JPH0257245A - Laser endoscope - Google Patents

Laser endoscope

Info

Publication number
JPH0257245A
JPH0257245A JP63210311A JP21031188A JPH0257245A JP H0257245 A JPH0257245 A JP H0257245A JP 63210311 A JP63210311 A JP 63210311A JP 21031188 A JP21031188 A JP 21031188A JP H0257245 A JPH0257245 A JP H0257245A
Authority
JP
Japan
Prior art keywords
laser
resonator
wavelength
optical element
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63210311A
Other languages
Japanese (ja)
Inventor
Shigeru Omori
繁 大森
Tetsuo Yanai
哲夫 谷内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63210311A priority Critical patent/JPH0257245A/en
Publication of JPH0257245A publication Critical patent/JPH0257245A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laser Surgery Devices (AREA)
  • Radiation-Therapy Devices (AREA)
  • Endoscopes (AREA)

Abstract

PURPOSE:To perform medical treatment due to laser beams having different wavelengths using one laser oscillator by mounting a non-linear optical element and a mechanism for moving said non-linear optical element to the outside of a laser resonator in the laser resonator of a laser oscillator. CONSTITUTION:The laser beam having a wavelength of 1064nm excited by a YAG laser rod 1 is amplified by a resonator constituted of reflecting mirrors 2, 3 and also converted to 532nm in its wavelength by the non-linear optical element 4 placed in the resonator to pass through the reflecting mirror 2. The laser beam 5 passing through the reflecting mirror 2 to be emitted from a laser oscillator 14 is condensed by a lens 6 to be incident to an optical fiber 7 to be guided to the leading end part thereof and condensed by a lens 8 to irradiate the affected part 15. When the optical element 4 is moved to the outside of the laser oscillator along a guide rail 18, the laser beam having the wavelength of 1064nm amplified by the resonator and transmitted through the reflecting mirror 16 is condensed by the lens 6 and incident to the optical fiber 7 to be guided to the leading end part thereof and condensed by the lens 8 to irradiate the affected part 15.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、医療用のレーザ内視鏡に関するものである。[Detailed description of the invention] Industrial applications The present invention relates to a medical laser endoscope.

従来の技術 従来のレーザ内視鏡としては、例えば、アイ・イー・イ
ー・イー・トランザクション・ビー−エム・イー ビー
・エム・イー23 (2)(1976年)第129頁 
(IEEE 丁rans、BME、BME−23(2)
(1978)p129)に示されている。
Prior Art Conventional laser endoscopes include, for example, IE Transactions B-M E.B.M.E. 23 (2) (1976), p. 129.
(IEEE Transmission, BME, BME-23(2)
(1978) p129).

第3図は、この従来のレーザ内視鏡の構成図を示すもの
であり、13は内視鏡本体を示す。14はレーザ発振器
、6は前記レーザ発振器のレーザ光出射部に位置するレ
ンズ、7は前記レンズを通過したレーザ光を導くための
石英ガラスよりなる光ファイバ、8は前記光ファイバの
レーザ光出射部に位置し前記内視鏡本体13の先端に取
り付けられたレンズである。12は患部15を観察する
ためのバンドルファイバ、11は接眼レンズである。9
は照明用の光源であり、10は前記光源9の光を患部1
5まで導くためのバンドルファイバである。
FIG. 3 shows a configuration diagram of this conventional laser endoscope, and 13 indicates the endoscope main body. 14 is a laser oscillator, 6 is a lens located at the laser beam emitting portion of the laser oscillator, 7 is an optical fiber made of quartz glass for guiding the laser beam that has passed through the lens, and 8 is the laser beam emitting portion of the optical fiber. This is a lens located at the tip of the endoscope body 13. 12 is a bundle fiber for observing the affected area 15, and 11 is an eyepiece lens. 9
10 is a light source for illumination, and 10 directs the light from the light source 9 to the affected area 1.
This is a bundle fiber for guiding up to 5.

以上のように構成された従来のレーザ内視鏡においては
、レーザ発振器14より出射されたレーザ光は、レンズ
6により集光され、光ファイバ7に入射し先端部まで導
かれ、レンズ8を通過して患部15に照射される。
In the conventional laser endoscope configured as described above, the laser beam emitted from the laser oscillator 14 is focused by the lens 6, enters the optical fiber 7, is guided to the tip, and passes through the lens 8. Then, the affected area 15 is irradiated.

