JPH0257226B2 - - Google Patents

Info

Publication number
JPH0257226B2
JPH0257226B2 JP62028913A JP2891387A JPH0257226B2 JP H0257226 B2 JPH0257226 B2 JP H0257226B2 JP 62028913 A JP62028913 A JP 62028913A JP 2891387 A JP2891387 A JP 2891387A JP H0257226 B2 JPH0257226 B2 JP H0257226B2
Authority
JP
Japan
Prior art keywords
hydrogen
valve
cylinder
pressure
supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62028913A
Other languages
Japanese (ja)
Other versions
JPS63195369A (en
Inventor
Yoshitada Uchama
Jun Hama
Yasuo Kawaguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP2891387A priority Critical patent/JPS63195369A/en
Publication of JPS63195369A publication Critical patent/JPS63195369A/en
Publication of JPH0257226B2 publication Critical patent/JPH0257226B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B2275/00Other engines, components or details, not provided for in other groups of this subclass
    • F02B2275/14Direct injection into combustion chamber

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、低圧水素ガスを燃料とするシリンダ
内直接噴射型水素エンジンに関し、更に詳しくは
該4サイクル火花点火式のシリンダ内直接噴射型
水素エンジンに過給機を付設したものにおいて、
最適な水素の供給時期及び給気の時期を選定した
水素供給及び給気方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to an in-cylinder direct injection type hydrogen engine that uses low-pressure hydrogen gas as fuel, and more specifically relates to the four-stroke spark ignition type in-cylinder direct injection type hydrogen engine. In engines equipped with a supercharger,
This invention relates to a hydrogen supply and air supply method that selects the optimum hydrogen supply timing and air supply timing.

(従来の技術) 4サイクル火花点火エンジンの燃料として水素
ガスを用いることは、従来公知である。(特公昭
58−36172号公報、特許第1212127号参照) 上記、公知のシリンダ内直接噴射型水素エンジ
ンを第4図ないし第6図を参照して説明する。
(Prior Art) The use of hydrogen gas as a fuel for four-stroke spark ignition engines is known in the art. (Tokuko Akira
(See Japanese Patent No. 58-36172 and Japanese Patent No. 1212127) The above-mentioned known in-cylinder direct injection type hydrogen engine will be explained with reference to FIGS. 4 to 6.

第4図は上記公知の水素エンジンの構成を示す
もので、ピストン1を備えたシリンダ2の頭部に
排気管3、給気管4及び水素ガス供給管5を接続
し、これらの各管にそれぞれ排気弁6、給気弁7
及び水素噴射弁8を設けている。点火プラグ9は
所定の時期に火花をとばすことによりシリンダ内
で水素を燃焼させるものである。
FIG. 4 shows the configuration of the above-mentioned known hydrogen engine, in which an exhaust pipe 3, an air supply pipe 4, and a hydrogen gas supply pipe 5 are connected to the head of a cylinder 2 equipped with a piston 1, and each of these pipes is connected to Exhaust valve 6, air supply valve 7
and a hydrogen injection valve 8. The spark plug 9 burns hydrogen within the cylinder by blowing a spark at a predetermined time.

上記水素エンジンにおいて、出力の制御は、水
素噴射圧力一定のもとに水素噴射弁8の開弁期間
を変化させ、それに伴なうシリンダ内への水素供
給量の増減によつて行ない、この場合に給気管4
からは空気のみをシリンダに吸入し、その空気量
の制御は行なわないので、給気管4には絞り弁を
設けていない。
In the above hydrogen engine, the output is controlled by changing the opening period of the hydrogen injection valve 8 under a constant hydrogen injection pressure, and by increasing or decreasing the amount of hydrogen supplied into the cylinder accordingly. Air supply pipe 4
Since only air is sucked into the cylinder and the amount of air is not controlled, the air supply pipe 4 is not provided with a throttle valve.

