability of the inner surface of the heat exchange tube 3e is improved, and the evaporation performance of the heat exchange tube 3e is improved. Furthermore, the working fluid drip introduction part 6 provided at the joining position of the upper sheath tube 3b and the heat exchange tube 3e improves the flow of liquid from the upper sheath tube 3b to the heat exchange tube 3e, and the liquid in the upper sheath tube 3b is improved. The film layer is reduced, the evaporation performance of the upper sheath tube 3b is improved, and the liquid wettability of the heat exchange tube 3e is improved. Therefore, as shown in the figure, a more uniform ice layer 7 can be obtained, and the water tank 2
It is possible to increase the ice making rate in the ice making process. In other words,
Heat exchange in the heat siphon type heat exchanger 3 is performed efficiently.

■温水蓄熱時の動作 温水蓄熱時において、コンプレッサ4a、熱交換管4b
 (この場合、エバポレータとして動作する)、膨張弁
4c、および配管4dから成る冷凍サイクル4は、第2
図に示すように配管され、ヒートサイフオン式熱交換器
3の下部伝熱管3cと連結される。このとき、下部伝熱
管3cは冷凍サイクル4のコンデンサとして動作する。
■Operation during hot water heat storage During hot water heat storage, compressor 4a, heat exchange pipe 4b
(in this case, it operates as an evaporator), an expansion valve 4c, and piping 4d.
It is piped as shown in the figure and connected to the lower heat exchanger tube 3c of the heat siphon type heat exchanger 3. At this time, the lower heat exchanger tube 3c operates as a condenser of the refrigeration cycle 4.

一方、上部鞘管3bは図示していない閉鎖手段によって
閉鎖され、冷凍サイクル4から切り離されている。この
状態で、冷凍サイクル4より供給された冷媒が下部伝熱
管3c内で凝縮し、該凝縮によって作動液3fが蒸発(
蒸発ガス3h)シ、熱交換管3eおよび上部鞘管3bを
介して水2で冷却されて凝縮する。換言すれば、熱交換
管3eおよび上部鞘管3bを介して水2が加熱される。
On the other hand, the upper sheath tube 3b is closed by a closing means (not shown) and separated from the refrigeration cycle 4. In this state, the refrigerant supplied from the refrigeration cycle 4 condenses in the lower heat transfer tube 3c, and the condensation causes the working fluid 3f to evaporate (
The evaporated gas 3h) is cooled with water 2 via the heat exchange tube 3e and the upper sheath tube 3b, and is condensed. In other words, the water 2 is heated via the heat exchange tube 3e and the upper sheath tube 3b.

上部鞘管3b内で凝縮した凝縮液3gは、第3図(bl
に示すように、作動液滴下導入部6によって容易に熱交
換管3eの内面に流入し、壁面に沿って下部鞘管3dに
回収される。これにより、上部鞘管3b内に於ける凝縮
液3gの滞留がなくなり、凝縮液膜層が減少して、上部
鞘管3bの凝縮性能が向上する。その結果、暖房運転時
においてもヒートサイフオン式熱交換器3における熱交
換が効率良く行われる。
The condensate 3g condensed in the upper sheath pipe 3b is shown in FIG.
As shown in FIG. 2, the working fluid easily flows into the inner surface of the heat exchange tube 3e through the drip introduction section 6, and is collected into the lower sheath tube 3d along the wall surface. This eliminates the retention of the condensate 3g in the upper sheath tube 3b, reduces the condensate film layer, and improves the condensation performance of the upper sheath tube 3b. As a result, heat exchange in the heat siphon type heat exchanger 3 is performed efficiently even during heating operation.

本実施例においては、冷凍サイクル4をコンプレッサ4
a、熱交換管4b、膨張弁4c、および配管4dより構
成したが、同様の機能を果たすものであれば特に限定す
るものではない。
In this embodiment, the refrigeration cycle 4 is connected to the compressor 4.
a, a heat exchange pipe 4b, an expansion valve 4c, and a pipe 4d, but there is no particular limitation as long as it fulfills the same function.

