JPH0257491B2 - - Google Patents

Info

Publication number
JPH0257491B2
JPH0257491B2 JP60055443A JP5544385A JPH0257491B2 JP H0257491 B2 JPH0257491 B2 JP H0257491B2 JP 60055443 A JP60055443 A JP 60055443A JP 5544385 A JP5544385 A JP 5544385A JP H0257491 B2 JPH0257491 B2 JP H0257491B2
Authority
JP
Japan
Prior art keywords
inorganic powder
polystyrene resin
higher fatty
polystyrene
divalent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60055443A
Other languages
Japanese (ja)
Other versions
JPS61213120A (en
Inventor
Tadayasu Tsubone
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Kasei Co Ltd
Original Assignee
Sekisui Plastics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Plastics Co Ltd filed Critical Sekisui Plastics Co Ltd
Priority to JP60055443A priority Critical patent/JPS61213120A/en
Publication of JPS61213120A publication Critical patent/JPS61213120A/en
Publication of JPH0257491B2 publication Critical patent/JPH0257491B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Molding Of Porous Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は、ポリスチレン系発泡体の製造方法、
詳しくは、微細な気泡を有するポリスチレン系発
泡体の製造方法に関する。 [従来の技術] 合成樹脂発泡体において、気泡が大であると、
発泡体の外観が損われるため、核形成剤としてタ
ルクなどの無機物質粉末を多量に添加したり、ま
たアミド化合物などの分解型有機発泡剤を添加し
て、気泡の微細化が行なわれている。 また、ポリオレフイン系発泡体の製造法におい
ては気泡を微細化する目的で、ポリオレフイン樹
脂にステアリンバリウムなど特定の融点をもつ物
質を特定量添加することが提案されている(特公
昭59―23341号公報)。 [解決しようとする問題点] しかしながら、核形成剤を多量に用いると、無
機物粉末の分散が均一に行なわれないためか発泡
シート中に黒点が発生したり、また発泡シートの
表面にはフイツシユアイ状の斑点や現象が生じ、
発泡シートの外観を損う欠点があつた。一方、外
観を良くするために、核形成剤の使用量を減らす
と、気泡が大きくなり、独立気泡率が低下するた
めに、発泡シートの脆性が大きくなり、その結
果、発泡シートの緩衝性が悪くなる。従つて、発
泡シートの外観と脆性、緩衝性とを両立できるも
のではなかつた。 また、分解型有機発泡剤を用いる方法によると
押出機の連続運転に伴い押出機の先端に装着した
スクリーンやその後の成形金型の狭い間隙を有す
るリツプ部分に、分解した有機物が付着したり、
分解物により着色したりするため、発泡シートの
外観が徐々に粗雑になるだけでなく、3日〜10日
単位で押出機の運転を止め、清掃しなければなら
ず、作業性が悪いという欠点があつた。 また、前記のポリオレフイン発泡体の製造法に
おいて、ポリオレフイン樹脂の溶融粘度がポリス
チレン系樹脂などに比べて著しく小さく、しかも
温度により著しく変化するため、前記融点をもつ
物質を押出機中で均一に混合し難いだけでなく、
気泡は、連続気泡となり易く、しかも不均一に分
布するため、平滑で外観や緩衝性、断熱保温性が
良好な発泡シートが得難く、また惧重な操作を必
要とし、作業上の管理が煩雑であるという欠点が
あつた。まポリオレフイン樹脂は、その性質上、
脆性が大きくなる等のことはないものの、剛性、
強度が小さいため、ポリオレフイン発泡体は、自
ずとその用途が限定されるという欠点があつた。 本発明は、上記従来の問題点を解決すべくなさ
れたもので、その目的とするところは、剛性、強
度の大なるポリスチレン系発泡体において、気泡
を微細化しうるポリスチレン系発泡体の製造方法
を提供することにある。 [問題点を解決するための手段及び作用] 本発明は、ポリスチレン系樹脂と揮発生発泡剤
とを押出機中で混合し、押出すことによりポリス
チレン系発泡体を製造する方法において、高濃度
の無機物粉末および高級脂肪酸の二価または三価
金属塩の少なくとも一種をポリスチレン系樹脂に
予め溶融混合したマスターバツチを、ポリスチレ
ン系樹脂に添加混合することにより、上記従来の
問題点を解決するものである。 以下に、本発明を詳細に説明する。 本発明に用いられるポリスチレン系樹脂は、ス
チレン、α―メチルスチレン、パラメチルスチレ
ンなど各種のスチレン系モノマーの単独重合体、
共重合体、あるいは前記スチレン系モノマーと共
重合可能なモノマーとの共重合体が挙げられる。
共重合性モノマーとしては、メタクリル酸メチ
ル、アクリル酸ブチルなど炭素数1〜18のメタク
リレートまたはアクリレート、アクリロニトリル
などのアクリル系モノマー、ブタジエンなどのオ
レフイン系モノマー、無水マレインなどの不飽和
酸又はそのエステルが挙げられる。これらのう
ち、ポリスチレン樹脂、パラメチルスチレン樹脂
は、剛性、強度が大きく、後者は更に耐熱性が良
いため好ましい。 これらスチレン系樹脂は、用途に応じた重合度
のものが適宜選択でき、また、SBR樹脂、アク
リル系樹脂等他の樹脂と混合して用いてもよい。 また、本発明に用いられる揮発性発泡剤として
は、プロパン、ブタン、ペンタンなどの脂肪族炭
化水素、ジクロロジフルオロメタン、トリクロロ
フルオロメタン、ジクロロテトラフルオロエタ
ン、塩化メチレンなどのハロゲン化炭化水素など
があり、沸点が40℃以下のものが、一般に使用さ
れる。 上記の揮発性発泡剤は、押出機において、加圧
された溶融ポリスチレン系樹脂中に圧入混合され
る。揮発性発泡剤の使用量は、発泡体の発泡倍
率、用途等に応じ任意に変えることができる。 このような揮発性発泡剤は押出機中で分解する
ことなく、押出しと共に膨張し、ポリスチレン系
樹脂を発泡化するため、発泡シートが分解物によ
り着色する等の弊害がない。 本発明では、上記のような方法によりポリスチ
レン系発泡体を製造するに際して、ポリスチレン
系樹脂に核形成剤として無機物粉末と高級脂肪酸
の二価または三価金属塩の少なくとも一種とを高
濃度に含有するマスターバツチを添加混合するこ
とにより、気泡の微細化を図るものである。 マスターバツチは、ポリスチレン系樹脂100重
量部に対して、無機物粉末2〜40重量部、高級脂
肪酸の二価または三価金属塩の少なくとも一種1
〜10重量部からなるもの好ましい。無機物粉末が
2重量部未満であると気泡の微細化ができず、40
重量部を越すと無機物粉末の分散不良が生じ、ま
た高級脂肪酸の二価、三価金属塩が1重量部未満
であると気泡の微細化ができず、10重量部を越す
と過剰な使用となり経済的でない。 無機物粉末としては、タルク、カオリン、炭酸
カルシウム、硫酸バリウムなどの各種のものが使
用できるが、気泡の微細化、価格等の点からタル
クが好ましい。 また、高級脂肪酸としては、炭素数10〜30の飽
和脂肪酸又は不飽和脂肪酸が用いられる。炭素数
が10未満では、前記無機物粉末との併用による微
細な気泡が得難く、また炭素数が30を越えたもの
は、高価であるため好ましくない。高級脂肪酸と
しは、カプリン酸、ラウリン酸、ミリスチン酸、
パルミチン酸、オレイン酸、リノール酸、リシノ
レイン酸、リノレン酸、ステアリン酸、ジヒドロ
キシステアリン酸、ベヘン酸、エルカ酸、セロチ
ン酸、モンタン酸などが挙げられる。 また、二価または三価の金属塩としては、カル
シウム塩、アルミニウム塩、バリウム塩、マグネ
シウム塩、亜鉛塩、ストロンチウム塩が挙げら
れ、なかでもカルシウム塩、アルミニウム塩、バ
リウム塩が微細化により効果的である。 なお、上記の高級脂肪酸の二価、三価の金属塩
は、1種又は2種以上混合併用して用いることが
でき、また、上記高級脂肪酸の二価、三価の金属
塩を主成分として含有するものであればよい。 マスターバツチは、ニーダー、押出機などの機
器を用いて加熱、加圧条件下で、溶融混合して得
られる。 このようにして得られたマスターバツチをポリ
スチレン系樹脂に添加混合して押出し発泡させる
と、無機物粉末等の濃度を大きくしても、さらに
微細な気泡が得られる。 マスターバツチの添加量は適宜選択できるが、
上記無機物粉末がポリスチレン系樹脂100重量部
に対して0.2〜1.0重量部、好ましくは0.3〜0.7重
量部となるように、ポリスチレン系樹脂にマスタ
ーバツチを添加混合するのが好ましい。0.2重量
部未満では、気泡の微細化が十分でなく、また押
出機への原料の喰込が不安定となつて、安定な押
出し操作ができない。一方、1.0重量部を越える
とポリスチレン系樹脂との混合が均一になりにく
く、樹脂ペレツトの一部に無機物粉末が固まりと
なつて付着し、発泡シートに黒点が生じるため好
ましくない。 また、高級脂肪酸の二価、三価の金属塩につい
ては、ポリスチレン系樹脂100重量部に対して、
