JPH025756B2 - - Google Patents

Info

Publication number
JPH025756B2
JPH025756B2 JP56007300A JP730081A JPH025756B2 JP H025756 B2 JPH025756 B2 JP H025756B2 JP 56007300 A JP56007300 A JP 56007300A JP 730081 A JP730081 A JP 730081A JP H025756 B2 JPH025756 B2 JP H025756B2
Authority
JP
Japan
Prior art keywords
weight
hydrogen peroxide
formic acid
reaction
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56007300A
Other languages
Japanese (ja)
Other versions
JPS56104878A (en
Inventor
Keebishu Geruharuto
Toryuube Ruudorufu
Uitsutoman Hansu
Raupatsuha Jiikufuriito
Marichiusu Horusuto
Rindeman Manfureeto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DEGUTSUSA AG
HENKERU KG AUFU AKUCHEN
Original Assignee
DEGUTSUSA AG
HENKERU KG AUFU AKUCHEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6093027&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH025756(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by DEGUTSUSA AG, HENKERU KG AUFU AKUCHEN filed Critical DEGUTSUSA AG
Publication of JPS56104878A publication Critical patent/JPS56104878A/en
Priority to DE19823223086 priority Critical patent/DE3223086A1/en
Publication of JPH025756B2 publication Critical patent/JPH025756B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D301/00Preparation of oxiranes
    • C07D301/02Synthesis of the oxirane ring
    • C07D301/03Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds
    • C07D301/14Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with organic peracids, or salts, anhydrides or esters thereof
    • C07D301/16Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with organic peracids, or salts, anhydrides or esters thereof formed in situ, e.g. from carboxylic acids and hydrogen peroxide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D303/00Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
    • C07D303/02Compounds containing oxirane rings
    • C07D303/04Compounds containing oxirane rings containing only hydrogen and carbon atoms in addition to the ring oxygen atoms

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Epoxy Compounds (AREA)

Abstract

1. A process for the production of alpha-epoxides having from 11 to 24 carbon atoms by the reaction of aliphatic alpha-olefins having from 11 to 24 carbon atoms with performic acid which has formed in situ from formic acid and hydrogen peroxide, under elevated temperature, with stirring of the reaction mixture and with the metered addition of hydrogen peroxide, characterised in that the reaction is carried out at a temperature of from 40 to 90 C in the absence of solvents and catalysts, the aqueous phase and the organic phase are mixed by stirring until drops form, a concentration of more than 5% by weight of formic acid and a concentration of from 10 to 70% by weight of hydrogen peroxide is maintained in the aqueous phase for a period of a least 5 hours, the formic acid is used in a quantity of from 0.15 to 0.5 mol and the hydrogen peroxide is used in a quantity of at least 1.05 mol, in each case per mol of double bond to be epoxidized, and the hydrogen peroxide is metered in over a period of at least 3 hours.

Description

【発明の詳細な説明】 本発明は、C−原子数11〜24の脂肪族α−オレ
フインを蟻酸および過酸化水素からその場で形成
される過蟻酸とを高めた温度で反応混合物の撹拌
下および過酸化水素の配量下に反応させてC−原
子数11〜24のα−エポキシドを製造するための方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention describes the process of preparing aliphatic α-olefins having from 11 to 24 C atoms with performic acid formed in situ from formic acid and hydrogen peroxide at elevated temperature under stirring of the reaction mixture. and a process for preparing α-epoxides having from 11 to 24 C atoms by reaction in the presence of hydrogen peroxide.

内部位二重結合を有する高級不飽和脂肪酸のエ
ステル、例えば大豆油をその場で蟻酸および過酸
化水素から形成される過蟻酸と反応させてエポキ
シド化するのは以前から公知である(米国特許第
2485160号明細書)。
It has long been known to epoxidize esters of higher unsaturated fatty acids with internal double bonds, such as soybean oil, by reacting them in situ with performic acid formed from formic acid and hydrogen peroxide (U.S. Pat.
2485160 specification).

その際得られる知識を末端位二重結合を有する
長鎖の純粋なオレフイン(いわゆるα−オレフイ
ン)のエポキシド化に応用することは劣悪な収率
しか得られずに失敗した。したがつて文献には一
致して、α−オレフインはその場で生成される過
蟻酸では実際にエポキシド化可能ではないことが
繰返し指摘された〔“ケミカル・ウイーク
(Chemical Week)”、4月6日号(1963年)、第
60頁参照〕。
Application of the knowledge obtained in this process to the epoxidation of long-chain pure olefins (so-called α-olefins) having terminal double bonds failed because only poor yields were obtained. It has therefore been consistently pointed out in the literature that α-olefins cannot actually be epoxidized with performic acid produced in situ [Chemical Week, April 6]. Date (1963), No.
See page 60].

最後に西ドイツ国特許出願公開第1568016号公
報により、α−オレフインを水と混合しない溶剤
中でその場で水相中で形成される脂肪族過酸でエ
ポキシド化する方法が公知である。この公知方法
では反応混合物を2つの相の間に唯一の界面が保
持されるように特に穏和に撹拌しなければならな
い。2つの相が液滴形成下に分散することは無条
件に回避しなければならない。一般に脂肪族過酸
を形成するための触媒、例えば硫酸を一緒に使用
する。他の脂肪族酸も挙げられるが、特に有効で
あり、かつ特に経済的であるために全ての例にお
いて酢酸が使用される。酢酸はエポキシド化する
二重結合1モルに対して0.5〜1.5モルの量で使用
される。この公知方法は溶剤および撹拌の際に必
要な特別な慎重な手段を使用するために経費がか
かり、受容し得る収率の達成にはきわめて長い、
28時間までの反応時間を必要とする。
Finally, DE 15 68 016 A1 discloses a process in which α-olefins are epoxidized in situ in a water-immiscible solvent with aliphatic peracids formed in the aqueous phase. In this known process, the reaction mixture must be stirred particularly gently so that a unique interface is maintained between the two phases. Dispersion of the two phases under droplet formation must be absolutely avoided. A catalyst for forming the aliphatic peracid, such as sulfuric acid, is generally used together. Other aliphatic acids may also be mentioned, but acetic acid is used in all examples because it is particularly effective and particularly economical. Acetic acid is used in an amount of 0.5 to 1.5 moles per mole of double bonds to be epoxidized. This known process is expensive due to the use of solvents and the special care required during stirring and is extremely time consuming to achieve an acceptable yield.
Requires reaction time of up to 28 hours.

本発明の目的は、C−原子数11〜24の脂肪族α
−オレフインをその場で蟻酸と過酸化水素から形
成される過蟻酸と高めた温度で反応混合物の撹拌
下かつ過酸化水素の配量添加下に反応させること
によりα−エポキシドを製造するための方法であ
り、該方法は反応を溶剤および触媒を用いないで
行ない、水相および有機相を撹拌下に液滴が形成
されるまで混合し、水相中で少なくとも5時間の
間5重量%を上回る蟻酸濃度および10〜70重量%
の過酸化水素濃度を維持し、エポキシド化する二
重結合1モル当り蟻酸を0.5モルよりも少ない量
で、かつ過酸化水素を少なくとも1.05モルの量で
使用し、かつ過酸化水素を少なくとも3時間の間
配量添加することより成る。
The object of the present invention is to provide an aliphatic α having 11 to 24 carbon atoms
- A process for preparing α-epoxides by reacting olefins with performic acid formed in situ from formic acid and hydrogen peroxide at elevated temperature with stirring of the reaction mixture and metered addition of hydrogen peroxide. and the method is characterized in that the reaction is carried out without solvents and catalysts, the aqueous and organic phases are mixed under stirring until droplets are formed, and more than 5% by weight is added in the aqueous phase for at least 5 hours. Formic acid concentration and 10-70% by weight
using less than 0.5 mole of formic acid and at least 1.05 mole of hydrogen peroxide per mole of double bond to be epoxidized, and hydrogen peroxide for at least 3 hours. It consists of adding an intermittent amount of.

