JPH0257729A - Power transmission - Google Patents

Power transmission

Info

Publication number
JPH0257729A
JPH0257729A JP20390588A JP20390588A JPH0257729A JP H0257729 A JPH0257729 A JP H0257729A JP 20390588 A JP20390588 A JP 20390588A JP 20390588 A JP20390588 A JP 20390588A JP H0257729 A JPH0257729 A JP H0257729A
Authority
JP
Japan
Prior art keywords
cylinder
housing
cylinders
increases
slit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20390588A
Other languages
Japanese (ja)
Inventor
Masao Teraoka
正夫 寺岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GKN Driveline Japan Ltd
Original Assignee
Tochigi Fuji Sangyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tochigi Fuji Sangyo KK filed Critical Tochigi Fuji Sangyo KK
Priority to JP20390588A priority Critical patent/JPH0257729A/en
Publication of JPH0257729A publication Critical patent/JPH0257729A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D35/00Fluid clutches in which the clutching is predominantly obtained by fluid adhesion

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Retarders (AREA)

Abstract

PURPOSE:To miniaturize the captioned device by providing a slit to one or both of wall surfaces facing to each other of cylinders and forming the slit in such a manner that the open-area becomes gradually larger as the position comes near the free end of the cylinder. CONSTITUTION:When a housing 31 is rotated by the driving power from an engine, the rotation of the housing 31 is transmitted from a cylinder 45 to a cylinder 47 by the shearing resistance of silicone oil and outputted from a rotary member 35. At this time, if the difference in the number of revolutions between the housing 35 and the rotary member 35 increases, both limiting quantity of this differential rotation and transmitting torque increase, while if the difference decreases both limiting quantity and transmitting torque decrease. Therefore, by moving the rotary member 35 through the operation of a shift fork 57 so as to change the overlapped quantity of the cylinders 45 and 47, the torque transmitting characteristics can be changed. At this time, owing to wedge-shaped slits 49, which are formed in the cylinder 45 on the housing (31) side, as the overlapping quantity L between the cylinder 45 and the cylinder 47 increases the effective operational area increases sharply. In other words, for the same stroke the adjustable range of the characteristics can be widened, compared with the conventional method.

Description

【発明の詳細な説明】 (発明の目的) (産業上の利用分野) この発明は、例えば車両などに用いられる動力伝達装置
に関する。
DETAILED DESCRIPTION OF THE INVENTION (Objective of the Invention) (Industrial Application Field) The present invention relates to a power transmission device used in, for example, a vehicle.

(従来の技術) 特開昭62−106130号公報に粘性クラッチが記載
されている。この装置は一対の回転部材を同軸上で相対
回転可能に又軸方向に相対移動可能に配置し、互いに径
が異なり同軸上で交互に配置された複数の円筒を前記回
転部材に各別に固定し、これらの円筒の間に粘性流体を
満たして構成されており、回転部材間に差動回転が生じ
ると粘性流体の剪断抵抗により一方から使方へトルクが
伝達されるとともに、回転部材を相対移動して円筒の重
なり代を増減することにより差動回転の制御I(制限と
許容)吊とトルク伝達特性とを調節することができるよ
うに構成されたビスカスカップリングである。
(Prior Art) A viscous clutch is described in JP-A-62-106130. In this device, a pair of rotating members are arranged so as to be relatively rotatable on the same axis and movable relative to each other in the axial direction, and a plurality of cylinders having different diameters and arranged alternately on the same axis are individually fixed to the rotating members. , these cylinders are filled with viscous fluid, and when differential rotation occurs between the rotating members, torque is transmitted from one side to the user due to the shear resistance of the viscous fluid, and the rotating members are moved relative to each other. This is a viscous coupling configured so that differential rotation control (limitation and allowance) and torque transmission characteristics can be adjusted by increasing or decreasing the overlapping margin of the cylinders.