0.01〜0.2重量部、好ましくは0.02〜0.1重量部と
なるように、ポリスチレン系樹脂にマスターバツ
チを添加混合するのが好ましい。0.01重量部未満
であると気泡を十分に微細化できず、また、0.2
重量部を越えると過度の使用量となり経済的でな
く、また成形金型の先端部に付着して、シート表
面に筋状ラインが発生することがある。 特に、前記無機物粉末と前記高級脂肪酸の二
価、三価の金属塩の使用量が上記の範囲内で、し
かし無機物粉末と高級脂肪酸の二価、三価の金属
塩との比率が2:1〜25:1となるようにマスタ
ーバツチを使用したものは、気泡の微細化を効果
的に行なうことができる。上記比率で2:1より
も無機物粉末が少ないと気泡が粗く、25:1より
無機物粉末が多いと無機物粉末が充分に分散され
ない。 上記の無機物粉末と高級脂肪酸の二価、三価の
金属塩の作用については明確ではないが、溶融粘
度が高く、しかも温度による粘度変化が小さいポ
リスチレン系樹脂に、これらを併用したことによ
り、押出機中のスクリユーによる剪断応力が大き
いことと相まつて、無機物粉末と高級指肪酸の二
価、三価の金属塩が均一に分散されるだけでな
く、高級脂肪酸の二価、三価の金属塩が溶融ポリ
スチレン系樹脂中で溶融、液体化し、前記無機物
粉末の凝集が防止されるため、無機物粉末の個々
の粒子がそれぞれ気泡核形成剤として有効に機能
し、微細な気泡が形成されるものと推測される。 また、無機物粉末と、高級脂肪酸の二価、三価
の金属塩とを上記の範囲で使用することにより、
成形金型の溶融体出口端においては押出圧力が高
くなることから内部発泡が防止されることと相ま
つて、微細な気泡が効率的に形成されるものと推
測される。 マスターバツチは、発泡体を製造する押出機中
で前記無機物粉末などが所定濃度になるように、
ポリスチレン系樹脂またはポリスチレン系樹脂に
無機物粉末や高級脂肪酸の二価、三価金属塩を混
合した混合物と混合して押出し発泡する。 本発明は、1台又は複数台の押出機を用いるこ
とができる。後者の場合は、一の押出機で前記マ
スターバツチの製造を行ない、得られたマスター
バツチを、ポリスチレン系樹脂、無機物粉末等が
供給される他の押出機に連続して供給することに
より、発泡体の製造を連続して行なつてもよい。 そして、押出機内で溶融混合したポリスチレン
系樹脂等に、シリンダーに設けた発泡剤注入口よ
り揮発性発泡剤を圧入して、溶融ポリスチレン系
樹脂等と混合すると共に、大気中又は減圧部へ発
泡剤を含んだ溶融ポリスチレン系樹脂等を押出し
て発泡させる。 その際、金型の形状を変えることにより、棒
状、シート状、チユーブ状の発泡体が連続して得
られる。 なお、発泡体の製造に通常用いられる展着剤、
滑剤、酸化防止剤、難燃剤、着色剤などを使用す
ることは任意である。 [実施例] 以下に本発明の実施例を比較例と対比しつつ説
明する。 実施例1〜7および比較例1〜7 ポリスチレン樹脂(M1‐2.2)100重量部と、
表1に示す添加部数の無機物粉末および高級脂肪
酸の金属塩をタンブラーで混合し、押出機のホツ
パー(径40mm)より50Kg/hrの割合で投入し、
240℃に加熱して溶融混合した。次いで、前記溶
融混合物をノズルより押出し、水冷した後切断す
ることにより、マスターバツチとしての径2mm、
長さ2mmの練り込みペレツトを作成し、これらを
ペレツトA〜Fとした。 ついで、このペレツトとポリスチレン樹脂
(M1=2.2)および無機物粉末を表2に示す割合
で混合し、押出機のホツパー(径90mm)より70
Kg/hrの割合で投入し、220℃に加熱して溶融混
合するとともに、シリンダーに設けた発泡剤注入
口より揮発性発泡剤としてのブタンを2.5Kg/hr
の割合で圧入し、前記溶融樹脂等と混合した。次
いで、前記押出機内で160℃に冷却し、先端に取
付けたサーキユラー金型(口径100mm、リツプ間
隙0.7)から大気中に押出し発泡させ、径410mmマ
ンドレルにてシート状にして引き取つた(実施例
1〜7)。 比較例として、ペレツトを用いずに、上記のポ
リスチレン樹脂と無機物粉末としてのタルクおよ
び高級脂肪酸の二価、三価金属塩としてのラウリ
ン酸カルシウムを表2に示す割合でタンブラーに
て混合し、上記の押出機を用いて上記と同じ条件
下で押出し発泡させ、シート状にして引き取つた
(比較例1,2)。また、無機物粉末とポリスチレ
ン樹脂を表2に示す割合で混合し、同様な条件で
大気中に押出し発泡させ、シート状にして引き取
つた(比較例3〜5)。さらに、他の比較例とし、
ポリスチレン樹脂と無機物粉末および高級脂肪酸
の金属塩との配合において、表2に示すように無
機物粉末を過剰に使用した場合(比較例6)と高
級脂肪酸の金属塩を過剰に使用した場合(比較例
7)についても同様に行なつた。 なお、発泡シートは、厚み2±0.2mm、坪量180
±5g/m2に調整した。得られた発泡シートの性
能を表2に示した。 なお、表1,表2における添加量、割合は、重
量部を示す。また表1中、La―Caはラウリン酸
カルシウム、St―Baはステアリン酸バリウム、
St―Mgはステアリン酸マグネシウム、St―Alは
ステアリン酸アルミニウム、La―Znはラウリン
酸亜鉛をそれぞれ示す。また、表2中、PS樹脂
はポリスチレン樹脂、トータルT/FAは全体と
してのタルクと高級脂肪酸の二価、三価金属塩と
の割合を示す。
[Industrial Application Field] The present invention relates to a method for producing a polystyrene foam;
Specifically, the present invention relates to a method for producing a polystyrene foam having fine cells. [Prior art] In a synthetic resin foam, if the bubbles are large,
Since the appearance of the foam is damaged, the cells are made finer by adding large amounts of inorganic powder such as talc as a nucleating agent, or by adding decomposable organic foaming agents such as amide compounds. . Furthermore, in the production method of polyolefin foam, it has been proposed to add a specific amount of a substance with a specific melting point, such as barium stearin, to polyolefin resin in order to make the cells finer (Japanese Patent Publication No. 59-23341). ). [Problems to be solved] However, if a large amount of nucleating agent is used, black spots may occur in the foam sheet, probably because the inorganic powder is not uniformly dispersed, and fish-like spots may appear on the surface of the foam sheet. spots and phenomena occur,
There was a defect that spoiled the appearance of the foam sheet. On the other hand, if the amount of nucleating agent used is reduced in order to improve the appearance, the bubbles will become larger and the closed cell ratio will decrease, which will increase the brittleness of the foam sheet and, as a result, the cushioning properties of the foam sheet will decrease. Deteriorate. Therefore, it has not been possible to achieve both the appearance, brittleness, and cushioning properties of a foam sheet. In addition, in the method using a decomposable organic blowing agent, as the extruder is continuously operated, decomposed organic matter may adhere to the screen attached to the tip of the extruder or to the lip portion with a narrow gap of the subsequent molding die.