本発明による方法により所望のα−エポキシド
が比較的短い反応時間内できわめて高い収率で得
ることができる。該方法は原則的にはC−原子数
11よりも少ないかまたは24よりも多いα−オレフ
インに対しても使用できよう。しかしC−原子数
11よりも少ないα−オレフインでは副生成物の形
成の結果エポキシド収率が容易に90%を下回る値
に下がる。他方C−原子数24を超える純粋なα−
オレフインは本発明による方法により容易にエポ
キシド化可能であるが、α−オレフインは融点が
高いために大ていは溶剤の付加的な使用を必要と
する。
The process according to the invention makes it possible to obtain the desired α-epoxides in very high yields within relatively short reaction times. The method is basically based on the number of C atoms.
It could also be used for less than 11 or more than 24 α-olefins. But C-number of atoms
With less than 11 α-olefins, the epoxide yield easily falls below 90% as a result of by-product formation. On the other hand, pure α- with more than 24 C atoms
Although olefins can be easily epoxidized by the process according to the invention, alpha-olefins often require additional use of solvents due to their high melting points.

したがつて出発物質としては末端位に二重結合
を有し、かつ反応して1,2−エポキシドとな
る、C−原子数11〜24のオレフインを使用する。
かかるオレフインは例えば1−ヘンデセン、1−
ドデセン、1−ヘキサデセン、1−オクタデセン
または1−エイコセンである。種々のα−オレフ
インの混合物も同様に良好に使用することができ
る。本発明による方法は相応するα−オレフイン
からC−原子数14〜20のα−エポキシドを製造す
るのに特に有利である。
The starting materials therefore used are olefins having from 11 to 24 C atoms which have double bonds in terminal positions and which react to form 1,2-epoxides.
Such olefins include, for example, 1-hendecene, 1-
Dodecene, 1-hexadecene, 1-octadecene or 1-eicosene. Mixtures of various α-olefins can equally well be used. The process according to the invention is particularly advantageous for preparing .alpha.-epoxides having 14 to 20 C atoms from the corresponding .alpha.-olefins.

反応は有利に温度40〜90℃で行なわれる。その
際大きなバツチの場合には遊離される反応熱を十
分に排出するための方法が配慮されなければなら
ない。
The reaction is preferably carried out at a temperature of 40 to 90°C. In the case of large batches, measures must be taken to ensure that the heat of reaction liberated is sufficiently removed.

反応の間水相と有機相を、相の界面が液滴が形
成されるまで壊される。すなわち水相中に有機相
の滴が分配され、同時に逆に有機相中に水相の滴
が分配されるようにして撹拌により混合する。比
較的低級のオレフイン、特にC−原子数11または
12のオレフインでは比較的穏やかな撹拌が有利で
あり、他方より高級の、C−原子数約14からのオ
レフインは強力に水相と混合することができ実質
的にエマルジヨンが形成される。
During the reaction, the aqueous and organic phases are broken until the phase interface is broken to form droplets. That is, the mixture is mixed by stirring so that droplets of the organic phase are distributed into the aqueous phase, and at the same time, droplets of the aqueous phase are distributed into the organic phase. Relatively lower olefins, especially C-atoms 11 or
For olefins with 12 carbon atoms, relatively gentle stirring is advantageous, whereas higher olefins with about 14 carbon atoms can mix vigorously with the aqueous phase and essentially form an emulsion.

本発明による方法では水相中で少なくとも5時
間、有利に全反応時間の間5重量%を上回る蟻酸
濃度が維持されなければならない。これは蟻酸全
量を反応の開始前に装入するかまたは蟻酸の一部
を反応の開始前に装入し、かつ残量を反応中に添
加するかまたは蟻酸全量を反応中に添加すること
によつて達成することができる。
In the process according to the invention, a formic acid concentration of more than 5% by weight must be maintained in the aqueous phase for at least 5 hours, preferably for the entire reaction time. This can be done by charging the entire amount of formic acid before the start of the reaction, or by charging a portion of the formic acid before the start of the reaction and adding the remaining amount during the reaction, or by adding the entire amount of formic acid during the reaction. This can be achieved by doing so.

前記の3つの可能性のいずれかを選択するかは
第1に確実性の配慮に左右される。いずれにせ
よ、蟻酸を部分的に装入し、次いで反応の間に、
その水相中の濃度が反応開始時に10重量%を上回
る、有利に10〜20重量%にあるようにして配量添
加するのが有利である。反応の進行とともに蟻酸
の濃度は低下し、反応終結時には5重量%の限界
に近づく。5重量%の最小濃度の条件が維持され
る限り、これは中でも使用される過酸化水素の濃
度にも左右されるのであるが、任意の濃度の蟻酸
を使用することができる。少なくとも70重量%の
濃度の蟻酸を使用するのが有利である。有利に市
販の濃度85〜100重量%が有利である。蟻酸は全
部でエポキシドすべき二重結合1モル当り0.5モ
ルよりも少ない量で使用する。最小量としては通
常エポキシド化すべき二重結合1モルにつき0.15
モルで十分である。有利に0.25〜0.40モルを使用
する。水相中で少なくとも5重量%の蟻酸濃度が
維持される。少なくとも5時間の同じ期間内で水
相中で20〜70重量%、有利に30〜70重量%の過酸
化水素濃度が維持されなければならない。有利に
は過酸化水素の濃度も全反応時間の間前記の範囲
内に保持する。前記の過酸化水素濃度は、十分な
濃度の過酸化水素全量を少なくとも3時間の間配
量添加することにより維持される。68重量%を上
回る濃度を有する過酸化水素を使用する。中でも
本発明による方法を唯一の工程で実施する場合に
は80〜90重量%の濃度を有する過酸化水素が特に
有利である。過酸化水素は全部でエポキシド化す
る二重結合1モルに対して少なくとも1.05モルの
量で使用する。有利に過剰の過酸化水素を使用
し、かつ過酸化水素はエポキシド化すべき二重結
合1モルに対して1.2〜2.5モル、特に1.3〜1.9モ
ルの量で使用する。反応終結後水相中に存在する
希過酸化水素を自体公知の方法で回収することが
できるので、過酸化水素の実際の消費量はエポキ
シド化すべき二重結合1モルにつき約1.05〜約
1.50モルにすぎない。
The choice of any of the three possibilities mentioned above depends primarily on considerations of certainty. In any case, formic acid is partially charged and then during the reaction
It is advantageous to meter in such that its concentration in the aqueous phase is above 10% by weight, preferably from 10 to 20% by weight, at the start of the reaction. As the reaction progresses, the concentration of formic acid decreases and approaches the 5% by weight limit at the end of the reaction. Any concentration of formic acid can be used, as long as the condition of a minimum concentration of 5% by weight is maintained, depending, among other things, on the concentration of hydrogen peroxide used. It is advantageous to use formic acid in a concentration of at least 70% by weight. Preference is given to commercially available concentrations of 85 to 100% by weight. Formic acid is used in an amount of less than 0.5 mole per mole of total double bonds to be epoxidized. The minimum amount is usually 0.15 per mole of double bonds to be epoxidized.
Moles are sufficient. Preference is given to using 0.25 to 0.40 mol. A formic acid concentration of at least 5% by weight is maintained in the aqueous phase. A hydrogen peroxide concentration of 20 to 70% by weight, preferably 30 to 70% by weight, must be maintained in the aqueous phase within the same period of at least 5 hours. The concentration of hydrogen peroxide is also advantageously kept within the abovementioned range during the entire reaction time. The hydrogen peroxide concentration mentioned above is maintained by metering the total amount of hydrogen peroxide in sufficient concentration over a period of at least 3 hours. Hydrogen peroxide with a concentration of more than 68% by weight is used. Among these, hydrogen peroxide with a concentration of 80 to 90% by weight is particularly preferred if the process according to the invention is carried out in a single step. Hydrogen peroxide is used in an amount of at least 1.05 moles per mole of total double bonds to be epoxidized. An excess of hydrogen peroxide is preferably used and hydrogen peroxide is used in an amount of 1.2 to 2.5 mol, in particular 1.3 to 1.9 mol, per mole of double bonds to be epoxidized. After the end of the reaction, the dilute hydrogen peroxide present in the aqueous phase can be recovered by methods known per se, so that the actual consumption of hydrogen peroxide is approximately 1.05 to approximately 1.05 per mole of double bond to be epoxidized.
It's only 1.50 moles.