また、冷凍サイクル4による冷媒の供給に換えて所定の
温度にしたプライン等を流すようにしても良い。氷蓄熱
時および温水蓄熱時の配管切換は適当な手段を設けるこ
とにより簡単に行うことができる。ヒートサイフオン式
熱交換器3は蓄熱水槽1の大きさに応じて複数個直列あ
るいは並列に使用しても良く、上・下部伝熱管3a、 
3cが水平となる状態で全体を傾斜させて使用しても良
い。
Furthermore, instead of supplying the refrigerant by the refrigeration cycle 4, a prine or the like heated to a predetermined temperature may be supplied. Piping switching during ice heat storage and hot water heat storage can be easily performed by providing appropriate means. A plurality of heat siphon type heat exchangers 3 may be used in series or in parallel depending on the size of the heat storage water tank 1, and upper and lower heat exchanger tubes 3a,
It is also possible to use the device by tilting the entire device with 3c being horizontal.

上部伝熱管3aおよび下部伝熱管3cは何れも外面で作
動液3fを凝縮あるいは蒸発させるものであり、高性能
伝熱面加工を施すことにより一層の効果を期待できる。
Both the upper heat exchanger tube 3a and the lower heat exchanger tube 3c condense or evaporate the working fluid 3f on their outer surfaces, and further effects can be expected by applying high-performance heat transfer surface processing.

〔発明の効果〕〔Effect of the invention〕

以上説明した通り、本発明のヒートパイプ式蓄熱水槽装
置によれば、熱交換管の入口直上の上部伝熱管外面に、
テープあるいは切欠きを有する管等から成る凝縮液滴下
防止部を設け、かつ、上部鞘管と熱交換管の接合位置に
テーパ長さと上部鞘管内径との比が0.25以上のテー
パ面を有する作動液滴下導入部を設けたため、上部伝熱
管から生じる凝縮液を下部鞘管に直接滴下させることな
く、熱交換管内壁面を伝わって落下させ、熱交換効率を
向上させることができた。また、凝縮液を上部鞘管に滞
留させることなく、容易に熱交換管内壁面に流下させる
ことができ、上部鞘管あるいは熱交換管の蒸発能力を向
上させる°ことができた。前述した効果によって、冷房
運転時の製氷速度および製氷率が大幅に向上し、また、
暖房運転時の暖房能力が向上することから装置全体のコ
ンパクト化が可能となる。
As explained above, according to the heat pipe type heat storage water tank device of the present invention, on the outer surface of the upper heat exchanger tube immediately above the inlet of the heat exchanger tube,
A condensate drip prevention part made of tape or a tube with notches, etc. is provided, and a tapered surface with a ratio of taper length to upper sheath tube inner diameter of 0.25 or more is provided at the joint position of the upper sheath tube and the heat exchange tube. By providing a working fluid drip introduction section, the condensed liquid generated from the upper heat exchanger tube does not drip directly onto the lower sheath tube, but instead falls along the inner wall surface of the heat exchange tube, making it possible to improve heat exchange efficiency. Furthermore, the condensed liquid could be easily allowed to flow down onto the inner wall surface of the heat exchange tube without being retained in the upper sheath tube, thereby improving the evaporation capacity of the upper sheath tube or the heat exchange tube. As a result of the above-mentioned effects, the ice making speed and ice making rate during cooling operation are significantly improved, and
Since the heating capacity during heating operation is improved, the entire device can be made more compact.