Not only does the appearance of the foam sheet gradually become rough due to discoloration caused by decomposition products, but the extruder must be shut down and cleaned every 3 to 10 days, resulting in poor workability. It was hot. In addition, in the method for producing polyolefin foam described above, the melt viscosity of polyolefin resin is significantly lower than that of polystyrene resins, etc., and it changes significantly depending on the temperature. Not only is it difficult;
Since the air bubbles tend to become open cells and are distributed unevenly, it is difficult to obtain a foam sheet that is smooth and has good appearance, cushioning properties, and insulation and heat retention properties, and requires careful operations, making work management complicated. It had the disadvantage of being. Due to its properties, polyolefin resin has
Although there is no increase in brittleness, rigidity,
Due to their low strength, polyolefin foams naturally have the disadvantage of limiting their uses. The present invention has been made in order to solve the above-mentioned conventional problems, and its purpose is to provide a method for manufacturing polystyrene foam that has high rigidity and strength and can make the cells finer. It is about providing. [Means and effects for solving the problems] The present invention provides a method for producing a polystyrene foam by mixing a polystyrene resin and a volatile blowing agent in an extruder and extruding the mixture. The above-mentioned conventional problems are solved by adding and mixing a masterbatch in which at least one of an inorganic powder and a divalent or trivalent metal salt of a higher fatty acid is melt-mixed with a polystyrene resin in advance. The present invention will be explained in detail below. The polystyrene resin used in the present invention is a homopolymer of various styrene monomers such as styrene, α-methylstyrene, paramethylstyrene,
Examples include copolymers and copolymers of monomers copolymerizable with the styrene monomers.
Examples of copolymerizable monomers include methacrylates or acrylates having 1 to 18 carbon atoms such as methyl methacrylate and butyl acrylate, acrylic monomers such as acrylonitrile, olefinic monomers such as butadiene, and unsaturated acids such as maleic anhydride or their esters. Can be mentioned. Among these, polystyrene resin and paramethylstyrene resin are preferred because they have high rigidity and strength, and the latter has better heat resistance. These styrene resins can be appropriately selected with a degree of polymerization depending on the intended use, and may be used in combination with other resins such as SBR resins and acrylic resins. Further, volatile blowing agents used in the present invention include aliphatic hydrocarbons such as propane, butane, and pentane, and halogenated hydrocarbons such as dichlorodifluoromethane, trichlorofluoromethane, dichlorotetrafluoroethane, and methylene chloride. , those with a boiling point of 40°C or less are generally used. The above volatile foaming agent is press-mixed into the pressurized molten polystyrene resin in an extruder. The amount of the volatile blowing agent used can be arbitrarily changed depending on the expansion ratio of the foam, the use, etc. Such a volatile foaming agent does not decompose in the extruder and expands during extrusion to foam the polystyrene resin, so there is no problem such as coloring of the foamed sheet due to decomposition products. In the present invention, when producing a polystyrene foam by the method described above, the polystyrene resin contains inorganic powder and at least one divalent or trivalent metal salt of a higher fatty acid at a high concentration as a nucleating agent. By adding and mixing masterbatch, the bubbles are made finer. The masterbatch contains 2 to 40 parts by weight of inorganic powder and at least 1 type of divalent or trivalent metal salt of higher fatty acid per 100 parts by weight of polystyrene resin.
~10 parts by weight is preferred. If the amount of inorganic powder is less than 2 parts by weight, it will not be possible to make the bubbles finer.