水相中の5重量%を越える蟻酸濃度及び20〜70
重量%の過酸化水素濃度を少なくとも5時間保持
しない場合にはオレフイン変換率はあきらかに小
さい。更に、水相中の蟻酸の濃度が5重量%より
下まわりかつ/又は過酸化水素の濃度が20重量%
を下まわる場合も同様にオレフイン変換率は低
い。他方水相中の過酸化水素の濃度が70重量%よ
り高い場合は爆発的な分解の危険性が生じるので
ある。
Formic acid concentration greater than 5% by weight in the aqueous phase and between 20 and 70
Olefin conversion is significantly lower if the weight percent hydrogen peroxide concentration is not maintained for at least 5 hours. Furthermore, the concentration of formic acid in the aqueous phase is below 5% by weight and/or the concentration of hydrogen peroxide is 20% by weight.
The olefin conversion rate is similarly low if it is less than . On the other hand, if the concentration of hydrogen peroxide in the aqueous phase is higher than 70% by weight, there is a risk of explosive decomposition.

前記、本発明の条件をはずれた場合、たとえば
蟻酸をエポキシド化すべき二重結合1モルあたり
0.5モルより多量に使用する場合、オレフイン変
換率はたしかに上がるが収率(変換した量に対し
て)及び収率(使用量に対して)は明らかに下が
る(比較例の4参照)。エポキシド化すべき二重
結合1モルあたり1.05モルより少量の過酸化水素
を使用する場合、収率(変換した量に対して)は
ほぼ変わらないがオレフイン変換率及び収率(使
用量に対して)は明らかに下がる(比較例の3参
照)。更に過酸化水素を少なくとも3時間かけて
ゆつくりと添加せず、例えばはじめに一度に添加
するならば、例えば80〜90重量%の濃度の過酸化
水素を使用する場合に爆発様分解の危険がある。
このように本発明による数値条件をすべて保持す
る場合にのみ比較的短かい反応時間内に高いオレ
フイン変換率及び高い収率(使用量に対して)が
危険をともなわずに得られる。
When the above-mentioned conditions of the present invention are not met, for example, per mole of double bond to be epoxidized with formic acid.
If more than 0.5 mol is used, the olefin conversion rate does increase, but the yield (relative to the amount converted) and the yield (relative to the amount used) clearly decrease (see Comparative Example 4). If less than 1.05 moles of hydrogen peroxide are used per mole of double bonds to be epoxidized, the yield (relative to the amount converted) remains almost the same, but the olefin conversion and yield (relative to the amount used) clearly decreases (see Comparative Example 3). Furthermore, if hydrogen peroxide is not added slowly over at least 3 hours, but is added all at once, for example at the beginning, there is a risk of explosive-like decomposition, for example when using hydrogen peroxide at a concentration of 80-90% by weight. .
High olefin conversions and high yields (based on the amount used) can thus be obtained without danger within relatively short reaction times only if all the numerical conditions according to the invention are maintained.

本発明による方法の実際的な実施では別種の方
法技術的手段が提示される。例えば水相中におけ
る蟻酸および過酸化水素の前記の濃度の維持は、
配量添加された、蟻酸および過酸化水素の量に相
当する割合の濃度の薄くなつた水相を相分離容器
を介して反応混合物から除去することによつて容
易になる。この操作は有機相中で所望の変換率が
得られるまで続けることができる。かかる方法は
有機相については一工程式であるが、水相につい
ては連続的である。他の方法は、過酸化水素の濃
度が減少しすぎたために反応速度が非経済的に小
さくなつた場合に水相の変換を行なうことであ
る。かかる方法も有機相については一工程式であ
るが、水相については二工程式または多工程式で
ある。もう1つの方法として最後に1つの実施形
が挙げられる。該方法では多段向流の形式により
または混合機/沈降槽セツトで有機相および水相
を相互に次のようにして導く、すなわち第1装置
に新しいオレフインを配量装入し、ここできわめ
て希釈された水相と反応させ、他方最後の装置で
新しい蟻酸および新しい、高濃度の過酸化水素を
既に十分にエポキシド化された有機相と反応させ
る。前記の方法技術的な方法にはバツチ式実施か
ら完全連続的実施までの多数の変更形がある。
The practical implementation of the method according to the invention presents different method technical measures. Maintaining the above concentrations of formic acid and hydrogen peroxide in the aqueous phase, for example,
This is facilitated by removing a diluted aqueous phase in proportions corresponding to the amounts of formic acid and hydrogen peroxide metered in from the reaction mixture via a phase separation vessel. This operation can be continued in the organic phase until the desired conversion is obtained. Such processes are one-step for the organic phase, but continuous for the aqueous phase. Another method is to carry out a conversion of the aqueous phase when the concentration of hydrogen peroxide decreases too much and the reaction rate becomes uneconomically small. Such a method is also a one-step process for the organic phase, but a two-step or multi-step process for the aqueous phase. Finally, there is one further embodiment. In this process, organic and aqueous phases are introduced into one another in a multi-stage countercurrent manner or in a mixer/settler set, i.e. fresh olefin is metered into a first device, where it is highly diluted. the aqueous phase, while in the last apparatus fresh formic acid and fresh, highly concentrated hydrogen peroxide are reacted with the already fully epoxidized organic phase. There are many variants of the technical method described above, ranging from batch implementation to fully continuous implementation.