さらに、熱交換効率の向上およびコンパクト化によって
、経済性の良いヒートパイプ式蓄熱水槽装置の達成が可
能である。
Furthermore, by improving the heat exchange efficiency and making it more compact, it is possible to achieve an economical heat pipe type heat storage water tank device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)は本発明の一実施例の氷蓄熱時の状態を示
す説明図。第1図fb)は第1図(a)の断面図。第2
図は本発明の温水蓄熱時の状態を示す説明図。第3図(
a)は本発明の氷蓄熱時の凝縮液の滴下状態を示す説明
図。第3図中)は本発明の温水蓄熱時の凝縮液の滴下状
態を示す説明図。第3図((!l、 (d)は凝縮液滴
下防止部の断面図、第4図は従来のヒートサイフオン式
熱交換器の上部伝熱管を示す説明図。第5図は従来のヒ
ートサイフオン式熱交換器を示す説明図。 符号の説明 t −−−m−・−−−m−蓄熱水槽 2−・・−・・−水 3−・・−・・−ヒートサイフオン式熱交換器3a・・
・・−・・−上部伝熱管 3b・−・・−・−上部鞘管 3c−・−・・・−・下部伝熱管 3d・・・−・−・・・−下部鞘管 3 e−−−−−−−−・−・・熱交換管3f・−・−
・・−・−・作動液 3h−・・・・・−・・・・作動液蒸発ガス4・−・−
・・−・冷凍サイクル 4a・−・−−一−−−コンプレッサ 4b・−−一−−−・・−熱交換器 4cm・・−・・・・・膨張弁 4d−−−−−−一・・−配管 5−−−−−−一凝縮液滴下防止部 5a・・−・・・−・・・・切欠き 6・−・−・−作動液滴下導入部 7・−−−−−・−・氷
FIG. 1(a) is an explanatory diagram showing a state during ice heat storage according to an embodiment of the present invention. FIG. 1fb) is a sectional view of FIG. 1(a). Second
The figure is an explanatory diagram showing a state during hot water heat storage according to the present invention. Figure 3 (
a) is an explanatory diagram showing the dripping state of condensate during ice heat storage according to the present invention; FIG. 3) is an explanatory view showing the dripping state of condensate during hot water heat storage according to the present invention. Figure 3 ((!l, (d) is a sectional view of the condensate drip prevention part, Figure 4 is an explanatory diagram showing the upper heat transfer tube of a conventional heat siphon type heat exchanger. Figure 5 is a diagram of the conventional heat siphon type heat exchanger. Explanatory diagram showing a siphon type heat exchanger. Explanation of symbols t ---m-・----m-Thermal storage water tank 2---Water 3----Heat siphon type heat Exchanger 3a...
・・・・・Upper heat exchanger tube 3b・−・・−・−Upper sheath tube 3c−・−・・Lower heat exchanger tube 3d・・・−・−・−Lower sheath tube 3 e−− −−−−−−・−・・Heat exchange tube 3f・−・−
・・−・−・Hydraulic fluid 3h−・・・・−・・Working fluid evaporative gas 4・−・−
...... Refrigeration cycle 4a ---1 --- Compressor 4b ---1 --- Heat exchanger 4 cm --- Expansion valve 4d ----1 --- Piping 5 --- Condensed liquid dripping prevention part 5a --- Notch 6 --- Working fluid drip introduction part 7 ---・-・Ice

Claims (2)

【特許請求の範囲】[Claims] (1)蓄熱水槽内の水の顕熱および/あるいは潜熱を利
用する蓄熱水槽装置において、 前記蓄熱水槽の水中に設けられて下部に作動液をプール
するとともに上部にその蒸気を収容する密閉容器と、 前記密閉容器の上部を貫通して前記蒸気中を通される上
部伝熱管と、 前記密閉容器の下部を貫通して前記作動液中を通される
下部伝熱管と、 氷蓄熱時には前記上部伝熱管に接続され、 温水蓄熱時には前記下部伝熱管に接続される冷凍サイク
ル手段を備え、 氷蓄熱時には前記上部伝熱管へ0℃以下のブラインを流
すか、あるいは前記冷凍サイクル手段より前記上部伝熱
管へ冷媒を流して0℃以下で蒸発させる蒸発器を構成し
、 温水蓄熱時には前記下部伝熱管へ所定の温度の熱媒を流
すか、あるいは前記冷凍サイクル手段より冷媒を流して
凝縮器を構成し、 前記密閉容器は、前記上部伝熱管を通す上部鞘管、前記
下部伝熱管を通す下部鞘管、および前記上部鞘管と前記
下部鞘管を連結して配置された複数の熱交換管から構成
され、 前記熱交換管の入口直上の位置にテープあるいは切欠き
の入った管等から成る凝縮液滴下防止部が設けられてい
ることを特徴とするヒートパイプ式蓄熱水槽装置。
(1) In a heat storage tank device that utilizes sensible heat and/or latent heat of water in a heat storage tank, a sealed container is provided in the water of the heat storage tank to pool the working fluid in the lower part and to store the steam in the upper part. , an upper heat transfer tube that penetrates the upper part of the sealed container and passes through the steam; a lower heat transfer tube that penetrates the lower part of the closed container and passes the working fluid; and during ice heat storage, the upper heat transfer tube A refrigeration cycle means connected to the heat pipe and connected to the lower heat exchanger tube during hot water heat storage, and flowing brine at 0° C. or lower to the upper heat exchanger tube during ice heat storage, or flowing brine from the refrigeration cycle means to the upper heat exchanger tube. An evaporator is configured to flow a refrigerant and evaporate at a temperature below 0° C., and a condenser is configured by flowing a heat medium at a predetermined temperature to the lower heat transfer tube when storing hot water, or by flowing a refrigerant from the refrigeration cycle means, The sealed container includes an upper sheath tube through which the upper heat exchanger tube passes, a lower sheath tube through which the lower heat exchanger tube passes, and a plurality of heat exchange tubes arranged to connect the upper sheath tube and the lower sheath tube. . A heat pipe type heat storage water tank device, characterized in that a condensate drip prevention section made of a tape or a notched tube is provided at a position directly above the inlet of the heat exchange tube.
(2)前記上部鞘管と前記熱交換管は、その接合位置に
、テーパ長さと上部鞘管内径との比が0.25以上のテ
ーパ面を有する作動液滴下導入部を形成された請求項第
1項記載のヒートパイプ式蓄熱水槽装置。
(2) The upper sheath tube and the heat exchange tube have a working fluid drip introduction portion formed at their joining position, the working fluid drip introducing portion having a tapered surface having a ratio of taper length to upper sheath tube inner diameter of 0.25 or more. The heat pipe type heat storage water tank device according to item 1.
JP63209302A 1988-08-22 1988-08-22 Heat pipe type heat-storage water tank Pending JPH0257836A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63209302A JPH0257836A (en) 1988-08-22 1988-08-22 Heat pipe type heat-storage water tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63209302A JPH0257836A (en) 1988-08-22 1988-08-22 Heat pipe type heat-storage water tank