If the amount exceeds 1 part by weight, poor dispersion of the inorganic powder will occur; if the amount of divalent or trivalent metal salts of higher fatty acids is less than 1 part by weight, it will not be possible to make bubbles fine; if it exceeds 10 parts by weight, it will be used excessively. Not economical. Various inorganic powders can be used, such as talc, kaolin, calcium carbonate, barium sulfate, etc., but talc is preferred from the viewpoint of fine bubble formation, cost, etc. Further, as the higher fatty acid, a saturated fatty acid or an unsaturated fatty acid having 10 to 30 carbon atoms is used. If the number of carbon atoms is less than 10, it is difficult to obtain fine bubbles when used in combination with the inorganic powder, and if the number of carbon atoms exceeds 30, it is expensive and therefore undesirable. Higher fatty acids include capric acid, lauric acid, myristic acid,
Palmitic acid, oleic acid, linoleic acid, ricinoleic acid, linolenic acid, stearic acid, dihydroxystearic acid, behenic acid, erucic acid, cerotic acid, montanic acid, and the like. In addition, examples of divalent or trivalent metal salts include calcium salts, aluminum salts, barium salts, magnesium salts, zinc salts, and strontium salts, and among them, calcium salts, aluminum salts, and barium salts are more effective for miniaturization. It is. The divalent and trivalent metal salts of the higher fatty acids mentioned above can be used alone or in combination of two or more. It is sufficient as long as it contains it. The masterbatch is obtained by melt-mixing under heating and pressure conditions using equipment such as a kneader and an extruder. When the masterbatch thus obtained is added and mixed with a polystyrene resin and extruded and foamed, even finer cells can be obtained even if the concentration of the inorganic powder or the like is increased. The amount of masterbatch added can be selected as appropriate, but
It is preferable to add and mix the masterbatch with the polystyrene resin so that the amount of the inorganic powder is 0.2 to 1.0 parts by weight, preferably 0.3 to 0.7 parts by weight, based on 100 parts by weight of the polystyrene resin. If it is less than 0.2 part by weight, the bubbles will not be made fine enough, and the feeding of the raw material into the extruder will become unstable, making it impossible to perform a stable extrusion operation. On the other hand, if the amount exceeds 1.0 parts by weight, it is difficult to mix uniformly with the polystyrene resin, and the inorganic powder adheres as a lump to a part of the resin pellet, causing black spots on the foam sheet, which is not preferable. Regarding divalent and trivalent metal salts of higher fatty acids, for 100 parts by weight of polystyrene resin,
It is preferable to add and mix the masterbatch to the polystyrene resin in an amount of 0.01 to 0.2 parts by weight, preferably 0.02 to 0.1 parts by weight. If it is less than 0.01 parts by weight, the bubbles cannot be made sufficiently fine, and if the amount is less than 0.2 parts by weight,
If the amount exceeds 1 part by weight, the amount used is excessive and is not economical, and it may also adhere to the tip of the mold and cause streaks on the sheet surface. In particular, the amount of the inorganic powder and the divalent or trivalent metal salt of the higher fatty acid used is within the above range, but the ratio of the inorganic powder to the divalent or trivalent metal salt of the higher fatty acid is 2:1. When using a master batch with a ratio of ~25:1, bubbles can be effectively refined. If the ratio of the inorganic powder is less than 2:1, the bubbles will be rough, and if the ratio is more than 25:1, the inorganic powder will not be sufficiently dispersed. The effects of the above-mentioned inorganic powders and divalent and trivalent metal salts of higher fatty acids are not clear, but their combined use in polystyrene resins, which have a high melt viscosity and a small change in viscosity due to temperature, improves extrusion. Coupled with the large shear stress caused by the screws in the machine, not only the inorganic powder and divalent and trivalent metal salts of higher fatty acids are uniformly dispersed, but also the divalent and trivalent metals of higher fatty acids are dispersed. The salt melts and liquefies in the molten polystyrene resin, preventing the agglomeration of the inorganic powder, so each individual particle of the inorganic powder effectively functions as a bubble nucleating agent, forming fine bubbles. It is assumed that. In addition, by using inorganic powder and divalent or trivalent metal salts of higher fatty acids within the above range,