本発明による方法は、若干の安全技術的手段が
配慮すれば大工業的生産装置でも危険なく実施可
能である。例えば混合装置が故障し、過酸化水素
または過蟻酸の分解により形成される排ガスの量
が限界値を越える、または温度が90℃を著しく越
えた場合に、開いて、バツチを水で希釈する自動
安全弁を設けることができる。
The process according to the invention can be carried out without danger even on large industrial production plants, provided that certain safety measures are taken into account. Automatically opens and dilutes the batch with water, for example, if the mixing device malfunctions and the amount of exhaust gas formed by the decomposition of hydrogen peroxide or performic acid exceeds the limit value, or if the temperature significantly exceeds 90°C. A safety valve may be provided.

オレフインとその場で形成される過蟻酸との反
応は有利に無加圧で実施される。一般に反応時間
5〜20、特に8〜10時間が必要とされる。
The reaction of the olefin with the performic acid formed in situ is preferably carried out without pressure. Generally reaction times of 5 to 20 hours, especially 8 to 10 hours are required.

エポキシド化反応終結後通常の場合水相は有機
エポキシド相から分離される。更に精製するため
に有機相からこの相の中に尚溶けている過酸化水
素分および蟻酸分を除去することが推奨される。
このために水で連続して2度洗浄するのが有利で
あり、その際有機相と洗浄水との容量比はその都
度約10:1である。高級α−エポキシドは水溶性
が小さいので、洗浄を高めた温度で実施すること
ができる。したがつてエポキシド化反応終了後有
機相を冷却する必要はない。最後の洗浄後有機相
中に尚溶けている水は自体公知の方法で、例えば
減圧下に軽く加温することにより容易に除去する
ことができる。
After completion of the epoxidation reaction, the aqueous phase is usually separated from the organic epoxide phase. For further purification, it is recommended to remove from the organic phase any hydrogen peroxide and formic acid still dissolved in this phase.
For this purpose, it is advantageous to wash twice in succession with water, the volume ratio of organic phase to washing water being in each case approximately 10:1. Higher α-epoxides have less water solubility, so cleaning can be carried out at elevated temperatures. Therefore, there is no need to cool the organic phase after the epoxidation reaction is completed. The water still dissolved in the organic phase after the last washing can be easily removed in a manner known per se, for example by mild heating under reduced pressure.

統一的な、C−原子数11または12の短鎖のα−
オレフインからα−エポキシドを製造する際に
は、エポキシド化反応を殆ど完全な変換率まで進
めないのが場合によつては有利である、それとい
うのもその場合には既に副生成物の形成が始まつ
ている可能性があるからである。エポキシド化反
応は例えば60〜90%の変換率の後中断することが
できる。次いで比較的、低沸点のα−エポキシド
を比較的、高沸点のα−エポキシドから蒸留によ
り分離し、かつ次のバツチで一緒に使用すること
ができる。このようにしていずれの場合にもα−
オレフインの高い変換率および同時に高いエポキ
シド収率が得られる。
Uniform, short chain α- of 11 or 12 C atoms
When preparing α-epoxides from olefins, it may be advantageous in some cases to proceed the epoxidation reaction to almost no complete conversion, since in that case the formation of by-products is already occurring. This is because it may have already begun. The epoxidation reaction can be stopped after a conversion of eg 60-90%. The relatively low-boiling α-epoxide can then be separated by distillation from the relatively high-boiling α-epoxide and used together in the next batch. In this way, α−
High conversions of olefins and at the same time high epoxide yields are obtained.

オレフイン混合物または統一的な、12を上回る
C−原子数の長鎖のα−オレフインを使用する場
合には特別な手段なしでも高い変換率および高い
エポキシド収率が得られる。例えばα−C14−オ
レフインのエポキシド化は既に約96%のオレフイ
ン変換率で収率96%で得られる。α−C18−オレ
フインのエポキシド化ではオレフイン変換率約96
%下に収率は99%である。
If olefin mixtures or uniform long-chain α-olefins with more than 12 carbon atoms are used, high conversions and high epoxide yields can be obtained without special measures. For example, the epoxidation of α-C 14 -olefins is already obtained in a yield of 96% with an olefin conversion of about 96%. In the epoxidation of α-C 18 -olefin, the olefin conversion rate is approximately 96
The yield below % is 99%.

本発明による方法により製造されるエポキシド
は純粋なので、大ていの用途に直接使用すること
ができる。しかしもちろん特別な場合に望ましい
時には自体公知の方法で、例えば減圧下での全体
蒸留によつて更に精製してもよい。
The epoxides produced by the process according to the invention are so pure that they can be used directly for most applications. However, it is of course possible, if desired in particular cases, to carry out further purification in a manner known per se, for example by total distillation under reduced pressure.

有機相の分離後に残る、希釈された水相は含有
される過酸化水素の回収するための自体公知の方
法で後処理することができる。
The dilute aqueous phase remaining after separation of the organic phase can be worked up in a manner known per se to recover the hydrogen peroxide contained.

次に実施例につき本発明を詳説する。 Next, the present invention will be explained in detail with reference to examples.

例 1 出発物質としてα−C12−オレフインおよびα
−C14−オレフイン(140モル=321)から成る市
販のオレフイン部分を使用した。反応装置(容積
50)は下部の排出部に相分離装置、嵌め込み熱
交換器、付属配量ポンプを有する、蟻酸および過
酸化水素の配量容器、排ガス測定装置および温度
計を具備する撹拌容器から成る。温度は全試験中
60℃に保持した。
Example 1 α-C 12 -olefin and α as starting materials
A commercially available olefin portion consisting of -C14 -olefin (140 mol = 321) was used. Reactor (volume
50) consists of a stirred vessel with formic acid and hydrogen peroxide dosing vessels, exhaust gas measuring device and thermometer, with phase separation device in the lower discharge part, built-in heat exchanger, attached dosing pump. Temperature during all tests
It was maintained at 60°C.

先ず2時間経過する間に80重量%−過酸化水素
84.0モル(=2.67)および98重量%蟻酸17.5モ
ル(0.70)を配量導入した。配量終了後更に
1.5時間後撹拌した。この時点に水相中で過酸化
水素は濃度38重量%で存在した。
First, over the course of 2 hours, 80% by weight hydrogen peroxide
84.0 mol (=2.67) and 17.5 mol (0.70) of 98% by weight formic acid were metered in. Further after dispensing
Stirred after 1.5 hours. At this point hydrogen peroxide was present in the aqueous phase at a concentration of 38% by weight.

次いで水相に関して連続的な方法が開始され
る、すなわち80重量%−過酸化水素および98重量
%−蟻酸を不断に配量混入し、かつ同時に相分離
容器を介して相応する部分の水相を取り出した。
取り出された水相の組成は過酸化水素38〜40重量
%、過蟻酸1.5〜3.5重量%、蟻酸8〜12重量%、
水残量で変動した。
A continuous process is then started for the aqueous phase, i.e. 80% by weight hydrogen peroxide and 98% by weight formic acid are metered in continuously and at the same time corresponding portions of the aqueous phase are introduced via a phase separation vessel. I took it out.
The composition of the extracted aqueous phase is 38-40% by weight of hydrogen peroxide, 1.5-3.5% by weight of performic acid, 8-12% by weight of formic acid,
It varied depending on the amount of water remaining.