この装置において円筒が通常の形状であると相対移動の
ストロークの割合に特性の変化量が少なく、従って充分
な特性の調節幅を得るにはストロークを大きく操作する
必要があり装置を大型にしなりればならず、迅速に特性
を調節することができない。その上、この装置の構造上
の理由から円筒の一端は支持できず自由端にせざるを冑
ない。
In this device, if the cylinder has a normal shape, the amount of change in characteristics will be small in the stroke ratio of relative movement, and therefore, in order to obtain a sufficient adjustment range of characteristics, it is necessary to operate the stroke largely, which increases the size of the device. Therefore, it is not possible to quickly adjust the characteristics. Moreover, due to the structure of this device, one end of the cylinder cannot be supported and must be left free.

従って、円筒を長くすることは支持強度上不利である。Therefore, increasing the length of the cylinder is disadvantageous in terms of support strength.

(発明が解決しようとする課題) そこで、この発明は特性を調節する際のストロークが短
(、部材の支持強度が大きく、小型化が可能な動力伝達
装置の提供を目的とする。
(Problems to be Solved by the Invention) Therefore, an object of the present invention is to provide a power transmission device that has a short stroke when adjusting characteristics, has a large supporting strength of members, and can be downsized.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) この発明の動力伝達装置は、ハウジングとこれを貫通す
る回転部材とを相対回転可能及び軸方向の相対移動可能
に配置し、このハウジングの内部において互いに径が異
なり同軸上で交互に配置された複数の円筒を前記ハウジ
ングと回転部材とに格別に設け、前記ハウジングに粘性
流体を封入してなり、前記円筒の対向壁面に一方又は両
方に欠1n部を設けるとともに、円筒の解放端に向けて
その開口面積が順次増加するように形成したことを特徴
とする。
(Means for Solving the Problems) A power transmission device of the present invention includes a housing and a rotating member passing through the housing, which are arranged so as to be relatively rotatable and relatively movable in the axial direction, and have different diameters inside the housing. A plurality of cylinders arranged alternately on the same axis are separately provided on the housing and the rotating member, a viscous fluid is sealed in the housing, and a cutout 1n is provided on one or both of the opposing wall surfaces of the cylinder, and , is characterized in that the opening area of the cylinder increases gradually toward the open end of the cylinder.

(作用) ハウジングと回転部材の一方からトルクが入力すると粘
性流体の剪断抵抗により一側の円筒から他側の円筒にト
ルクが伝達され他方からトルクが出力される。このとき
、入力トルクと出力側の駆動抵抗とのバランスにより入
出力間の回転差が大きくなる程この差動回転の制限量が
増えて伝達トルクが増し、回転差が小さくなる稈差動回
転のfill限昂が減少して伝達トルクが減少する。
(Function) When torque is input from either the housing or the rotating member, the torque is transmitted from the cylinder on one side to the cylinder on the other side due to the shear resistance of the viscous fluid, and the torque is output from the other cylinder. At this time, as the rotation difference between the input and output increases due to the balance between the input torque and the drive resistance on the output side, the limit amount of this differential rotation increases and the transmitted torque increases, and the rotation difference becomes smaller. The fill limit decreases and the transmitted torque decreases.

ハウジングと回転部材間の軸方向相対移動により円筒の
重なり代を変えて有効作動面積を増減すれば、粘性流体
の剪断抵抗によるトルクの授受面積が変化するから差動
回転の制御1mとトルク伝達特性とを変えることができ
る。また、円筒にはその解放端に向かって開口面積が順
次増加する欠損部が設けであるから、わずかなストロー
クで円筒の有効作動面積が大きく変化し特性を幅広く迅
速に調節することができる。従って、円筒を短くできる
からその支持強度上有利であるとともに装置を小型にで
きる。
If the effective operating area is increased or decreased by changing the overlapping margin of the cylinders through relative axial movement between the housing and the rotating member, the area for transmitting and receiving torque due to the shear resistance of the viscous fluid will change, so differential rotation control 1 m and torque transmission characteristics can be changed. In addition, since the cylinder is provided with a defective portion whose opening area gradually increases toward its open end, the effective operating area of the cylinder changes greatly with a small stroke, making it possible to quickly adjust the characteristics over a wide range. Therefore, since the cylinder can be shortened, it is advantageous in terms of supporting strength and the device can be made smaller.