発明が解決しようとする課題 しかしながら上記のような構成では、異なる波長を有す
るレーザ光を用いて治療を行う場合、前記具なる波長に
対応した別々のレーザ発振器が必要となっていた。
Problems to be Solved by the Invention However, with the above configuration, when treatment is performed using laser beams having different wavelengths, separate laser oscillators corresponding to the specific wavelengths are required.

本発明はかかる点に鑑み、1台のレーザ発振器を用いて
波長の異なるレーザ光による治療が可能なレーザ内視鏡
を提供することを目的とする。
In view of this, an object of the present invention is to provide a laser endoscope that can perform treatment with laser beams of different wavelengths using a single laser oscillator.

課題を解決するための手段 本発明は、レーザ発振器のレーザ共振器内に、非線形光
学素子と前記非線形光学素子を前記共振器外部へ移動さ
せる機構とを備えたレーザ内視鏡である。
Means for Solving the Problems The present invention is a laser endoscope that includes a nonlinear optical element in a laser resonator of a laser oscillator and a mechanism for moving the nonlinear optical element to the outside of the resonator.

作用 本発明は前記した構成により、非線形光学素子がレーザ
共振器内に存在するとき、レーザ媒質内で発生したレー
ザ光は、前記非線形光学素子で波長変換され光ファイバ
を通して患部に照射される。
Effect of the present invention With the above-described configuration, when the nonlinear optical element is present in the laser resonator, the laser light generated in the laser medium is wavelength-converted by the nonlinear optical element and irradiated to the affected area through the optical fiber.

また、前記非線形光学素子を前記共振器内より外部へ移
動させたとき、レーザ媒質内で発生したレーザ光が光フ
ァイバを通して患部に照射される。
Furthermore, when the nonlinear optical element is moved from inside the resonator to the outside, laser light generated within the laser medium is irradiated onto the affected area through the optical fiber.

実施例 第1図、第2図は本発明の一実施例におけるレーザ内視
鏡の動作状態を示す構成図である。第1図において、1
はYAGレーザロッド、2は波長11064nのレーザ
光に対し99.8%以上の反射率を有し、波長532n
mのレーザ光に対し98%の透過率を有する反射鏡、3
は波長11064n及び波長532nmのレーザ光に対
し99.8%以上の反射率を有し前記反射鏡2と対向さ
せることにより共振器を構成するための反射鏡である。
Embodiment FIGS. 1 and 2 are configuration diagrams showing the operating state of a laser endoscope in an embodiment of the present invention. In Figure 1, 1
is a YAG laser rod, 2 has a reflectance of 99.8% or more for laser light with a wavelength of 11064n, and has a wavelength of 532n.
Reflector having a transmittance of 98% for a laser beam of m, 3
is a reflecting mirror that has a reflectance of 99.8% or more for laser beams with wavelengths of 11064n and 532nm, and is configured to form a resonator by opposing the reflecting mirror 2.

4は反射鏡2とYAGレーザロッド1の間に位置するB
a2NaNbsoI6結晶を用いた非線形光学素子、5
はレーザ発振器14より出射された波長532nmのレ
ーザ光である。第2図において、16は波長10B4n
mのレーザ光に対し1%の透過率を有する反射鏡、17
はレーザ発振器14より出射された波長11064nの
レーザ光、18は非線形光学素子4を移動させる為のガ
イドレールである。前記非線形光学素子4は、第2高調
波を位相整合できるように85°Cの温度制御を行う。
4 is B located between the reflecting mirror 2 and the YAG laser rod 1
Nonlinear optical element using a2NaNbsoI6 crystal, 5
is a laser beam with a wavelength of 532 nm emitted from the laser oscillator 14. In Figure 2, 16 is the wavelength 10B4n
Reflector having a transmittance of 1% for a laser beam of m, 17
1 is a laser beam having a wavelength of 11064n emitted from the laser oscillator 14, and 18 is a guide rail for moving the nonlinear optical element 4. The nonlinear optical element 4 performs temperature control at 85° C. so that the second harmonic can be phase-matched.