全反応時間(2.0+1.5+8.5時間)12時間の後有
機相内でエポキシド含量91.8重量%およびオレフ
イン残量3.9重量%が測定された。反応を中断し、
かつ相分離後有機相を水各3で連続2度洗浄し
た。
After a total reaction time of 12 hours (2.0+1.5+8.5 hours), an epoxide content of 91.8% by weight and a residual olefin content of 3.9% by weight were determined in the organic phase. interrupt the reaction,
After phase separation, the organic phase was washed twice with three portions of water each time.

全部で80重量%−過酸化水素300モル(9.5)
および98重量%−蟻酸63モル(2.42)を使用し
た。排出された水相は全部で10.6であつた。
80% by weight total - 300 moles (9.5) hydrogen peroxide
and 98% by weight - 63 moles (2.42) of formic acid were used. The total amount of aqueous phase discharged was 10.6.

例 2 出発物質としてα−C18−オレフイン4000モル
(1300)を使用した。装置は例1で挙げた付加
装置を具備する、ほうろう処理された2m3−撹拌
容器から成る。安全性の理由から水を充填した高
架容器に自動迅速閉鎖弁を接続した。反応熱は外
側にある冷却器を介して排出し、冷却器を介して
常に反応混合物の一部を循環させた。エポキシド
化は60℃で3工程で全反応時間10時間で実施し
た。
Example 2 4000 mol (1300) of α-C 18 -olefin were used as starting material. The apparatus consists of an enameled 2 m 3 stirred vessel equipped with the additional equipment mentioned in Example 1. For safety reasons, an automatic quick-closing valve was connected to the elevated vessel filled with water. The heat of reaction was removed via an external condenser, through which part of the reaction mixture was constantly circulated. Epoxidation was carried out at 60°C in three steps with a total reaction time of 10 hours.

第1工程で(3.5時間)、88重量%−過酸化水素
78.5および98重量%−蟻酸19.5(5を予め
装入)を使用した。過酸化水素および残りの蟻酸
を2時間の経過の中で配量添加した。配量添加終
結後バツチを尚1.5時間撹拌した。この時間で水
相は過酸化水素34.5重量%、蟻酸8.5重量%およ
び過蟻酸2.1重量%を含んでいた。水相は排出し
た。有機相中のエポキシド含量は42.5重量%であ
つた。
In the first step (3.5 hours), 88% by weight hydrogen peroxide
78.5 and 98% by weight formic acid 19.5 (precharged with 5) were used. Hydrogen peroxide and the remaining formic acid were metered in over the course of 2 hours. After the addition was complete, the batch was stirred for a further 1.5 hours. At this time the aqueous phase contained 34.5% by weight hydrogen peroxide, 8.5% by weight formic acid and 2.1% by weight performic acid. The aqueous phase was drained. The epoxide content in the organic phase was 42.5% by weight.

第2工程は第1工程と同様にして実施した。こ
の後エポキシド含量は79.0重量%に上昇した。排
出された水相は過酸化水素36.1重量%、蟻酸8.2
重量%および過蟻酸2.0重量%を含んでいた。
The second step was carried out in the same manner as the first step. After this time the epoxide content rose to 79.0% by weight. The discharged aqueous phase contains 36.1% by weight of hydrogen peroxide and 8.2% by weight of formic acid.
% by weight and 2.0% by weight of performic acid.

第3工程(3.0時間)では1時間の経過の中で
88重量%−過酸化水素33.5および98重量%−蟻
酸15.5を配量添加した。
In the 3rd process (3.0 hours), in the course of 1 hour
33.5% by weight of 88% hydrogen peroxide and 15.5% by weight of formic acid were added.

後反応時間2時間の後排出された水相は過酸化
水素36.1重量%、蟻酸7.5重量%および過蟻酸2.2
重量%を含んでいた。
After a post-reaction time of 2 hours, the aqueous phase discharged contains 36.1% by weight of hydrogen peroxide, 7.5% by weight of formic acid and 2.2% by weight of performic acid.
% by weight.

第3工程の実施後に残留する有機相を水各100
で2度連続して洗浄し、引続き半時間
70mmHgで乾燥した。エポキシド含量95.8重量%
およびオレフイン含量3.2重量%を含んでいた。
After carrying out the third step, dissolve the remaining organic phase in 100 ml of water each.
Wash twice in succession, then for half an hour.
Dry at 70mmHg. Epoxide content 95.8% by weight
and contained an olefin content of 3.2% by weight.

例 3 撹拌機、2つの滴下ロート、温度計、および後
部に接続されたガス計を有する還流冷却器を具備
した1−多首フラスコ中でα−C12−オレフイ
ン2モル(336g)を70℃に加熱し、かつ定温浴
によつてこの温度で保持した。撹拌下に4時間の
経過中で第1滴下ロートから98重量%−蟻酸0.4
モル(18.8g)および第2滴下ロートから85重量
%−過酸化水素2.6モル(104g)を配量添加し
た。添加終了後バツチを撹拌下に更に2時間70℃
で保持した。次に2つの相を分離した。
Example 3 2 moles (336 g) of α-C 12 -olefin were dissolved at 70° C. in a 1-multi-necked flask equipped with a stirrer, two addition funnels, a thermometer, and a reflux condenser with a gas meter connected to the rear. and maintained at this temperature by a constant temperature bath. 98% by weight of formic acid 0.4 from the first dropping funnel during the course of 4 hours under stirring
mol (18.8 g) and 2.6 mol (104 g) of 85% by weight hydrogen peroxide were metered in from the second addition funnel. After the addition is complete, the batch is kept at 70°C for an additional 2 hours while stirring.
It was held at The two phases were then separated.

水相は過酸化水素約30重量%、過蟻酸1.5重量
%および蟻酸5.5重量%を含んでいた。有機相は
エポキシド78.8重量%およびオレフイン17.2重量
%を含んでいた。
The aqueous phase contained approximately 30% by weight hydrogen peroxide, 1.5% by weight performic acid and 5.5% by weight formic acid. The organic phase contained 78.8% by weight of epoxide and 17.2% by weight of olefin.

有機相を2度順次水各30mlで洗浄し、その後減
圧下に部分蒸留し、これは塔頂温度122℃
(12mmHg)で中断させた。留出物全部で64gは
オレフイン96重量%およびエポキシド4重量%を
含有しており、かつ後続のバツチで一緒に使用し
た。カン部生成物全部で298g中にはエポキシド
含量94.7重量%が認められた。引続く精製分留
(12mmHg)によりフラクシヨン2として99.5重
量%のエポキシドが得られた。
The organic phase was washed twice with 30 ml of water each time and then partially distilled under reduced pressure, at a top temperature of 122°C.
(12 mmHg). A total of 64 g of distillate contained 96% by weight of olefin and 4% by weight of epoxide and were used together in subsequent batches. A total of 298 g of bottom product contained an epoxide content of 94.7% by weight. Subsequent purification fractionation (12 mmHg) yielded 99.5% by weight of epoxide as fraction 2.

フラクシヨン1:120〜124℃=16g フラクシヨン2:124〜125℃=264g 残渣 :>125℃=18g 結果:オレフイン変換率 81.7% 収率(使用量に対して) 77% 収率(変換した量に対して) 94% 比較例 例3と同様に行なうが、それぞれ次に記載する
点を変化させる。
Fraction 1: 120-124℃ = 16g Fraction 2: 124-125℃ = 264g Residue: > 125℃ = 18g Results: Olefin conversion 81.7% Yield (based on the amount used) 77% Yield (based on the amount converted) 94% Comparative Example The same procedure as Example 3 was carried out, but the following points were changed.