(実施例) 第1図ないし第5図により一実施例を説明する。第5図
はこの実施例を四輪駆1J(4WD)巾の動力伝達系に
用いた例を示す。なお、以下の説明において左右の方向
は第1図と第2図における左右の方向とし、これらの図
の左方は第5図の車両の前方に相当する。
(Example) An example will be described with reference to FIGS. 1 to 5. FIG. 5 shows an example in which this embodiment is applied to a power transmission system having a width of 1J (4WD). In the following description, the left and right directions are the left and right directions in FIGS. 1 and 2, and the left side of these figures corresponds to the front of the vehicle in FIG. 5.

先ず、第5図によりこの車両の動力伝達を説明する。First, the power transmission of this vehicle will be explained with reference to FIG.

エンジン1の駆動力はトランスミッション3で変速され
てトランスファ5に伝達される。トランスファ5は伝達
された駆動力をフロントデフ7(前輪側のデファレンシ
ャル装@)に伝達するとともにこの実施例のWeJ力伝
達装置9とプ[1ペラシヤフト11とを介してリヤデフ
13(後輪側のデファレンシャル装置)に伝達する。伝
達された駆動力は、フロントデフ7により前車軸15.
17を介して左右の前輪19.21に分配され、リヤデ
フ13により侵車軸23.25を介して左右の後輪27
.29に分配される。
The driving force of the engine 1 is changed in speed by a transmission 3 and transmitted to a transfer 5. The transfer 5 transmits the transmitted driving force to the front differential 7 (differential device on the front wheel side) and also to the rear differential 13 (differential device on the rear wheel side) via the WeJ power transmission device 9 of this embodiment and the propeller shaft 11. (differential device). The transmitted driving force is transferred to the front axle 15 by the front differential 7.
17 to the left and right front wheels 19.21, and the rear differential 13 distributes the power to the left and right rear wheels 27 via the axle 23.25.
.. It will be distributed to 29 people.

次に、第1図と第2図により実施例の構成を説明する。Next, the configuration of the embodiment will be explained with reference to FIGS. 1 and 2.

ハウジング31はトランスファ5の出力側に連結された
入力軸33の後端に連結され、エンジン1からの駆動力
を入力して回転する。回転部材35はハウジング31を
貫通する出力軸37と、ハウジング31の内部で出力軸
37の前端に連結されたフランジ39とからなっており
、貫通部においてハウジング31と出力軸37との間に
はXリング41が配置され、ハウジング31を液密状態
に保っている。このように、ハウジング31と回転部材
35とは相対回転可能であるとともに軸方向の相対移動
可能に構成されている。
The housing 31 is connected to the rear end of an input shaft 33 connected to the output side of the transfer 5, and rotates by inputting the driving force from the engine 1. The rotating member 35 consists of an output shaft 37 passing through the housing 31 and a flange 39 connected to the front end of the output shaft 37 inside the housing 31. An X-ring 41 is arranged to keep the housing 31 liquid-tight. In this way, the housing 31 and the rotating member 35 are configured to be relatively rotatable and relatively movable in the axial direction.

ハウジング31の内部において、ハウジング31の左側
壁43には互いに径の異なる複数の薄肉の円筒45が同
軸上に配回され固定されている。
Inside the housing 31, a plurality of thin cylinders 45 having mutually different diameters are coaxially arranged and fixed to the left side wall 43 of the housing 31.

又、フランジ39の左側面にはこの円筒45と同軸上で
交互に配置され互いに径の異なる複数の薄肉の円筒47
が固定されている。これらの円筒45.47はそれぞれ
ハウジング31と7ランジ39とに設けられた同芯の円
形溝に一端を係合して固定又は溶接等で固定されている
Further, on the left side surface of the flange 39, a plurality of thin-walled cylinders 47 are arranged coaxially with the cylinder 45 and alternately, and have mutually different diameters.
is fixed. These cylinders 45 and 47 are fixed at one end by engaging concentric circular grooves provided in the housing 31 and the seven flange 39, respectively, or by welding or the like.

