JPH025765A - Geothermal power generating method - Google Patents

Geothermal power generating method

Info

Publication number
JPH025765A
JPH025765A JP32904288A JP32904288A JPH025765A JP H025765 A JPH025765 A JP H025765A JP 32904288 A JP32904288 A JP 32904288A JP 32904288 A JP32904288 A JP 32904288A JP H025765 A JPH025765 A JP H025765A
Authority
JP
Japan
Prior art keywords
turbine
boiling point
low boiling
steam
point medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32904288A
Other languages
Japanese (ja)
Inventor
Keijiro Yamaoka
山岡 敬次郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP32904288A priority Critical patent/JPH025765A/en
Publication of JPH025765A publication Critical patent/JPH025765A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To perform geothermal power generation with good thermal efficiency by driving a steam turbine with steam separated by a two-phase flow turbine of rotary separation type, and by driving a low boiling point medium turbine with the steam of low boiling point medium. CONSTITUTION:The water with terrestrial heat is separated into vapor and hot water by a two-phase flow turbine 6 of rotary separator type. This vapor drives a steam turbine 11. The hot water is supplied to a heat exchanger 16 of direct contact type, and there the low boiling point medium is gasified. This low boiling point medium gasified drives a low boiling point medium turbine 21. A power generator 12 is operated by these steam turbine 11 and low boiling point medium turbine 21, and thus the power is collected.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は地熱、特に地熱水の持つエネルギーを有効に利
用するようにした地熱発電方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a geothermal power generation method that effectively utilizes the energy of geothermal energy, particularly geothermal water.

〔従来の技術〕[Conventional technology]

一般に、地熱水を利用して発電する場合、二段フラッシ
ュ方式により蒸気タービンを駆動する方法が採用されて
いる。即ち、地熱井から生産された熱水を第1のフラッ
シャ−に導入してここで高圧蒸気と熱水に分離し、高圧
蒸気は蒸気タービンの高圧側へ供給すると共に、熱水は
第2のフランシャーに導入し、ここで低圧蒸気と低温熱
水とに分離し、この低圧蒸気を前記した蒸気タービンの
低圧側へ供給することによって発電機を作動させるため
の蒸気タービンを駆動するものである。
Generally, when generating electricity using geothermal water, a method of driving a steam turbine using a two-stage flash method is adopted. That is, hot water produced from a geothermal well is introduced into the first flasher, where it is separated into high-pressure steam and hot water.The high-pressure steam is supplied to the high-pressure side of the steam turbine, and the hot water is supplied to the second flasher. The steam is introduced into Francia, where it is separated into low-pressure steam and low-temperature hot water, and this low-pressure steam is supplied to the low-pressure side of the steam turbine to drive the steam turbine that operates the generator. .

一方、地熱井から生産された熱水を間接接触式熱交換器
に導き、低沸点媒体と熱交換を行い、この間接接触式熱
交換器で気化した低沸点媒体を発電機を作動させるため
の低沸点媒体タービンに供給して駆動する地熱発電方式
も知られている。
On the other hand, hot water produced from a geothermal well is led to an indirect contact heat exchanger, where it exchanges heat with a low boiling point medium, and the low boiling point medium vaporized in this indirect contact heat exchanger is used to operate a generator. A geothermal power generation system in which a low boiling point medium is supplied to and driven by a turbine is also known.

[発明が解決しようとする課題] しかしながら前記従来の地熱発電方法によれば次の問題
がある。即ち、二段フラッシュ方式においては、特に第
2のフラッシャ−において減圧蒸発を行うため、エネル
ギーロスが大きく、かつ、大量の低圧蒸気を処理するた
めに蒸気タービンが大型化し、低効率とならざるを得な
いものである。
[Problems to be Solved by the Invention] However, the conventional geothermal power generation method described above has the following problems. In other words, in the two-stage flash method, since vacuum evaporation is performed especially in the second flasher, there is a large energy loss, and the steam turbine must be large in size to process a large amount of low-pressure steam, resulting in low efficiency. It's something you can't get.