1 85重量%H2O2のかわりに40重量%H2O2を使
用すると、水相中のH2O2の量は15.4重量%と
なり、結果は オレフイン変換率 17.1% 収率(使用量に対して) 15% 収率(変換した量に対して) 90%。
1 If 40 wt% H2O2 is used instead of 85 wt% H2O2 , the amount of H2O2 in the aqueous phase will be 15.4 wt%, resulting in an olefin conversion rate of 17.1% Yield ( amount used) ) 15% Yield (relative to the amount converted) 90%.

2 98重量%蟻酸のかわりに60重量%蟻酸を使用
すると、水相中の蟻酸濃度は5.0重量%となり、
結果は オレフイン変換率 59.8% 収率(使用量に対して) 56% 収率(変換した量に対して) 95%。
2 If 60% by weight formic acid is used instead of 98% by weight, the formic acid concentration in the aqueous phase will be 5.0% by weight,
The results were: Olefin conversion rate: 59.8% Yield (based on the amount used): 56% Yield (based on the amount converted): 95%.

3 例3によるH2O2:オレフインのモル比1.3の
かわりにモル比1.0(特許請求の範囲では>1.05
でなければいけない)を使用すると、結果は オレフイン変換率 63.3% 収率(使用量に対して) 60% 収率(変換した量に対して) 94%。
3 Instead of the H 2 O 2 :olefin molar ratio of 1.3 according to Example 3, a molar ratio of 1.0 (in the claims >1.05
), the results are: Olefin Conversion 63.3% Yield (relative to the amount used) 60% Yield (relative to the amount converted) 94%.

4 例3によるHCOOC:オレフインのモル比
0.154を0.7(特許請求の範囲では<0.5)とする
と、結果は オレフイン変換率 88.9% 収率(使用量に対して) 68% 収率(変換した量に対して) 77%。
4 HCOOC:Olefin molar ratio according to Example 3
Taking 0.154 as 0.7 (<0.5 in the claims), the results are: Olefin Conversion 88.9% Yield (relative to the amount used) 68% Yield (relative to the amount converted) 77%.

5 例3による反応温度70℃のかわりに酸温度30
℃とすると、結果は オレフイン変換率 16.9% 収率(使用量に対して) 14% 収率(変換した量に対して) 82%。
5 The acid temperature was 30°C instead of the reaction temperature of 70°C according to Example 3.
°C, the results are: Olefin Conversion 16.9% Yield (based on the amount used) 14% Yield (based on the amount converted) 82%.

例3及び比較例中の変換率及び収率は洗浄処理
後の有機相をガスクロマトグラフイーにより分析
し得られたものである。
The conversion rates and yields in Example 3 and Comparative Examples were obtained by analyzing the organic phase after washing by gas chromatography.

例 4 α−C16−オレフイン410(1412モル)を加熱
および冷却可能な特殊鋼撹拌容器中で70℃に加熱
した。次いで冷却下にバツチをこの温度で保持し
た。反応工程1では蟻酸(98重量%)1.4を直
ちに添加し、かつ更に12.2を4時間の経過の中
で均一に配量混入した。3時間の経過の中で過酸
化水素(88重量%)51.4の量の配量添加を行な
つた。全反応時間5時間の後第1反応工程は終結
し、かつ相分離を行なつた。水相(51)を排出
した。これは過酸化水素33.6重量%、過蟻酸0.8
重量%および蟻酸5.7重量%を含んでいた。撹拌
容器中に残る有機相はα−C16−エポキシド70.4
重量%およびα−C16−オレフイン28.8重量%を
含んでいた。相分離直後に反応工程2を実施し
た。蟻酸0.5を装入し、かつ4.3を3時間の経
過の中で配量混入した。3時間の配量混入時間内
で過酸化水素20も良好に混合しつつ配量混入し
た。全反応時間5時間後第2反応工程も中断させ
た。排出された水相(18)は過酸化水素37.2重
量%、過蟻酸0.4重量%および蟻酸4.3重量%を含
んでいた。
Example 4 α-C 16 -Olefin 410 (1412 mol) was heated to 70° C. in a stainless steel stirred vessel capable of heating and cooling. The batch was then kept at this temperature while cooling. In reaction step 1, 1.4 formic acid (98% by weight) was added immediately and a further 12.2 was metered in uniformly over the course of 4 hours. Over the course of 3 hours, an amount of 51.4 ml of hydrogen peroxide (88% by weight) was added. After a total reaction time of 5 hours, the first reaction step was terminated and phase separation took place. The aqueous phase (51) was discharged. This is 33.6% by weight of hydrogen peroxide and 0.8% of performic acid.
% by weight and 5.7% by weight formic acid. The organic phase remaining in the stirred vessel is α-C 16 -epoxide 70.4
% by weight and 28.8% by weight of α-C 16 -olefin. Reaction step 2 was carried out immediately after phase separation. 0.5 of formic acid was charged and 4.3 was metered in over the course of 3 hours. Within a dosing time of 3 hours, 20% of hydrogen peroxide was also metered in with good mixing. After a total reaction time of 5 hours, the second reaction step was also interrupted. The discharged aqueous phase (18) contained 37.2% by weight of hydrogen peroxide, 0.4% by weight of performic acid and 4.3% by weight of formic acid.

容器中に残る有機相を2度順次水各30で(70
℃で)洗浄し、かつ洗浄水除去後少量の溶けた水
を真空(70mmHg)を設けて除いた。このよう
にして乾燥した有機相の分析はエポキシド含量
93.9重量%および残量オレフイン4.1重量%を与
えた。
The organic phase remaining in the container was washed twice with 30 ml of water (70 ml) each.
℃) and after removing the wash water, a small amount of dissolved water was removed by applying a vacuum (70 mmHg). Analysis of the organic phase thus dried can determine the epoxide content.
It gave 93.9% by weight and the remaining olefin 4.1% by weight.

例 5 α−オレフインとC−原子数C16〜C18のビニリ
デンオレフイン(ビニリデン含量約25%、ヨード
価108)の混合物95Kg(404モル)および85重量%
−蟻酸3.95Kg(73モル)を加熱および冷却装置を
備えた撹拌容器中で50℃に加熱した。90分の経過
の間に80重量%−過酸化水素16.6Kg(390.5モル)
を徐々に添加し、その際温度60℃を保持した。過
酸化水素添加終了後61/2時間更に60℃で撹拌し
た。
Example 5 95 kg (404 mol) and 85% by weight of a mixture of α-olefin and vinylidene olefin having a carbon number of C 16 to C 18 (vinylidene content approximately 25%, iodine number 108)
- 3.95 Kg (73 mol) of formic acid were heated to 50° C. in a stirred vessel equipped with heating and cooling equipment. 80% by weight over the course of 90 minutes - 16.6 Kg (390.5 moles) of hydrogen peroxide
was added gradually, maintaining the temperature at 60°C. After the addition of hydrogen peroxide was completed, the mixture was further stirred at 60°C for 61/2 hours.