ハウジング31側の円筒45の右端側には、第2図に示
すように、円周等配位置に多数のスリット49(欠損部
)が設けられており、これらのスリット49は開口部が
広く頂部が狭い横形をしている。フランジ39には多数
の貫通孔51が設けられており、ハウジング31には高
粘度のシリコンオイルが封入されている。
On the right end side of the cylinder 45 on the housing 31 side, as shown in FIG. has a narrow horizontal shape. The flange 39 is provided with a large number of through holes 51, and the housing 31 is filled with high viscosity silicone oil.

回転部材35の出力軸37はすべり継手(図示していな
い)を介してプロペラシャフト11側に軸方向移動可能
に連結されている。出力軸37にはリング53が固定さ
れ、リング53に設けられた外周ll[I55にはシフ
トフォーク57が摺動自在に係合している。従って、シ
フトフォーク57を軸方向左右に移動操作すれば回転部
材35は左右に移動する。
The output shaft 37 of the rotating member 35 is connected to the propeller shaft 11 via a slip joint (not shown) so as to be movable in the axial direction. A ring 53 is fixed to the output shaft 37, and a shift fork 57 is slidably engaged with an outer circumference ll[I55 provided on the ring 53. Therefore, if the shift fork 57 is moved left and right in the axial direction, the rotating member 35 is moved left and right.

この移動により円筒45.47の重なり代りが変化する
。Lは円筒45.47のうち短い方の長さよりわづかに
短かいL Ll+axから円筒45.47が多少型なっ
た状態の1 sinまで変化し、Ω−Lwax −L 
minが重なり代しめ調節に伴う回転部材35のストO
−りとなる。その際、貫通孔51はシリコンオイルの流
路となり回転部材35の移動を容易にする。
This movement changes the overlap of the cylinders 45 and 47. L changes from L Ll + ax, which is slightly shorter than the shorter length of the cylinder 45.47, to 1 sin, where the cylinder 45.47 is slightly shaped, and Ω - Lwax - L
Min is the stroke O of the rotating member 35 due to overlap adjustment.
- It becomes. At this time, the through hole 51 becomes a flow path for silicone oil and facilitates movement of the rotating member 35.

シフトフォーク57の上記のような操作は、運転席から
手動操作可能か、又は走行条件や路面条件などに応じて
自動操作可能に構成されている。
The above-described operation of the shift fork 57 can be performed manually from the driver's seat or automatically according to driving conditions, road surface conditions, and the like.

次に、この実施例の機能を説明する。Next, the functions of this embodiment will be explained.

エンジン1からの駆動力によりハウジング31が回転す
るとシリコンオイルの剪断抵抗によりこの回転は円筒4
5から円筒47に伝達され回転部材35から出力される
。このとき、ハウジング31と回転部材35の間の回転
差が大きくなるとこの差動回転の制限量と伝達トルクと
が増大し、回転差が小さくなると差動回転の制限…と伝
達トルクが減少する。
When the housing 31 rotates due to the driving force from the engine 1, this rotation is prevented by the shear resistance of the silicone oil.
5 to the cylinder 47 and output from the rotating member 35. At this time, when the rotational difference between the housing 31 and the rotating member 35 increases, the differential rotation limit and the transmitted torque increase, and when the rotational difference decreases, the differential rotation limit and the transmitted torque decrease.

シフトフォーク57の操作により回転部材35を移動し
、円筒45.47の重ね代りを変えると、第3図に示す
ように、曲taaから曲1bの間でトルク伝達特性を変
えることができる。すなわち、例えば回転差Nがnのと
きこのような操作を行えば伝達トルクを最大tnaから
最小tnbまで調節することができる。また、差動回転
の制限量は曲線a上で最大であり曲線す上で最小である
。また、曲線aは重ね代1 maxのとき、曲線すはL
 sinのときにそれぞれ得られる特性である。
By operating the shift fork 57 to move the rotating member 35 and changing the overlap of the cylinders 45, 47, the torque transmission characteristics can be changed between the song taa and the song 1b, as shown in FIG. That is, for example, if such an operation is performed when the rotational difference N is n, the transmitted torque can be adjusted from the maximum tna to the minimum tnb. Further, the limit amount of differential rotation is maximum on curve a and minimum on curve a. Also, when the curve a has an overlap of 1 max, the curve a is L
These are the characteristics obtained when sin.