また、低沸点媒体を利用した発電(バイナリ−発電)方
法においては、間接接触により熱交換を行っている関係
で、熱交換効率が低下し、そのため高効率の地熱発電方
法とすることができないものであった。
In addition, in power generation (binary power generation) methods that use low-boiling point media, heat exchange efficiency decreases due to the fact that heat exchange is performed through indirect contact, and therefore it cannot be used as a highly efficient geothermal power generation method. Met.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は前記従来の地熱発電における問題を解決するた
めになされたものであって、地熱水を回転分離式二相流
タービンで蒸気と熱水とに分離し、蒸気を蒸気タービン
に供給し、この蒸気タービンを駆動すると共に、熱水を
直接接触式熱交換器へ供給して低沸点媒体を気化して、
この低沸点媒体蒸気を低沸点媒体タービンに供給して低
沸点媒体タービンを駆動し、この蒸気タービン及び低沸
点媒体タービンの両者で発電機を作動させ、更に好まし
くは直接接触式熱交換器からの熱水を液体タービンに供
給して動力を回収するようにした地熱発電方法である。
The present invention was made in order to solve the above-mentioned problems in conventional geothermal power generation, and consists of separating geothermal water into steam and hot water using a rotary separation type two-phase flow turbine, and supplying the steam to the steam turbine. , while driving this steam turbine, supplying hot water to a direct contact heat exchanger to vaporize a low boiling point medium,
The low boiling point medium steam is supplied to a low boiling point medium turbine to drive the low boiling point medium turbine, and both the steam turbine and the low boiling point medium turbine operate a generator, and more preferably, the low boiling point medium steam is supplied to a low boiling point medium turbine to operate a generator in both the steam turbine and the low boiling point medium turbine. This is a geothermal power generation method that recovers power by supplying hot water to a liquid turbine.

〔作 用〕[For production]

か−る地熱発電方法によれば、回転分離式二相流タービ
ンで分離された蒸気は直接蒸気タービンに供給されると
共に、熱水は遠心力によって加圧されて直接接触式熱交
換器へ導かれ、こ−で低沸点媒体と直接接触して熱交換
し、発生した低沸点媒体の蒸気で低沸点媒体タービンを
駆動する。
According to this geothermal power generation method, steam separated by a rotary separation type two-phase flow turbine is directly supplied to the steam turbine, and hot water is pressurized by centrifugal force and introduced to a direct contact heat exchanger. Thereby, the low boiling point medium comes into direct contact with the low boiling point medium to exchange heat, and the generated low boiling point medium steam drives the low boiling point medium turbine.

従って、熱水より分離した蒸気と低沸点媒体より分離し
た蒸気により二種類のタービンを作動して発電機を駆動
して熱エネルギーを電気エネルギーとして回収している
Therefore, two types of turbines are operated using steam separated from hot water and steam separated from a low boiling point medium to drive a generator and recover thermal energy as electrical energy.

また、直接接触式熱交換器より排出された比較的低温の
熱水は、好ましくは、液体タービンに供給され、これで
動力回収が行なわれる。
Also, the relatively low temperature hot water discharged from the direct contact heat exchanger is preferably supplied to a liquid turbine for power recovery.

〔実 施 例〕〔Example〕

以下、図面に基づき本発明による地熱発電方法の実施例
を説明する。
Embodiments of the geothermal power generation method according to the present invention will be described below based on the drawings.

地中1には地熱井2(地熱井ケーシング)が設けられ、
この地熱井2の坑底部(地熱井ケーシングの下端部)に
坑底ポンプ3が設けられ、この坑底ポンプ3の駆動軸4
は地表面5の上方にまで延設されている。
Geothermal well 2 (geothermal well casing) is installed underground 1.
A bottom hole pump 3 is provided at the bottom of the geothermal well 2 (lower end of the geothermal well casing), and a drive shaft 4 of the bottom hole pump 3 is provided.
extends above the ground surface 5.