冷却後水相を分離し、かつ棄てた。有機相に85
重量%−蟻酸2.6Kg(48モル)を加えた。混合物
を50℃に加熱した後90分間で80重量%−過酸化水
素11.1Kg(261モル)を添加し、その際反応温度
を再び60℃に調節した。引続き60℃で61/2時間
撹拌した。水相は過酸化水素約35.3重量%及び蟻
酸約6.7重量%を含んでいた。
After cooling, the aqueous phase was separated and discarded. 85 in the organic phase
Weight % - 2.6 Kg (48 moles) of formic acid was added. After heating the mixture to 50 DEG C., 11.1 kg (261 mol) of 80% by weight hydrogen peroxide were added in the course of 90 minutes, the reaction temperature being adjusted again to 60 DEG C. The mixture was subsequently stirred at 60°C for 61/2 hours. The aqueous phase contained about 35.3% by weight hydrogen peroxide and about 6.7% by weight formic acid.

冷却された反応混合物から有機相を分離し、熱
水で2度PH4になるまで洗い、その後2重量%−
苛性ソーダ液12で処理した。新たに熱水で洗浄
の後、反応生成物をリングポンプによる真空中で
30mmHgで90℃に加熱することにより乾燥し、
かつ最後に濾過助剤を使用して濾過する。
The organic phase was separated from the cooled reaction mixture and washed twice with hot water until the pH was 4, then 2 wt.
Treated with caustic soda solution 12. After fresh washing with hot water, the reaction product was vacuumed by a ring pump.
Dry by heating to 90°C at 30mmHg;
and finally filtered using a filter aid.

エポキシド酸素含量5.83重量%(理論的含量の
91.5%)およびヨード価3.72の無色のエポキシア
ルカン混合物100Kgが得られた。
Epoxide oxygen content 5.83% by weight (of theoretical content
91.5%) and an iodine value of 3.72, 100 kg of a colorless epoxyalkane mixture were obtained.

例 6 α−オレフインおよびC−原子数16〜18のビニ
リデンオレフイン(ビニリデン分約25%;ヨード
価108)の混合物95Kg(404モル)および85重量%
−蟻酸3.27Kg(60モル)を撹拌下に50℃に加熱し
た。次に1時間以内で70重量%−過酸化水素14.7
Kg(302.5モル)を添加し、その際混合物の温度
を60℃に保持した。引続き6時間60℃で更に撹拌
した。
Example 6 95 kg (404 mol) and 85% by weight of a mixture of α-olefin and vinylidene olefin having 16 to 18 C atoms (vinylidene content approximately 25%; iodine number 108)
- 3.27 Kg (60 mol) of formic acid were heated to 50° C. with stirring. Then within 1 hour 70% by weight - hydrogen peroxide 14.7
Kg (302.5 mol) were added, maintaining the temperature of the mixture at 60°C. This was followed by further stirring for 6 hours at 60°C.

撹拌機の停止および相分離の後水相を排出し、
棄てた。有機相に85重量%−蟻酸1.63Kg(30モ
ル)を添加した。混合物の加熱の後60℃で1時間
の間で70重量%−過酸化水素7.35Kg(151モル)
を添加した。引続き混合物を4時間60℃で撹拌し
た。次いで水相を分離し、かつ第2工程の過程を
繰返した。水相は過酸化水素約25.4重量%及び蟻
酸約5.9重量%を含んでいた。
After stopping the stirrer and phase separation, drain the aqueous phase;
Abandoned. 1.63 kg (30 mol) of 85% by weight formic acid was added to the organic phase. 70% by weight - 7.35 Kg (151 mol) of hydrogen peroxide during 1 hour at 60°C after heating the mixture
was added. The mixture was then stirred for 4 hours at 60°C. The aqueous phase was then separated and the process of the second step was repeated. The aqueous phase contained about 25.4% by weight hydrogen peroxide and about 5.9% by weight formic acid.

反応混合物の後処理は例5のようにして行な
い、エポキシド酸素含量5.81重量%(理論的含量
の91.2%)およびヨード価4.4を有するエポキシ
アルカン混合物100Kgが得られた。
The reaction mixture was worked up as in Example 5, giving 100 kg of an epoxyalkane mixture with an epoxide oxygen content of 5.81% by weight (91.2% of the theoretical content) and an iodine number of 4.4.

例 7 テトラデセン−1(ビニリデン分1%を下回る)
78.7Kg(400モル)および85重量%−蟻酸4Kg
(74モル)を撹拌下に50℃に加熱した。引続き90
分経過する中で80重量%−過酸化水素15.3Kg
(360モル)を徐々に添加し、その際温度を60℃に
保つた。次いで混合物を8時間60℃で更に撹拌し
た。
Example 7 Tetradecene-1 (vinylidene content less than 1%)
78.7Kg (400 moles) and 85% by weight - 4Kg of formic acid
(74 mol) was heated to 50° C. with stirring. Continued 90
80% by weight in minutes - 15.3Kg of hydrogen peroxide
(360 mol) was added gradually, maintaining the temperature at 60°C. The mixture was then further stirred for 8 hours at 60°C.

水相を排出した。有機相に85重量%−蟻酸2Kg
(37モル)を加えた。混合物を加熱した後60℃で
90分の間に80重量%−過酸化水素10.2Kg(240モ
ル)を添加し、引続き混合物を60℃で8時間撹拌
した。水相は過酸化水素約34.5重量%及び蟻酸約
6.3重量%を含んでいた。
The aqueous phase was drained. 85% by weight in the organic phase - 2 kg of formic acid
(37 mol) was added. After heating the mixture at 60℃
10.2 kg (240 mol) of 80% by weight hydrogen peroxide were added over the course of 90 minutes, and the mixture was then stirred at 60 DEG C. for 8 hours. The aqueous phase contains approximately 34.5% by weight of hydrogen peroxide and approximately 34.5% by weight of formic acid.
It contained 6.3% by weight.

反応混合物を例5のようにして後処理して、エ
ポキシド酸素含量7.1重量%(理論的含量の94.4
%)およびヨード価6.17を有する、透明なテトラ
デセンオキシド83Kgが得られた。
The reaction mixture was worked up as in Example 5 to give an epoxide oxygen content of 7.1% by weight (94.4% of the theoretical content).
%) and an iodine value of 6.17. 83 Kg of clear tetradecene oxide were obtained.

例 8 テトラデセン−1 78.7Kg(400モル)を例6
と同様にして3反応工程で85重量%−蟻酸全部で
6Kg(111モル)および70重量%−過酸化水素29
Kg(597モル)と65℃で反応させた。その際蟻酸
および過酸化水素全量のうち50%を第1工程で、
かつ第2工程および第3工程で各25%使用した。
反応時間は第1工程で8時間、第2、第3工程で
それぞれ6時間であつた。水相は過酸化水素約
21.7重量%及び蟻酸約5.3重量%を含んでいた。
Example 8 Tetradecene-1 78.7Kg (400 mol) Example 6
In three reaction steps, 85% by weight of formic acid (total of 6 kg (111 mol)) and 70% by weight of hydrogen peroxide29
Kg (597 mol) at 65°C. At that time, 50% of the total amount of formic acid and hydrogen peroxide was added in the first step.
And 25% each was used in the second and third steps.
The reaction time was 8 hours in the first step and 6 hours in each of the second and third steps. The aqueous phase is approximately hydrogen peroxide
21.7% by weight and about 5.3% by weight formic acid.