なお、第1図及び第2図に示す本実施例のレーザ内視鏡
は、基本的には第3図に示した従来のレーザ内視鏡と同
じ構成であるので、同一構成部分には同一番号を付して
詳細な説明を省略する。
The laser endoscope of this embodiment shown in FIGS. 1 and 2 basically has the same configuration as the conventional laser endoscope shown in FIG. 3, so the same components have the same parts. Detailed explanations will be omitted by assigning numbers.

以上のように構成された本実施例のレーザ内視鏡につい
て以下その動作を説明する。第1図において、YAGレ
ーザロッド1で励起された波長11064nのレーザ光
は反射鏡2、反射鏡3で構成された共振器で増幅される
と共に、前記共振器内に置かれた非線形光学素子4で波
長を532nmに変換され反射鏡2を通過する。反射鏡
2を通過し、レーザ発振器14より出射されたレーザ光
5はレンズ6により集光され、光ファイバ7に入射し先
端部まで導かれ、レンズ8で集光され患部15に照射さ
れる。次に第2図に示したように、非線形光学素子4を
反射鏡16と反射鏡3で構成されたレーザ共振器の外部
へガイドレール18に沿い移動させたとき、前記共振器
で増幅された波長1064 n mのレーザ光は、反射
鏡16を透過シタモのについてレンズ6により集光サレ
、光ファイバ7に入射して先端部まで導かれ、レンズ8
で集光され患部15に照射される。
The operation of the laser endoscope of this embodiment configured as described above will be described below. In FIG. 1, a laser beam with a wavelength of 11064n excited by a YAG laser rod 1 is amplified by a resonator composed of a reflecting mirror 2 and a reflecting mirror 3, and a nonlinear optical element 4 placed within the resonator. The wavelength is converted to 532 nm and passes through the reflecting mirror 2. Laser light 5 that passes through reflector 2 and is emitted from laser oscillator 14 is focused by lens 6, enters optical fiber 7, is guided to the tip, is focused by lens 8, and is irradiated onto affected area 15. Next, as shown in FIG. 2, when the nonlinear optical element 4 is moved along the guide rail 18 to the outside of the laser resonator composed of the reflecting mirror 16 and the reflecting mirror 3, the A laser beam with a wavelength of 1064 nm passes through a reflecting mirror 16, is focused by a lens 6, enters an optical fiber 7, is guided to the tip, and is then passed through a lens 8.
The light is focused and irradiated onto the affected area 15.

以上のように本実施例によれば、レーザ共振器内に置か
れた非線形光学素子を移動させ、かつ共振器を構成する
反射鏡の反射率を変えることにより、波長11064n
のレーザ光と波長532nmのレーザ光を患部に照射す
ることができる。
As described above, according to this embodiment, by moving the nonlinear optical element placed in the laser resonator and changing the reflectance of the reflecting mirror that constitutes the resonator, the wavelength 11064n
laser light with a wavelength of 532 nm can be irradiated onto the affected area.

なお、本実施例において非線形光学素子としてBa2N
aNbs016結晶を用いたが、非線形光学素子として
LINbOaやLIIOa結晶を第2高調波が室温で位
相整合できるように方位を定めて切り出して用いること
もできる。
In addition, in this example, Ba2N was used as the nonlinear optical element.
Although an aNbs016 crystal was used, a LINbOa or LIIOa crystal can also be cut out and oriented so that the second harmonic can be phase-matched at room temperature and used as a nonlinear optical element.