上記のように、ハウジング31側の円筒45に設けられ
た楔形のスリット49により円筒47との重なり代りが
増すに従って有効作動面積は急激に増大する。従って、
第4図に示すように、回転差Nが一定のとき所要の伝達
トルクtnItn2を得るための操作ストロークは従来
例のΩに比べて92と短い。(このことは、ストローク
を同じにすれば実施例は従来例より特性の調整範囲を広
くすることができることを意味する。)このような理由
により、円筒45.47を短くすることができるから、
装置9の小型化が可能になり、操作ストロークが短かく
て済むので迅速なトルク調節ができる。また、解放側を
自由端にしなければならない円筒45.47にとって全
長が短く、又解放側が軽量となり、支持側の欠損部が少
なくなれば支持強度が上がるから有利である。
As described above, as the amount of overlap between the wedge-shaped slit 49 provided in the cylinder 45 on the housing 31 side and the cylinder 47 increases, the effective operating area increases rapidly. Therefore,
As shown in FIG. 4, when the rotational difference N is constant, the operating stroke to obtain the required transmission torque tnItn2 is 92, which is shorter than Ω in the conventional example. (This means that if the stroke is kept the same, the adjustment range of characteristics can be made wider in the embodiment than in the conventional example.) For this reason, the cylinders 45 and 47 can be made shorter.
The device 9 can be made smaller, and the operating stroke can be shortened, allowing quick torque adjustment. Further, for the cylinders 45 and 47 whose release side must be the free end, the overall length is short, the release side is lightweight, and the support strength is increased if the number of defects on the support side is reduced, which is advantageous.

次に、第5図の車両の性能に即した機能を説明する。Next, functions corresponding to the performance of the vehicle shown in FIG. 5 will be explained.

この車両において、前輪19.21側はエンジン1から
の駆動力により直結駆動され、後輪27゜29側は装置
9を介して駆動されるから、前後輪間の回転差は装@9
の入出力間の回転差となる。
In this vehicle, the front wheels 19 and 21 are directly connected and driven by the driving force from the engine 1, and the rear wheels 27 and 29 are driven via the device 9, so the rotation difference between the front and rear wheels is
This is the rotation difference between the input and output.

従って、この回転差に応じた駆動力が後輪27゜29側
に伝達され、前後輪の駆動力配分割合が決まり、差動回
転の制amが決まる。その上、これらのトルク伝達特性
と差動回転の制inとを変えることができるから、車両
の操縦性、走行安定性、経済性などが著しく向上する。
Therefore, the driving force corresponding to this rotational difference is transmitted to the rear wheels 27 and 29, the driving force distribution ratio between the front and rear wheels is determined, and the differential rotation limit am is determined. Furthermore, since these torque transmission characteristics and differential rotation control can be changed, the maneuverability, running stability, economic efficiency, etc. of the vehicle are significantly improved.

以下、いくつかの例を挙吠ると、 路面の摩擦抵抗が大きく又、その変化が少ない良路にお
いては、回転差が小さいから後輪27゜29側に配分さ
れるトルクはわずかである。従って、車両は二輪駆動(
2WD)状態に近い駆動力配分状態となり燃費が向上す
る。このとぎ、シフトフォーク57を操作して装置9の
重なり代りを増ピば、このように小さな回転差状態でも
後輪27.29側への駆動力配分が増して車両は4Vl
状態となる。従って、エンジン1の駆動力は四輪全部に
分散し各車輪においてグリップ力の余裕が増大してスリ
ップしにくくなり走行安定性が向上する。
Here are some examples: On a good road where the frictional resistance on the road surface is large and its changes are small, the rotational difference is small, so the torque distributed to the rear wheels 27° and 29 is small. Therefore, the vehicle has two-wheel drive (
The driving force distribution state is close to that of the 2WD) state, resulting in improved fuel efficiency. At this point, if the shift fork 57 is operated to increase the overlapping displacement of the device 9, even in such a small rotation difference state, the drive force distribution to the rear wheels 27.29 side will be increased, and the vehicle will be 4 Vl.
state. Therefore, the driving force of the engine 1 is distributed to all four wheels, increasing the margin of grip force in each wheel, making it difficult to slip, and improving running stability.