第5図は上記水素エンジンにおける各弁の開閉
時期を示すもので、Oは開時期、C,C1及びC2
は閉時期を示している。同図に示すように、給気
弁7は吸入行程の終期における下死点(BDC)
で閉じ、また水素噴射弁8は上記下死点で開き、
これによつて両弁7,8の開弁期間には相互に時
期的な重なりがないように設定している。従つ
て、空気と水素ガスのシリンダ内への流入は全く
独立に行なわれ、特にシリンダに流入する空気量
が水素ガス供給の影響を受けるようなことはな
い。水素噴射弁8の閉時期は、出力により点火前
のC1〜C2の間で変化させ、それによつて開弁時
期の変化による水素供給量の制御を行なうもので
ある。
Figure 5 shows the opening and closing timing of each valve in the above hydrogen engine, where O is the opening timing, C, C 1 and C 2
indicates the closing time. As shown in the figure, the intake valve 7 is at the bottom dead center (BDC) at the end of the suction stroke.
, and the hydrogen injection valve 8 opens at the bottom dead center,
As a result, the opening periods of both valves 7 and 8 are set so that there is no overlap in timing with each other. Therefore, air and hydrogen gas flow into the cylinder completely independently, and the amount of air flowing into the cylinder is not affected by the hydrogen gas supply. The closing timing of the hydrogen injection valve 8 is varied between C 1 and C 2 before ignition depending on the output, thereby controlling the hydrogen supply amount by changing the valve opening timing.

第6図は、上記水素エンジンの圧縮行程におけ
るシリンダ内圧力と水素供給圧力との関係を示す
もので、曲線はシリンダ内圧力を線は水素供
給圧力を示している。
FIG. 6 shows the relationship between the cylinder pressure and the hydrogen supply pressure during the compression stroke of the hydrogen engine, where the curve shows the cylinder pressure and the line shows the hydrogen supply pressure.

同図に示しているように水素供給圧力は常に一
定に保ち、水素噴射弁8が開放している間におい
て、常に (シリンダ内圧力)<(水素供給圧力) の関係が成立するように、上記水素供給圧力の設
定を行なつている。従つて、水素噴射弁8の閉時
期がC1〜C2間で最も遅いC2である場合において
も、その開弁期間中に水素ガスが供給管5を通じ
てシリンダ2に供給され、シリンダ内の空気が水
素ガス供給管5に逆流するようなことがない。
As shown in the figure, the hydrogen supply pressure is always kept constant, and the above relationship is maintained such that (cylinder pressure) < (hydrogen supply pressure) while the hydrogen injection valve 8 is open. Setting the hydrogen supply pressure. Therefore, even when the closing timing of the hydrogen injection valve 8 is C2, which is the latest among C1 to C2 , hydrogen gas is supplied to the cylinder 2 through the supply pipe 5 during the valve opening period, and the inside of the cylinder is Air does not flow back into the hydrogen gas supply pipe 5.

(発明が解決しようとする問題点) 以上に示す公知のシリンダ内直接噴射型水素エ
ンジンでは、過給機を付設した場合、水素噴射が
不可能かあるいは困難となる。即ち、水素ガスは
水素吸蔵合金から発生させるものとなつており、
その圧力は余り高くない。このため、給気の過給
を行なうと、シリンダ内圧力が高くなつて (シリンダ内圧力)<(水素供給圧力) の関係となる時期が極短期間となるか、あるいは
無くなつてしまう。
(Problems to be Solved by the Invention) In the known in-cylinder direct injection type hydrogen engine shown above, when a supercharger is attached, hydrogen injection becomes impossible or difficult. In other words, hydrogen gas is generated from a hydrogen storage alloy,
The pressure is not too high. Therefore, when the air supply is supercharged, the period when the cylinder internal pressure becomes high and the relationship (cylinder internal pressure)<(hydrogen supply pressure) is satisfied becomes extremely short or disappears.

このため、特殊な水素吸蔵合金を用いて高い水
素ガスの圧力を得られるようにするか、あるいは
低圧の水素ガスを加圧ポンプで昇圧しなければな
らない。
Therefore, it is necessary to use a special hydrogen storage alloy to obtain high hydrogen gas pressure, or to increase the pressure of low-pressure hydrogen gas using a pressure pump.

以上説明したように、従来公知のシリンダ内直
接噴射型水素エンジンでは、過給機を設けた場
合、高コストかつ構造の複雑化の避けられないも
のであつた。
As explained above, in conventionally known in-cylinder direct injection hydrogen engines, when a supercharger is provided, the cost is high and the structure is unavoidably complicated.

そこで本発明の目的は、シリンダ内直接噴射型
水素エンジンにおいて、過給機を付設してシリン
ダ内の給気圧力を高くしても、格別の付属装置を
設置することなく水素供給を行なうことのできる
ようにした給気方法を提供するにある。
Therefore, an object of the present invention is to provide hydrogen supply to an in-cylinder direct injection hydrogen engine without installing any special accessory equipment even if a supercharger is attached to increase the air supply pressure in the cylinder. The purpose is to provide an air supply method that makes it possible.