発明の詳細 な説明したように本発明によれば、1台のレーザ発振器
で、異なる波長のレーザ光を患部に照射することができ
るため、その実用的効果は太きい。
DETAILED DESCRIPTION OF THE INVENTION As described in detail, according to the present invention, laser beams of different wavelengths can be irradiated to the affected area using one laser oscillator, so the practical effects thereof are significant.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明における一実施例のレーザ内視鏡の構成
図、第2図は第1図の実施例の異なる動作状態を示す構
成図、第3図は従来のレーザ内視鏡の構成図である。 1e・・YAGレーザロッド、2・・・反射鏡、3・−
・反射鏡、4・・・非線形光学素子、6・・・レンズ、
16・・・反射鏡、18・・・ガイドレール。 代理人の氏名 弁理士 粟野重孝 ほか1名第1 図 /6−−次剖」九 第3 図 2図 / −−−YAGν−ザ口、2ド 、5−−一シーブ尤 6.8−  レンズ゛ 7−−−先フアイノ\′ 9−一一照羽 10、/2−−−バンドシファイバ /S−−−患舘 // \
FIG. 1 is a configuration diagram of a laser endoscope according to an embodiment of the present invention, FIG. 2 is a configuration diagram showing different operating states of the embodiment of FIG. 1, and FIG. 3 is a configuration diagram of a conventional laser endoscope. It is a diagram. 1e... YAG laser rod, 2... Reflector, 3...
・Reflector, 4... Nonlinear optical element, 6... Lens,
16... Reflector, 18... Guide rail. Name of agent: Patent attorney Shigetaka Awano and one other person Figure 1 / 6--Second autopsy 9 Figure 2 Figure 2゛7---Final fiber \' 9-11 Teruha 10, /2---Band fiber/S---Patient// \

Claims (1)

【特許請求の範囲】[Claims] レーザ光源を有し、第1もしくは第2の反射鏡が設置さ
れるレーザ共振器内に第1の波長のレーザ光を第2の波
長のレーザ光に波長変換する非線形光学素子を移動可能
に設置したレーザ共振器を用い、前記共振器内に第1の
反射鏡を設置して前記第1の波長のレーザ光を前記素子
を介して第2の波長のレーザ光に変換し光ファイバを通
して出射し、前記共振器内に第2の反射鏡を設置して前
記第1の波長のレーザ光を前記素子を介さず光ファイバ
を通して出射させることを特徴とするレーザ内視鏡。
A nonlinear optical element that converts a laser beam of a first wavelength into a laser beam of a second wavelength is movably installed in a laser resonator that has a laser light source and a first or second reflecting mirror is installed. A first reflecting mirror is installed in the resonator to convert the laser beam of the first wavelength into a laser beam of a second wavelength via the element, and output the laser beam through an optical fiber. . A laser endoscope, characterized in that a second reflecting mirror is installed in the resonator to emit the laser beam of the first wavelength through an optical fiber without going through the element.
JP63210311A 1988-08-24 1988-08-24 Laser endoscope Pending JPH0257245A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63210311A JPH0257245A (en) 1988-08-24 1988-08-24 Laser endoscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63210311A JPH0257245A (en) 1988-08-24 1988-08-24 Laser endoscope

Publications (1)

Publication Number Publication Date
JPH0257245A true JPH0257245A (en) 1990-02-27

Family

ID=16587310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63210311A Pending JPH0257245A (en) 1988-08-24 1988-08-24 Laser endoscope

Country Status (1)

Country Link
JP (1) JPH0257245A (en)

Similar Documents

Publication Publication Date Title
JP3167844B2 (en) Solid-state laser device
KR100992471B1 (en) Ultraviolet light source, laser treatment apparatus using ultraviolet light source, and exposure system using ultraviolet light source
US20060285561A1 (en) Pulsed laser source with adjustable grating compressor
US7408963B2 (en) Medical laser apparatus
JP4113035B2 (en) Medical laser equipment
US5841801A (en) Double wavelength laser
JPH0257245A (en) Laser endoscope
JP3250609B2 (en) Laser oscillation device, laser knife
JP4429140B2 (en) Medical laser equipment
KR20010021900A (en) Solid state uv laser
JPH06233778A (en) Laser system for laser diagnosis and treatment
JP2001053368A (en) Laser equipment
JPH1138460A (en) Laser device
JPH01297082A (en) Laser endoscope
JPH01166774A (en) Laser endoscope
JPH01167812A (en) Optical fiber cable
JPS6225379B2 (en)
JPH0258386A (en) Laser device
JP2003075876A (en) Cornea operation device
JPH075511A (en) Optical parametric oscillator and cancer treatment device using this optical parametric oscillator
JP2000185054A (en) Laser treatment device
KR100572522B1 (en) Laser radiation system for producing ultraviolet rays for skin laser theraphy
JPH05341334A (en) Wavelength conversion device
JPH01210936A (en) Laser device
JP3074772B2 (en) Second harmonic generator