Since the extrusion pressure is high at the melt outlet end of the mold, internal foaming is prevented, and it is presumed that fine bubbles are efficiently formed. The masterbatch is used to make the inorganic powder etc. have a predetermined concentration in the extruder that produces the foam.
Polystyrene resin or a mixture of polystyrene resin and inorganic powder or divalent or trivalent metal salts of higher fatty acids is mixed and extruded and foamed. The present invention can use one or more extruders. In the latter case, the masterbatch is manufactured using one extruder, and the obtained masterbatch is continuously fed to another extruder that is supplied with polystyrene resin, inorganic powder, etc., thereby producing the foam. Production may also be carried out continuously. Then, a volatile blowing agent is press-injected into the polystyrene resin etc. melted and mixed in the extruder through a blowing agent inlet provided in the cylinder, mixed with the molten polystyrene resin etc., and the blowing agent is released into the atmosphere or into a reduced pressure section. A molten polystyrene-based resin, etc. containing , is extruded and foamed. At this time, by changing the shape of the mold, rod-shaped, sheet-shaped, and tube-shaped foams can be continuously obtained. In addition, spreading agents commonly used in the production of foams,
The use of lubricants, antioxidants, flame retardants, colorants, etc. is optional. [Example] Examples of the present invention will be described below in comparison with comparative examples. Examples 1 to 7 and Comparative Examples 1 to 7 100 parts by weight of polystyrene resin (M1-2.2),
Inorganic powder and metal salts of higher fatty acids in the added parts shown in Table 1 were mixed in a tumbler, and the mixture was fed into an extruder through a hopper (diameter 40 mm) at a rate of 50 kg/hr.
The mixture was heated to 240°C to melt and mix. Next, the molten mixture was extruded through a nozzle, cooled with water, and then cut to form a masterbatch with a diameter of 2 mm.
Kneaded pellets having a length of 2 mm were prepared and designated as pellets A to F. Next, these pellets, polystyrene resin (M1 = 2.2) and inorganic powder were mixed in the proportions shown in Table 2, and the pellets were heated at 70 m
Kg/hr, heated to 220℃, melted and mixed, and added 2.5Kg/hr of butane as a volatile blowing agent through the blowing agent inlet installed in the cylinder.
and mixed with the molten resin and the like. Next, it was cooled to 160°C in the extruder, extruded into the atmosphere through a circular mold (diameter 100 mm, lip gap 0.7) attached to the tip, foamed, and then taken in a sheet form using a 410 mm diameter mandrel (Example 1). ~7). As a comparative example, the above polystyrene resin, talc as an inorganic powder, and calcium laurate as a divalent and trivalent metal salt of higher fatty acids were mixed in a tumbler in the proportions shown in Table 2 without using pellets. It was extruded and foamed using an extruder under the same conditions as above, and then it was made into a sheet and collected (Comparative Examples 1 and 2). In addition, inorganic powder and polystyrene resin were mixed in the proportions shown in Table 2, extruded into the air under the same conditions, foamed, and then collected in the form of a sheet (Comparative Examples 3 to 5). Furthermore, as another comparative example,
In the blending of polystyrene resin with inorganic powder and metal salt of higher fatty acid, as shown in Table 2, there were cases where excessive inorganic powder was used (Comparative Example 6) and cases where excessive amount of metal salt of higher fatty acid was used (Comparative Example 7) was similarly performed. The foam sheet has a thickness of 2 ± 0.2 mm and a basis weight of 180
It was adjusted to ±5 g/m 2 . Table 2 shows the performance of the obtained foam sheet. Note that the amounts added and the ratios in Tables 1 and 2 indicate parts by weight. In Table 1, La-Ca is calcium laurate, St-Ba is barium stearate,
St-Mg represents magnesium stearate, St-Al represents aluminum stearate, and La-Zn represents zinc laurate. Further, in Table 2, PS resin indicates polystyrene resin, and total T/FA indicates the overall ratio of talc to divalent and trivalent metal salts of higher fatty acids.