地上には、例えば特開昭58−15702号公報の第2
図に示されているような回転分離式二相流タービン6が
設けられ、前記坑底ポンプ3の駆動軸4をギヤボックス
7等の動力伝達手段を介して駆動するように構成されて
いる。
On the ground, for example, JP-A-58-15702 No. 2
A rotationally separated two-phase flow turbine 6 as shown in the figure is provided, and is configured to drive the drive shaft 4 of the bottom hole pump 3 via a power transmission means such as a gear box 7.

8は、ポンプケーシング9内と回転分離式二相流タービ
ン6を連通ずる連結管で、その途中にポンプ等の液体タ
ービン10が設けられ、この液体タービン10はギヤボ
ックス7aと連結され、坑底ポンプ3の補助駆動力とし
て使用されるようになっている。
Reference numeral 8 denotes a connecting pipe that communicates the inside of the pump casing 9 with the rotary separation type two-phase flow turbine 6. A liquid turbine 10 such as a pump is provided in the middle of the connecting pipe, and this liquid turbine 10 is connected to a gear box 7a, and is connected to the bottom of the mine. It is designed to be used as an auxiliary driving force for the pump 3.

前記回転分離式二相流タービン6で分離された蒸気Sは
蒸気ライン11を通って蒸気タービン11に供給され、
発電機12を作動させた後、クーリングタワー13を付
設したコンデンサ14で復水し、復水ライン2□を経て
還元井15に戻される。
The steam S separated by the rotary separation type two-phase flow turbine 6 is supplied to the steam turbine 11 through a steam line 11,
After the generator 12 is operated, the water is condensed in a condenser 14 equipped with a cooling tower 13, and is returned to the reinjection well 15 via the condensate line 2□.

一方、回転分離式二相流タービン6で分離された熱水H
wは、例えば150°C、20Kg / c+flの如
き状態で第1熱水ライン!、を経て直接接触式熱交換器
16に供給される。この直接接触式熱交換器16内には
、例えばブタン、イソブタンの如き低沸点媒体Fがノズ
ル17で供給され、この低沸点媒体Fと前記熱水H9と
が熱交換される。
On the other hand, the hot water H separated by the rotary separation type two-phase flow turbine 6
w is the first hot water line under conditions such as 150°C and 20Kg/c+fl! , to the direct contact heat exchanger 16. A low boiling point medium F such as butane or isobutane is supplied into the direct contact heat exchanger 16 through a nozzle 17, and heat is exchanged between the low boiling point medium F and the hot water H9.

そしてこの熱交換により90″C程度に温度が降下した
熱水H9は、第2の熱水ライン!4を経て後述する低沸
点媒体Fを移送するポンプ18を駆動するポンプの如き
液体タービン19に送られ、こ\で動力回収が行なわれ
、更にフラッシャ2゜により減圧され、例えば2〜3K
g/cf+の圧力で、50°C程度の低温、低圧の熱水
となって還元井15に戻される。
The hot water H9, whose temperature has dropped to about 90"C through this heat exchange, passes through the second hot water line!4 to a liquid turbine 19, such as a pump that drives a pump 18 that transfers a low boiling point medium F, which will be described later. The power is recovered here, and the pressure is reduced by the flasher 2°, for example, 2 to 3K.
At a pressure of g/cf+, the water is returned to the reinjection well 15 as low-temperature, low-pressure hot water of about 50°C.

直接接触式熱交換器16内で熱水H8中に溶融した低沸
点媒体Fはフラッシャ20において熱水H,と分離した
復液ライン15を経て低沸点媒体タービン21の後流側
へ戻される。そして直接接触式熱交換器16内で気化し
た低沸点媒体FGは媒体ライン!6を通って前記した低
沸点媒体タービン21を駆動し、この低沸点媒体タービ
ン21により発電機12を作動させる。
The low boiling point medium F melted in the hot water H8 in the direct contact heat exchanger 16 is returned to the downstream side of the low boiling point medium turbine 21 via the condensate line 15 separated from the hot water H in the flasher 20. The low boiling point medium FG vaporized in the direct contact heat exchanger 16 is the medium line! The low boiling point medium turbine 21 described above is driven through the low boiling point medium turbine 21, and the generator 12 is operated by the low boiling point medium turbine 21.