反応混合物を処理してエポキシド酸素7.24重量
%(理論的含量の96.3%)およびヨード価3.85を
有するテトラデセンオキシド82.5Kgが得られた。
The reaction mixture was worked up to yield 82.5 Kg of tetradecene oxide with 7.24% by weight of epoxide oxygen (96.3% of theoretical content) and an iodide number of 3.85.

Claims (1)

【特許請求の範囲】 1 C−原子数11〜24の脂肪族α−オレフイン
と、少なくとも70重量%の濃度の蟻酸および少な
くとも68重量%の濃度の過酸化水素とからその場
で形成される過蟻酸とを40〜90℃の温度で反応混
合物の攪拌下かつ過酸化水素の配量添加下に反応
させることによりC−原子数11〜24のα−エポキ
シドを製造するための方法において、反応を溶剤
と触媒を用いないで行い、水相および有機相を液
滴が形成されるまで攪拌することにより混合し、
水相中で少なくとも5時間の期間5重量%を上回
る蟻酸濃度および20〜70重量%の過酸化水素濃度
を維持し、エポキシド化する二重結合1モルに対
して蟻酸を0.5モルよりも少ない量で、かつ過酸
化水素を少なくとも1.05モルの量で使用し、かつ
過酸化水素を少なくとも3時間の期間配量添加す
ることを特徴とする、C−原子数11〜24のα−エ
ポキシドの製法。 2 水相中の蟻酸の最小濃度5重量%を全反応時
間の間維持する、特許請求の範囲第1項記載の方
法。 3 反応の開始時に水相中の蟻酸の濃度を10重量
%を上回る濃度に調節し、かつ濃度を反応の経過
とともに反応終結時に5重量%まで低下させる、
特許請求の範囲第2項記載の方法。 4 過酸化水素をエポキシド化する二重結合1モ
ル当たり1.2〜2.5モルの量で使用する、特許請求
の範囲第1項から第3項までのいずれか1項記載
の方法。
[Scope of Claims] A peroxide formed in situ from an aliphatic α-olefin having 11 to 24 C atoms and formic acid in a concentration of at least 70% by weight and hydrogen peroxide in a concentration of at least 68% by weight. A process for preparing α-epoxides having 11 to 24 C atoms by reacting them with formic acid at temperatures of 40 to 90° C. with stirring of the reaction mixture and metered addition of hydrogen peroxide, in which the reaction is carried out. carried out without solvent and catalyst, mixing the aqueous and organic phases by stirring until droplets are formed;
Maintaining a formic acid concentration of greater than 5% by weight and a hydrogen peroxide concentration of 20-70% by weight in the aqueous phase for a period of at least 5 hours, with less than 0.5 mole of formic acid per mole of double bond to be epoxidized. and using hydrogen peroxide in an amount of at least 1.05 mol and characterized in that the hydrogen peroxide is metered in over a period of at least 3 hours. 2. A process according to claim 1, wherein a minimum concentration of 5% by weight of formic acid in the aqueous phase is maintained during the entire reaction time. 3. Adjusting the concentration of formic acid in the aqueous phase to more than 10% by weight at the beginning of the reaction, and reducing the concentration to 5% by weight at the end of the reaction over the course of the reaction.
The method according to claim 2. 4. The method according to any one of claims 1 to 3, wherein hydrogen peroxide is used in an amount of 1.2 to 2.5 mol per mol of double bond to be epoxidized.
JP730081A 1980-01-26 1981-01-22 Manufacture of alphaaepoxide having ccatom numbers of 11124 Granted JPS56104878A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE19823223086 DE3223086A1 (en) 1981-01-22 1982-06-21 Device for producing electrical cable harnesses

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE3002826A DE3002826C2 (en) 1980-01-26 1980-01-26 Process for the preparation of alpha-epoxides having 11 to 24 carbon atoms

Publications (2)

Publication Number Publication Date
JPS56104878A JPS56104878A (en) 1981-08-20
JPH025756B2 true JPH025756B2 (en) 1990-02-05

Family

ID=6093027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP730081A Granted JPS56104878A (en) 1980-01-26 1981-01-22 Manufacture of alphaaepoxide having ccatom numbers of 11124

Country Status (4)

Country Link
EP (1) EP0032989B1 (en)
JP (1) JPS56104878A (en)
AT (1) ATE2525T1 (en)
DE (1) DE3002826C2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4436760A1 (en) * 1994-10-14 1996-04-18 Henkel Kgaa Process for the preparation of organic compounds containing epoxy groups
DE19519887C1 (en) * 1995-05-31 1996-06-13 Henkel Kgaa Process for the epoxidation of olefinically unsaturated compounds
DE19849527A1 (en) * 1998-10-27 2000-05-04 Basf Ag Process for the epoxidation of olefins

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2485160A (en) * 1948-10-23 1949-10-18 Rohm & Haas Process for the epoxidation of esters of oleic and linoleic acids
US2774774A (en) * 1954-03-26 1956-12-18 Fmc Corp In situ epoxidation of oleic acid using formic acid
DE962073C (en) * 1955-01-09 1957-04-18 Basf Ag Process for the production of 1,2-epoxycyclooctane
DE1058987B (en) * 1957-04-26 1959-06-11 Studiengesellschaft Kohle Mbh Preparation of cyclododecadiene monoepoxide from cyclododecatrienes
US3404163A (en) * 1965-07-02 1968-10-01 Ashalnd Oil & Refining Company Epoxidation process
GB1188791A (en) * 1966-04-14 1970-04-22 Laporte Chemical Olefin Oxides
DE2619091C2 (en) * 1976-05-03 1983-10-27 Degussa Ag, 6000 Frankfurt Continuous process for the epoxidation of organic compounds containing olefinic double bonds

Also Published As

Publication number Publication date
JPS56104878A (en) 1981-08-20
EP0032989B1 (en) 1983-02-16
EP0032989A1 (en) 1981-08-05
DE3002826C2 (en) 1982-02-04
DE3002826A1 (en) 1981-08-06
ATE2525T1 (en) 1983-03-15

Similar Documents

Publication Publication Date Title
US2773881A (en) Glycol carbonates
US3404163A (en) Epoxidation process
JPH025756B2 (en)
US2191786A (en) Continuous process for making adipic acid
KR101168097B1 (en) Method of Purifying Propylene Oxide
Wohlers et al. Yield in epoxidation reactions
JPS61130247A (en) Continuous manufacture of 1,2-pentanediol
JPH0354656B2 (en)
JPH0224808B2 (en)
US3517033A (en) Process for the production of epsilon-caprolactone and its alkyl derivatives
US4115411A (en) Continuous process for epoxidizing organic compounds containing olefinic double bonds
US2813878A (en) Method of preparing epoxidized oils and the like
US3360531A (en) In situ epoxidation process
US3754024A (en) Oxidation process
US3036124A (en) Manufacture of carboxylic acids
US2833814A (en) Preparation of peracetic acid
US3931259A (en) Process for the preparation of carboxylic acids
JP2952027B2 (en) Method for producing cyclohexene oxide
EP0289298A2 (en) Process for purifying crude 4-aminophenol
JPS6345666B2 (en)
CA1064045A (en) Process for preparing oxirane compounds
US3065245A (en) Continuous epoxidation method
JPS5939431B2 (en) Epoxidation method of cyclododecene or tricyclodecene-3
US3658898A (en) Process for producing adipic acid
CN1124248C (en) Process for preparing muskxylol by chemical reaction on waste musk ketone dregs