【表】【table】

【表】【table】

【表】 表2より明らかなように、本願発明のものは、
無機物粉末と高級脂肪酸の二価、三価金属塩とを
併用しているため、無機物粉末を多くしても気泡
数が多く、発泡シートの独立気泡も緻密で外観が
良好であつた。しかも、マスターバツチを用いて
いるので、無機物粉末、高級脂肪酸の二価、三価
金属塩を一括投入したものよりも良好であつた。 これに対して、無機物粉末および高級脂肪酸金
属塩を一括投入した比較例1,2のものは、無機
物粉末や高級脂肪酸金属塩の種類、割合の対応す
る実施例1,2と比較して、気泡数が少なかつ
た。また、無機物粉末だけを用いた比較例3〜5
のものは、無機物粉末の量が多くなるにつれ、気
泡数が多くなり独立気泡が微細になる傾向にある
ものの、0.4重量部では気泡数が少なく外観の粗
いシートしか得られず、0.8重量部を越すと無機
物粉末の分散不良になると思われる黒点が発生し
た。また比較例6,7のように無機物粉末、高級
脂肪酸金属塩を過剰に用いたものは、黒点、ライ
ンが発生した。 [発明の効果] 本発明は、ポリスチレン系樹脂に無機物粉末と
高級脂肪酸の二価、三価金属塩とを併用添加し、
溶融押出しし、発泡化するものであり、ポリスチ
レン系樹脂の溶融粘度が高く、しかも温度による
粘度変化が小さいことと相まつて、溶融ポリスチ
レン系樹脂中で無機物粉末と高級脂肪酸の二価、
三価金属塩が均一に、しかも無機物粉末の個々の
粒子が、それぞれ気泡核形成剤として有効に機能
するよう微分散されるためか、黒点などが発生せ
ず、外観が良好な微細な独立気泡を多数有する発
泡体が得られる。 特に、高濃度の無機物粉末、高級脂肪酸の二
価、三価金属塩を含有するマスターバツチを用い
ているので、その効果が大きい。 しかも、樹脂の素材として剛性、強度の大なる
ポリスチレン系樹脂を用いており、微細な独立気
泡が均一に分布するため、脆性が小さく、緩衝性
断熱保温性のよい発泡体が得られる。 すなわち、優れた特性を有するポリスチレン系
発泡体において、外観と緩衝性等とを両立させた
発泡体を提供できる。 また、押出圧力が高いため、内部発泡が防止さ
れ、平滑性のよい発泡体が得られる。 更には、熱分解し難い揮発性発泡剤を用いてお
り、分解物により発泡体が着色することがないた
め、発泡体の外観を損ねることがなく、また、分
解物が金型のリツプ部分等に付着しないため、煩
雑な清掃作業が必要でなく長期間にわたり連続運
転ができ、作業性がよい。 本発明により得られた発泡体は、上記のように
優れた特性を有するため、食品容器、果物トレー
など各種の広範囲な用途に使用することができ
る。
[Table] As is clear from Table 2, the invention of the present application is
Since inorganic powder and divalent or trivalent metal salts of higher fatty acids were used together, the number of cells was large even when the amount of inorganic powder was increased, and the closed cells of the foamed sheet were dense and had a good appearance. Furthermore, since a master batch was used, the results were better than those in which inorganic powder and divalent and trivalent metal salts of higher fatty acids were added all at once. On the other hand, in Comparative Examples 1 and 2, in which inorganic powder and higher fatty acid metal salt were added at once, air bubbles were lower than in Examples 1 and 2, which had the types and proportions of inorganic powder and higher fatty acid metal salt. There were few. In addition, Comparative Examples 3 to 5 using only inorganic powder
However, as the amount of inorganic powder increases, the number of cells increases and the closed cells tend to become finer.However, at 0.4 parts by weight, only a sheet with a small number of cells and a rough appearance can be obtained; When the temperature was exceeded, black spots appeared, which appeared to be due to poor dispersion of the inorganic powder. Further, in Comparative Examples 6 and 7, in which inorganic powder and higher fatty acid metal salt were used in excess, black spots and lines appeared. [Effects of the Invention] The present invention combines inorganic powder and divalent and trivalent metal salts of higher fatty acids to polystyrene resin,
It is melt-extruded and foamed, and the melt viscosity of polystyrene resin is high and the viscosity changes little due to temperature.
Perhaps because the trivalent metal salt is uniformly dispersed and the individual particles of the inorganic powder are finely dispersed so that they each function effectively as a cell nucleating agent, fine closed cells with a good appearance and no black spots are formed. A foam having a large number of . In particular, since a masterbatch containing highly concentrated inorganic powder and divalent and trivalent metal salts of higher fatty acids is used, the effect is great. In addition, polystyrene resin, which has high rigidity and strength, is used as the resin material, and fine closed cells are evenly distributed, so a foam with low brittleness and good cushioning, heat insulation and heat retention properties can be obtained. That is, it is possible to provide a polystyrene foam having excellent properties that is compatible with appearance and cushioning properties. Furthermore, since the extrusion pressure is high, internal foaming is prevented and a foam with good smoothness can be obtained. Furthermore, since we use a volatile foaming agent that is difficult to thermally decompose, the foam will not be colored by decomposition products, so the appearance of the foam will not be impaired, and the decomposition products will not discolor the lip of the mold, etc. Because it does not adhere to the surface, there is no need for complicated cleaning work, and it can be operated continuously for a long period of time, resulting in good workability. Since the foam obtained by the present invention has excellent properties as described above, it can be used in a wide variety of applications such as food containers and fruit trays.