そしてこの蒸気となった低沸点媒体F6は、クーリング
タワー22を付設したコンデンサ23で凝縮され、低沸
点媒体Fとなってレシーバ24に貯えられ、ポンプ18
により直接接触式熱交換器16内に供給されるようにな
っている。
This vaporized low-boiling medium F6 is condensed in a condenser 23 equipped with a cooling tower 22, becomes a low-boiling medium F, and is stored in a receiver 24.
is supplied into the direct contact heat exchanger 16.

前記構成において、地熱水は、坑底ポンプ3により飽和
圧力以上に加圧され、ポンプケーシング9内を地上まで
導かれ、液体タービン10により飽和圧力程度まで圧力
降下されて連結管8を経て回転分離式二相流タービン6
に導かれ、図示しないノズルから回転分離器内に噴出し
てこの回転分離器を回転させる。この回転分離器の回転
に伴なって地熱水は蒸気Sと熱水H8に分離され、前記
のように蒸気Sは蒸気ライン2゜を通って蒸気タービン
11へ、また、熱水H8は第1の熱水ライン2.を通っ
て直接接触式熱交換器16へ導かれるようになっている
In the above configuration, the geothermal water is pressurized to a saturation pressure or higher by the bottom hole pump 3, guided to the ground within the pump casing 9, and then reduced in pressure to about the saturation pressure by the liquid turbine 10, and rotated through the connecting pipe 8. Separate two-phase turbine 6
is introduced into the rotary separator from a nozzle (not shown) and rotates the rotary separator. As the rotary separator rotates, the geothermal water is separated into steam S and hot water H8. As mentioned above, the steam S passes through the steam line 2° to the steam turbine 11, and the hot water H8 flows through the steam line 2° to the steam turbine 11. 1 hot water line 2. through which it is led to a direct contact heat exchanger 16.

回転分離式二相流タービン6への地熱水の供給は前記の
ように坑底ポンプ3により飽和圧力以上に加圧すること
が必要な場合もあるが、地熱井2から噴出して来る蒸気
を含む熱水を直接導入することもできる。
In order to supply geothermal water to the rotary separation type two-phase flow turbine 6, it may be necessary to pressurize the water above the saturation pressure using the bottom hole pump 3 as described above. It is also possible to directly introduce hot water containing water.

〔発明の効果] 以上の説明から明らかなように、本発明による地熱発電
方法によれば、回転分離式二相流タービンにより分離し
た蒸気を直接蒸気タービンへ導いてこれを駆動して発電
機を作動させると共に、熱水を低沸点媒体と直接接触さ
せることにより熱交換させ、この低沸点媒体の蒸気で低
沸点媒体タービンを駆動させて発電機を作動するように
した−め、発電装置として小型でかつ熱効率の良い発電
を行うことができると言う効果がある。
[Effects of the Invention] As is clear from the above explanation, according to the geothermal power generation method according to the present invention, steam separated by a rotary separation type two-phase flow turbine is directly guided to a steam turbine and driven to drive a generator. At the same time, the hot water is brought into direct contact with a low-boiling point medium to exchange heat, and the steam of this low-boiling point medium drives a low-boiling point medium turbine to operate a generator, making it a compact power generation device. This has the effect of being able to generate power with high thermal efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明による地熱発電方法の実施例を説明する系統
図である。 ■・・・地中      2・・・地熱井3・・・坑底
ポンプ 6・・・回転分離式二相流タービン 7・・・ギヤボックス  8・・・連結管9・・・ポン
プケーシング 10、19・・・液体タービン11 12・・・発電機     13 14.23・・・コンデンサ  15 16・・・直接接触式熱交換器 18・・・ポンプ     20 21・・・低沸点媒体タービン 11・・・蒸気ライン   2□ 13・・・第1の熱水ライン!。 !、・・・復液ライン   i。
The figure is a system diagram illustrating an embodiment of the geothermal power generation method according to the present invention. ■...Underground 2...Geothermal well 3...Bottomhole pump 6...Rotary separation type two-phase flow turbine 7...Gear box 8...Connecting pipe 9...Pump casing 10, 19... Liquid turbine 11 12... Generator 13 14.23... Condenser 15 16... Direct contact heat exchanger 18... Pump 20 21... Low boiling point medium turbine 11... Steam line 2□ 13...1st hot water line! . ! ,...Condensate line i.