悪路において、前輪19.21側がスリップすると回転
差が大きくなるから装置9を介して後輪27.29側に
大ぎな駆動力が配分され、この駆動力により走破性、悪
路脱出性が向上する。このとき、装置9の重なり代りを
大きくすれば後輪27.29側への駆動力配分割合が増
大し走破性、11(2出性がさらに向上する。
When the front wheels 19.21 slip on rough roads, the rotational difference increases, so a large amount of driving force is distributed to the rear wheels 27.29 through the device 9, and this driving force improves running performance and ability to escape from rough roads. do. At this time, if the overlap of the device 9 is increased, the proportion of driving force distributed to the rear wheels 27 and 29 increases, and the running performance and 11 (two-way performance) are further improved.

急加速に際して、前輪19.21側にスリップが発生し
加速性が低下すると、この前輪スリップによって生じる
回転差により後輪27.29側に駆動力が配分される。
During sudden acceleration, if slip occurs on the front wheels 19.21 side and acceleration performance decreases, driving force is distributed to the rear wheels 27.29 due to the rotational difference caused by this front wheel slip.

加速によって荷重が移動する後輪27.29側にこのよ
うに駆動力が配分されるから、低下分が補われるだけで
なく加速性は向上する。このとき、装置9の伝達トルク
を増大すれば加速性はざらに向上する。
Since the driving force is thus distributed to the rear wheels 27 and 29, where the load is transferred due to acceleration, not only the decrease is compensated for, but also the acceleration performance is improved. At this time, if the transmission torque of the device 9 is increased, the acceleration performance will be roughly improved.

コーナリングに際しては、装置9の回転差許容機能によ
って前後輪間の回転差が吸収されるから円滑なコーナリ
ングが行われる。装置9の重なり代り、を減らして回転
差の許容機能を高めれば旋回半径の小ざなコーナリング
に際しても旋回性が向上し円滑なコーナリングを行うこ
とができる。また、車庫入れのような低速急旋回時にも
装@9によりプロペラシャフト11のねじれが吸収され
るからタイトコーナーブレーキング現象は発生しない。
When cornering, the rotation difference tolerance function of the device 9 absorbs the rotation difference between the front and rear wheels, so that smooth cornering is achieved. By reducing the overlap of the device 9 and increasing the tolerance function for rotational differences, turning performance can be improved and smooth cornering can be performed even when cornering with a small turning radius. Furthermore, even when making a sharp turn at low speed, such as when parking the vehicle, the torsion of the propeller shaft 11 is absorbed by the mounting @9, so tight corner braking does not occur.

なお、スリット49の形は上記のような樹形に限らない
。開口部で広く頂部に向って順次狭くなっていればスリ
ットの辺の形は直線以外のものでもよい。第6図にいく
つかの例を示す。同図(a)のスリット59は辺を曲線
にしである。この場合、曲線は外に凸でも内に凸でもよ
い、同図(b)のスリット61は辺を階段状にしである
。また、以上の例ではスリットは円筒の母線に関して左
右対称に形成されているが同図(C)のスリット63の
ように母線65に関して傾斜させてもよい。この傾斜の
方向は母線65に関して左右いずれでもよい。
Note that the shape of the slit 49 is not limited to the tree shape described above. The shape of the sides of the slit may be other than straight as long as it is wide at the opening and gradually narrows toward the top. Figure 6 shows some examples. The slit 59 shown in FIG. 5A has curved sides. In this case, the curve may be convex outward or convex inward, and the slit 61 shown in FIG. 6(b) has stepped sides. Further, in the above example, the slits are formed symmetrically with respect to the generatrix of the cylinder, but they may be inclined with respect to the generatrix 65, as in the case of the slit 63 in FIG. 6(C). The direction of this inclination may be either left or right with respect to the generatrix 65.