Claims (1)

【特許請求の範囲】 1 溶融ポリスチレン系樹脂に揮発性発泡剤をを
押出機中で圧入混合し、このポリスチレン系樹脂
を押出して発泡体を製造する方法において、ポリ
スチレン系樹脂に高濃度の無機物粉末および高級
脂肪酸の二価または三価金属塩の少なくとも一種
を予め溶融混合したマスターバツチを、ポリスチ
レン系樹脂に添加混合することを特徴とするポリ
スチレン系発泡体の製造方法。 2 マスターバツチが、ポリスチレン系樹脂100
重量部に対して、無機物粉末2〜40重量部、高級
脂肪酸の二価または三価金属塩の少なくとも1種
1〜10重量部からなる特許請求の範囲第1項記載
のポリスチレン系発泡体の製造方法。 3 ポリスチレン系樹脂100重量部に対して、無
機物粉末が0.2〜1.0重量部、高級脂肪酸の二価ま
たは三価金属塩の少なくとも一種が0.01〜0.2重
量部となるように、ポリスチレン系樹脂にマスタ
ーバツチを添加混合する特許請求の範囲第1項ま
たは第2項に記載のポリスチレン系発泡体の製造
方法。 4 無機物粉末と高級脂肪酸の二価または三価金
属塩の少なくとも一種との比率が2:1〜25:1
となるように、ポリスチレン系樹脂にマスターバ
ツチを添加混合する特許請求の範囲第1項〜第3
項のいずれかに記載のポリスチレン系発泡体の製
造方法。 5 無機物粉末が、タルクである特許請求の範囲
第1項〜第4項のいずれかに記載のポリスチレン
系発泡体の製造方法。 6 二価または三価金属塩がカルシウム塩、アル
ミニウム塩、バリウム塩、マグネシウム塩、亜鉛
塩である特許請求の範囲第1項〜第5項のいずれ
かに記載のポリスチレン系発泡体の製造方法。 7 高級脂肪酸が炭素数10〜30の飽和脂肪酸又は
不飽和脂肪酸である特許請求の範囲第1項〜第6
項のいずれかに記載のポリスチレン系発泡体の製
造方法。
[Claims] 1. A method for manufacturing a foam by press-mixing a volatile foaming agent into a molten polystyrene resin in an extruder and extruding the polystyrene resin, in which a highly concentrated inorganic powder is added to the polystyrene resin. A method for producing a polystyrene foam, which comprises adding and mixing a masterbatch in which at least one divalent or trivalent metal salt of a higher fatty acid is melt-mixed in advance to a polystyrene resin. 2 The master batch is made of polystyrene resin 100
Production of the polystyrene foam according to claim 1, which comprises 2 to 40 parts by weight of an inorganic powder and 1 to 10 parts by weight of at least one divalent or trivalent metal salt of a higher fatty acid. Method. 3 Add a masterbatch to the polystyrene resin so that the inorganic powder is 0.2 to 1.0 parts by weight and at least one divalent or trivalent metal salt of higher fatty acid is 0.01 to 0.2 parts by weight, based on 100 parts by weight of the polystyrene resin. A method for producing a polystyrene foam according to claim 1 or 2, wherein the polystyrene foam is added and mixed. 4. The ratio of inorganic powder to at least one divalent or trivalent metal salt of higher fatty acid is 2:1 to 25:1.
Claims 1 to 3 in which a masterbatch is added to and mixed with polystyrene resin so that
A method for producing a polystyrene foam according to any one of Items 1 to 3. 5. The method for producing a polystyrene foam according to any one of claims 1 to 4, wherein the inorganic powder is talc. 6. The method for producing a polystyrene foam according to any one of claims 1 to 5, wherein the divalent or trivalent metal salt is a calcium salt, an aluminum salt, a barium salt, a magnesium salt, or a zinc salt. 7 Claims 1 to 6 in which the higher fatty acid is a saturated or unsaturated fatty acid having 10 to 30 carbon atoms
A method for producing a polystyrene foam according to any one of Items 1 to 3.
JP60055443A 1985-03-18 1985-03-18 Manufacture of polystyrene foam Granted JPS61213120A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60055443A JPS61213120A (en) 1985-03-18 1985-03-18 Manufacture of polystyrene foam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60055443A JPS61213120A (en) 1985-03-18 1985-03-18 Manufacture of polystyrene foam