Claims (1)

【特許請求の範囲】[Claims] 地熱水を回転分離式二相流タービンで蒸気と熱水に分離
し、蒸気を蒸気タービンに供給して蒸気タービンを駆動
すると共に、熱水を直接接触式熱交換器へ供給し、該直
接接触式熱交換器で低沸点媒体を気化させ、該気化した
低沸点媒体を低沸点媒体タービンに供給して該低沸点媒
体タービンを駆動し、前記蒸気タービン及び前記低沸点
媒体タービンにより発電機を作動させて動力回収するよ
うにしたことを特徴とする地熱発電方法。
Geothermal water is separated into steam and hot water by a rotary separation type two-phase flow turbine, and the steam is supplied to a steam turbine to drive the steam turbine, and the hot water is supplied to a direct contact heat exchanger to A contact heat exchanger vaporizes a low boiling point medium, the vaporized low boiling point medium is supplied to a low boiling point medium turbine to drive the low boiling point medium turbine, and the steam turbine and the low boiling point medium turbine drive a generator. A geothermal power generation method characterized by operating and recovering power.
JP32904288A 1988-12-28 1988-12-28 Geothermal power generating method Pending JPH025765A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32904288A JPH025765A (en) 1988-12-28 1988-12-28 Geothermal power generating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32904288A JPH025765A (en) 1988-12-28 1988-12-28 Geothermal power generating method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP58073022A Division JPS59200076A (en) 1983-04-27 1983-04-27 Transportation method of high-temperature geothermal water and method of geothermal power generation

Publications (1)

Publication Number Publication Date
JPH025765A true JPH025765A (en) 1990-01-10

Family

ID=18216956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32904288A Pending JPH025765A (en) 1988-12-28 1988-12-28 Geothermal power generating method

Country Status (1)

Country Link
JP (1) JPH025765A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010270679A (en) * 2009-05-21 2010-12-02 Shimizu Corp Geothermal power generation system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010270679A (en) * 2009-05-21 2010-12-02 Shimizu Corp Geothermal power generation system

Similar Documents

Publication Publication Date Title
US5671601A (en) Geothermal power plant operating on high pressure geothermal fluid
US6009711A (en) Apparatus and method for producing power using geothermal fluid
US4895710A (en) Nitrogen injection
RU2126098C1 (en) Geothermal high-pressure fluid-medium power plant and its module
EP1402177B1 (en) Method of and apparatus for producing power and desalinated
US4283211A (en) Power generation by exchange of latent heats of phase transition
JPS5818562B2 (en) Method and apparatus for producing steam from salt water
US9816400B1 (en) Process and method using low temperature sources to produce electric power and desalinate water
JP2000073706A (en) Coal gasification combined cycle power generation plant
US4576006A (en) Geothermal hot water transportation and utilization system
JPS5893970A (en) Geothermal pump apparatus
US5400598A (en) Method and apparatus for producing power from two-phase geothermal fluid
KR102011859B1 (en) Energy saving system for using waste heat of ship
JPS61149507A (en) Heat recovery device
JP2699808B2 (en) Steam-cooled gas turbine combined plant
JPH025765A (en) Geothermal power generating method
EP2508722A2 (en) System and method for increasing efficiency and water recovery of a combined cycle power plant
KR20180046628A (en) Sea water desalination apparatus for gas turbine generator
JPS59200076A (en) Transportation method of high-temperature geothermal water and method of geothermal power generation
JPS6226304A (en) Steam-binary-compound geothermal power system
JP2753347B2 (en) Steam turbine system and energy supply system
JPS61126381A (en) Total-flow generation utilizing terrestrial-heat water
JP2004036573A (en) Electric power/cold heat feeding combined system
KR20160088681A (en) Complex power plant, waste heat recovery system and method using organic refrigerant
RU6205U1 (en) GEOTHERMAL POWER PLANT WITH COMBINED CYCLE