(問題点を解決するための手段) 本発明の特徴とするところは、以下の点にあ
る。
(Means for Solving the Problems) The present invention is characterized by the following points.

給気弁と排気弁と過給機と水素噴射弁とを有
し、吸入行程にシリンダ内に水素を直接供給した
後前記過給機によつてシリンダ内に加圧給気する
過給機付きシリンダ内直接噴射型水素エンジンに
おいて、 排気弁が閉鎖後のピストンTDC付近から水素
噴射弁を開いて水素ガスをシリンダ内に供給し、
所定の期間だけ水素ガスを供給した後該水素噴射
弁を閉じ、この直後に給気弁を開いて給気を行な
い、該給気をBDC以降のシリンダ内圧が給気圧
力に近似する値になるまで行うと同時に、前記水
素ガスの供給量の制御を水素ガス圧一定の下に水
素噴射弁の開弁期間を変更して行なうことにあ
る。
Equipped with an air supply valve, an exhaust valve, a supercharger, and a hydrogen injection valve, and includes a supercharger that directly supplies hydrogen into the cylinder during the intake stroke and then pressurizes the air into the cylinder with the supercharger. In an in-cylinder direct injection hydrogen engine, the hydrogen injection valve is opened near the piston TDC after the exhaust valve is closed, and hydrogen gas is supplied into the cylinder.
After supplying hydrogen gas for a predetermined period, the hydrogen injection valve is closed, and immediately after this, the air supply valve is opened to supply air, and the cylinder internal pressure after BDC becomes a value that approximates the air supply pressure. At the same time, the hydrogen gas supply amount is controlled by changing the opening period of the hydrogen injection valve while keeping the hydrogen gas pressure constant.

(実施例) 以下、本発明の一実施例を第1図ないし第3図
を用いて説明する。
(Example) An example of the present invention will be described below with reference to FIGS. 1 to 3.

第1図は本発明の一実施例になる水素エンジン
の構成を示すもので、ピストン1を備えたシリン
ダ2の頭部に排気管3、給気管4及び水素ガス供
給管5を接続し、これらの各管にそれぞれ排気弁
6、給気弁7及び水素噴射弁8を設けている。点
火栓9は所定の時期に火花をとばすことにより水
素を燃焼させるものである。
FIG. 1 shows the configuration of a hydrogen engine according to an embodiment of the present invention, in which an exhaust pipe 3, an air supply pipe 4, and a hydrogen gas supply pipe 5 are connected to the head of a cylinder 2 equipped with a piston 1. Each pipe is provided with an exhaust valve 6, an air supply valve 7, and a hydrogen injection valve 8, respectively. The spark plug 9 burns hydrogen by emitting a spark at a predetermined time.

以上までの構成は、従来公知の水素エンジンと
同様であるが、本発明では過給機10が付設さ
れ、シリンダ2内に吸入される給気の圧力が高い
ものとなつている。
The configuration described above is the same as that of a conventionally known hydrogen engine, but in the present invention, a supercharger 10 is added, so that the pressure of the air sucked into the cylinder 2 is high.

第2図は上記水素エンジンにおける各弁の開閉
時期を示すもので、Oは開時期、Cは閉時期を示
している。
FIG. 2 shows the opening and closing timing of each valve in the hydrogen engine, where O indicates the opening timing and C indicates the closing timing.

同図に示すように、排気弁6は排気行程の終了
時であるピストンのTDC付近で閉じる。排気弁
6が閉じると、その直後に水素噴射弁8が開く。
水素噴射弁8と排気弁6とのオーバーラツプは異
常燃焼や排気の水素ガス供給管5への逆流の原因
となるので、両弁のオーバーラツプは原則として
採用しないが、前記異常燃焼等が生じない程度で
あれば、多少のオーバーラツプを採用してもよ
い。
As shown in the figure, the exhaust valve 6 closes near the TDC of the piston, which is the end of the exhaust stroke. Immediately after the exhaust valve 6 closes, the hydrogen injection valve 8 opens.
Overlap between the hydrogen injection valve 8 and exhaust valve 6 may cause abnormal combustion or backflow of exhaust gas into the hydrogen gas supply pipe 5, so overlap between the two valves is not adopted in principle, but it is necessary to ensure that the above-mentioned abnormal combustion does not occur. If so, some overlap may be adopted.