また、欠損部としては、このようなスリットの他に貫通
孔を設けてもよい。第7図に例を示す。
Further, as the defective portion, a through hole may be provided in addition to such a slit. An example is shown in FIG.

同図(a)は貫通孔67に大小様々な開口面積を与え、
円筒の解放側に面積最大のものを配置し固定側に向けて
順次面積の小さいものを配置した例である。また、同図
(b)は開口面積の等しい貫通孔69の配置密度を円筒
の解放側から固定側に向けて密から順次疎にした例であ
る。なお、貫通孔67.69の形状は円に限らない。
In the same figure (a), various sizes of opening areas are given to the through hole 67,
This is an example in which the cylinder with the largest area is placed on the open side of the cylinder, and the cylinders with smaller areas are placed in order toward the fixed side. Further, FIG. 6B shows an example in which the arrangement density of the through holes 69 having the same opening area is gradually decreased from dense to sparse from the open side to the fixed side of the cylinder. Note that the shape of the through holes 67 and 69 is not limited to a circle.

欠損部は上記実施例のようにハウジング側の円筒と回転
部材側の円筒のいずれか一方に設りてもよいし、両方に
設けてもよい。また、一方又は両方の円筒の全部に設け
てもよいし、一部、例えば−枚置き、に設けてもよい。
The cutout portion may be provided in either the cylinder on the housing side or the cylinder on the rotating member side as in the above embodiment, or may be provided on both. Moreover, it may be provided on all of one or both cylinders, or may be provided on some, for example every other cylinder.

また、各円筒の欠損部の形状としては上記のようなスリ
ットや貫通孔の各態様又はそれらの組み合わせを自由に
選択してよい。また、同一の円筒上で組み合わせてもよ
い。第7図(C)はスリット49と貫通孔69とを組み
合わせた例である。
Furthermore, the shape of the defective portion of each cylinder may be freely selected from the above-mentioned slits and through-holes, or any combination thereof. Alternatively, they may be combined on the same cylinder. FIG. 7(C) shows an example in which a slit 49 and a through hole 69 are combined.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明の動力伝達装置は差動回転を制
御しながら小ルク伝達を行うことができる上、これらの
特性を任意にかつ迅速に変えることができる。又、小型
化が可能であるとともに円筒の支持強度が高い。
As described above, the power transmission device of the present invention can transmit a small torque while controlling differential rotation, and can also change these characteristics arbitrarily and quickly. In addition, it is possible to downsize the cylinder, and the support strength of the cylinder is high.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は一実施例の構成を示す概略断面図、第2図はこ
の実施例の円筒の断面図、第3図はこの実施例の特性を
示すグラフ、第4図はこの実tM例と従来例の特性を比
較するグラフ、第5図はこの実施例を用いた車両の動力
伝達を示す概略図、第6図及び第7図は円筒の欠損部の
様々な態様を示すそれぞれの外形図である。 31・・・ハウジング  35・・・回転部材45.4
7・・・円筒 49.59.61.63・・・スリット(欠損部)67
.69・・・貝通口(欠損部) 31・・・ハウジング 35・・回転部材 45゜ 47・・・円筒 49.59.61.63・・・スリット(欠損1!II
)67.69・・・貫通口(欠損部) 第3図 第4図 第1図 14’+ 第2図 第5図 bソ 第7図(a) 第7図(b) 第7図(C)
Fig. 1 is a schematic sectional view showing the configuration of one embodiment, Fig. 2 is a sectional view of the cylinder of this embodiment, Fig. 3 is a graph showing the characteristics of this embodiment, and Fig. 4 is a diagram showing the actual tM example. A graph comparing the characteristics of the conventional example, Fig. 5 is a schematic diagram showing the power transmission of a vehicle using this embodiment, and Figs. 6 and 7 are respective external views showing various aspects of the defective part of the cylinder. It is. 31...Housing 35...Rotating member 45.4
7...Cylinder 49.59.61.63...Slit (missing part) 67
.. 69...Shell opening (missing part) 31...Housing 35...Rotating member 45° 47...Cylinder 49.59.61.63...Slit (missing 1! II
)67.69...Through hole (missing part) Fig. 3 Fig. 4 Fig. 1 Fig. 14'+ Fig. 2 Fig. 5 b Fig. 7 (a) Fig. 7 (b) Fig. 7 (C )