Publications (1)

Publication Number Publication Date
JPH0257836A true JPH0257836A (en) 1990-02-27

Family

ID=16570705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63209302A Pending JPH0257836A (en) 1988-08-22 1988-08-22 Heat pipe type heat-storage water tank

Country Status (1)

Country Link
JP (1) JPH0257836A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102589178A (en) * 2012-03-27 2012-07-18 中海阳新能源电力股份有限公司 Single tower gradient-type fused salt heat accumulation equipment used for solar thermal power generation
CN108332591A (en) * 2017-01-20 2018-07-27 邬志军 A kind of cold-storage and thermal storage integrated apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102589178A (en) * 2012-03-27 2012-07-18 中海阳新能源电力股份有限公司 Single tower gradient-type fused salt heat accumulation equipment used for solar thermal power generation
CN108332591A (en) * 2017-01-20 2018-07-27 邬志军 A kind of cold-storage and thermal storage integrated apparatus

Similar Documents

Publication Publication Date Title
US6745830B2 (en) Heat pipe loop with pump assistance
US3765192A (en) Evaporator and/or condenser for refrigeration or heat pump systems
CA2481477A1 (en) Loop-type thermosiphon and stirling refrigerator
US5217065A (en) Feeder tube and an apparatus for enabling heat transfer between a first fluid and an elongate element
US3421574A (en) Method and apparatus for vaporizing and superheating cold liquefied gas
JPS6342291Y2 (en)
Terpstra et al. Heat pipes: construction and application: a study of patents and patent applications
JPH0257836A (en) Heat pipe type heat-storage water tank
JPH0451740B2 (en)
JPH0518634A (en) Absorption refrigerating apparatus
US4289197A (en) Heat exchanger
KR20030089818A (en) Device for prevention dewing of refrigerator
JPS60181587A (en) Cascade cycle type heat converting system
JP3199287B2 (en) Heat exchanger tubes for heat exchangers
JPH01285726A (en) Heat pipe type heat accumulating water tank device
JPH11108501A (en) Evaporator for absorption-type refrigerating machine
JPS61285389A (en) Heat exchanger
GB2314149A (en) Thermosyphon refrigeration apparatus
JP2716484B2 (en) Heat transfer device
JPH0517571Y2 (en)
JPH0710215Y2 (en) Absorption refrigerator extraction device
JP3062756B1 (en) Liquefied natural gas exhaust cooling heat transfer device
JPH0225113B2 (en)
CA1120359A (en) Dual cycle heat pipe-method and apparatus
JPH0438178Y2 (en)