Publications (2)

Publication Number Publication Date
JPS61213120A JPS61213120A (en) 1986-09-22
JPH0257491B2 true JPH0257491B2 (en) 1990-12-05

Family

ID=12998735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60055443A Granted JPS61213120A (en) 1985-03-18 1985-03-18 Manufacture of polystyrene foam

Country Status (1)

Country Link
JP (1) JPS61213120A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0614847A (en) * 1992-07-02 1994-01-25 Jiyan:Kk Canned wet towel

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3712959A1 (en) * 1987-04-02 1988-10-20 Schock & Co Gmbh TOWEL-PLASTIC PLASTIC SANITATION OBJECT, IN PARTICULAR BATHTUB
JPH0813493B2 (en) * 1987-09-04 1996-02-14 日本スチレンペーパー株式会社 Polystyrene foam sheet and method for producing the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5192871A (en) * 1975-02-14 1976-08-14
JPS532564A (en) * 1976-06-30 1978-01-11 Asahi Dow Ltd Extruded styrene resin foam plate moulding
JPS5917737A (en) * 1982-07-22 1984-01-30 Nippon Telegr & Teleph Corp <Ntt> Automatic waveform equalizer
JPS60197743A (en) * 1984-03-19 1985-10-07 Badische Yuka Co Ltd Foamed polystyrene resin sheet

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5192871A (en) * 1975-02-14 1976-08-14
JPS532564A (en) * 1976-06-30 1978-01-11 Asahi Dow Ltd Extruded styrene resin foam plate moulding
JPS5917737A (en) * 1982-07-22 1984-01-30 Nippon Telegr & Teleph Corp <Ntt> Automatic waveform equalizer
JPS60197743A (en) * 1984-03-19 1985-10-07 Badische Yuka Co Ltd Foamed polystyrene resin sheet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0614847A (en) * 1992-07-02 1994-01-25 Jiyan:Kk Canned wet towel

Also Published As

Publication number Publication date
JPS61213120A (en) 1986-09-22

Similar Documents

Publication Publication Date Title
KR100216396B1 (en) Process for preparing expanded product of thermoplastic resin
US5348984A (en) Expandable composition and process for extruded thermoplastic foams
US3725317A (en) Nucleation of thermoplastic polymeric foams
JP2001502372A (en) Thermally stabilized flame retardant styrenic polymer foam composition
HUE027956T2 (en) Expandable granulates based on vinylaromatic polymers having an improved expandability and process for the preparation thereof
CN100569476C (en) The preparation method of expanding styrene polymer granules
EP0528536A1 (en) High melt index polystyrene foam and method
US5356944A (en) High melt index polystytene foam and method
EP0492644B1 (en) Process for producing polystyrene resin foam
US4632942A (en) Resin composition for masterbatch of foaming agent
US4451417A (en) Method of producing extruded plate-like polystyrene foam
US4198486A (en) Flameproof polystyrene foam and process for the manufacture thereof
US3706679A (en) Vinyl resin blowable into a rigid smooth skin microcellular profile
US4446253A (en) Production of fine-celled foams from styrene polymers
KR20030024871A (en) Extruded vinyl aromatic foam with 134a and alcohol as blowing agent
CA1128700A (en) Process for the manufacture of flame retardant polystyrene foams
JP2001504527A (en) Heat stabilized flame retardant thermoplastic polymer composition
JP4070606B2 (en) Expandable polyolefin bead material
JPH0257491B2 (en)
DE2019945A1 (en) Polystyrene moulding materials for prepnof foam bodies
US4228246A (en) Manufacture of fluorocarbon expanded polystyrene
EP0585147B1 (en) Low density polyolefin foam, foamable polyolefin compositions and process for making same
JPH0246607B2 (en)
US4393016A (en) Process for producing plate-like polystyrene resin foam
JPH0665698B2 (en) Method for manufacturing polyolefin resin foam sheet

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term