Claims (1)

【特許請求の範囲】[Claims]  ハウジングとこれを貫通する回転部材とを相対回転可
能及び軸方向相対移動可能に配置し、このハウジングの
内部において同軸上で径方向に交互配置された径の異な
る複数の円筒を前記ハウジングと回転部材とに各別に設
け、前記ハウジングに粘性流体を封入してなり、前記円
筒の対向壁面の一方又は両方に欠損部を設け、円筒の解
放端に向けてその開口面積が順次増加するように形成し
たことを特徴とする動力伝達装置。
A housing and a rotating member passing through the housing are arranged to be relatively rotatable and relatively movable in the axial direction, and inside the housing, a plurality of cylinders having different diameters coaxially and alternately arranged in the radial direction are connected to the housing and the rotating member. and a viscous fluid is sealed in the housing, and a cutout is provided on one or both of the opposing wall surfaces of the cylinder, and the opening area is formed to increase sequentially toward the open end of the cylinder. A power transmission device characterized by:
JP20390588A 1988-08-18 1988-08-18 Power transmission Pending JPH0257729A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20390588A JPH0257729A (en) 1988-08-18 1988-08-18 Power transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20390588A JPH0257729A (en) 1988-08-18 1988-08-18 Power transmission

Publications (1)

Publication Number Publication Date
JPH0257729A true JPH0257729A (en) 1990-02-27

Family

ID=16481645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20390588A Pending JPH0257729A (en) 1988-08-18 1988-08-18 Power transmission

Country Status (1)

Country Link
JP (1) JPH0257729A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5363948A (en) * 1993-01-19 1994-11-15 Milemarker, Inc. Selective drive fluid coupling
US5593012A (en) * 1993-01-19 1997-01-14 Milemarker, Inc. Limited fixed torque slip coupling

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5363948A (en) * 1993-01-19 1994-11-15 Milemarker, Inc. Selective drive fluid coupling
US5415260A (en) * 1993-01-19 1995-05-16 Milemarker, Inc. Selective drive fluid coupling
US5593012A (en) * 1993-01-19 1997-01-14 Milemarker, Inc. Limited fixed torque slip coupling

Similar Documents

Publication Publication Date Title
US4982808A (en) Viscous shear coupling
JPH02290737A (en) Driving power distribution control device of four-wheel drive vehicle
US5007515A (en) Viscous coupling apparatus
DE60114927T2 (en) Device for changing the speed of the front and rear wheels for a vehicle with four-wheel drive
US4889206A (en) Viscous shear coupling
US20020025878A1 (en) Helical gear type limited slip differential
JPH0257729A (en) Power transmission
US5005685A (en) Torque transmitting device
JPH0343859Y2 (en)
JPH0238723A (en) Viscous fluid clutch
JPH0289822A (en) Viscous coupling
JPH02253018A (en) Viscous coupling
JPH0257728A (en) Power transmission
JPH0322581Y2 (en)
JPH0341156Y2 (en)
JPS6291319A (en) Driving gear for vehicle
JPH02253017A (en) Viscous coupling
JPH0764220B2 (en) Driving force transmission device for four-wheel drive vehicle
JPH02146321A (en) Viscous coupling
JP2523568Y2 (en) Viscous coupling
JPS62253532A (en) Four-wheel driving device
JPH03140634A (en) Viscous coupling
JPH0481329A (en) Driving force distributing device
JPH034833Y2 (en)
JPH0374638A (en) Viscous coupling