水素エンジンの出力は、シリンダ内に吸入され
る水素ガスの量によつて定まる。この発明では水
素ガス圧が一定のものを使用するので、結局エン
ジンの出力は水素噴射弁8の開弁期間によつて定
まるものとなる。開弁期間の変更は、例えば、ア
クセルペダルの踏み込み時間あるいは踏み込み量
によつて図のC1,C2の間で種々に変更される。
そして、水素噴射弁8が閉じると、給気弁7が開
く。ここで、水素噴射弁8と給気弁7とのオーバ
ーラツプは原則として採用しないが、給気の水素
ガス供給管5への逆流がない程度、あるいは水素
噴射量の制御を困難としない範囲であればオーバ
ーラツプを採用し、体積効率を向上させるように
してもよい。
The output of a hydrogen engine is determined by the amount of hydrogen gas sucked into the cylinder. In this invention, since hydrogen gas pressure is constant, the output of the engine is ultimately determined by the opening period of the hydrogen injection valve 8. The valve opening period can be changed in various ways between C 1 and C 2 in the figure, for example, depending on the depression time or depression amount of the accelerator pedal.
Then, when the hydrogen injection valve 8 closes, the air supply valve 7 opens. Here, as a general rule, overlap between the hydrogen injection valve 8 and the air supply valve 7 is not adopted, but as long as there is no backflow of the air supply into the hydrogen gas supply pipe 5 or it does not make it difficult to control the amount of hydrogen injection. For example, an overlap may be employed to improve volumetric efficiency.

給気弁7の給気期間は、以下に示すように、シ
リンダ内の圧力が過給圧に近似する程度となるま
で行なわれる。
The air supply period of the air supply valve 7 is performed until the pressure within the cylinder approaches the supercharging pressure, as shown below.

第3図は、上記水素エンジンの給気行程と圧縮
行程におけるシリンダ内圧力と過給圧との関係を
示すもので、曲線はシリンダ内圧力を線は過
給圧を示している。
FIG. 3 shows the relationship between cylinder pressure and boost pressure in the intake stroke and compression stroke of the hydrogen engine, where the curve shows the cylinder pressure and the line shows the boost pressure.

同図に示しているように過給圧は常に一定に保
たれており、 (シリンダ内圧力)<(過給圧) の関係が成立する期間だけ給気するようになつて
いる。給気弁7はシリンダ内圧力と過給圧とが同
圧となるK点よりも以前に閉じるものとなつてい
る。
As shown in the figure, the boost pressure is always kept constant, and air is supplied only during the period when the relationship (cylinder pressure)<(boost pressure) holds. The air supply valve 7 is configured to close before a point K where the cylinder internal pressure and the supercharging pressure become the same pressure.

以上説明したように、本発明によると、排気行
程の終了と同時に水素供給が始まり、所定期間だ
け水素供給がなされて後、給気行程が始まる。水
素供給量によつて出力が定まるので、水素噴射弁
8の制御はアクセルペダル(図示しない)によつ
て行なわれる。所定量の水素供給が終了すると、
水素噴射弁8が閉じられて給気弁7が開かれる
が、給気は過給されているので、ピストンが
BDC以降も給気されるものとなつている。そこ
で、シリンダ内圧力が過給圧となるまでの適宜の
時期に給気弁7を閉じるものとする。
As explained above, according to the present invention, hydrogen supply starts at the same time as the exhaust stroke ends, and after hydrogen supply is performed for a predetermined period, the air supply stroke begins. Since the output is determined by the amount of hydrogen supplied, the hydrogen injection valve 8 is controlled by an accelerator pedal (not shown). When the predetermined amount of hydrogen supply ends,
The hydrogen injection valve 8 is closed and the air supply valve 7 is opened, but since the air supply is supercharged, the piston is
Air is supplied even after BDC. Therefore, the air supply valve 7 is closed at an appropriate time until the cylinder internal pressure reaches the supercharging pressure.

以上に説明した本発明のエンジンでは、空気過
剰率を大きくしているものであるから、給気の量
の精密な制御を必要としない。
In the engine of the present invention described above, since the excess air ratio is increased, precise control of the amount of air supply is not required.

(発明の効果) 以上のように構成され、作用する本発明の効果
は以下のとおりである。
(Effects of the Invention) The effects of the present invention, which is configured and operated as described above, are as follows.

シリンダ内直接噴射式の水素エンジンにおい
て、低圧の水素を使用した上で、過給を行なうこ
とが可能となる。
In an in-cylinder direct injection type hydrogen engine, it becomes possible to perform supercharging while using low-pressure hydrogen.

又、給気行程の始めに水素噴射弁を開閉制御す
るものとなつているので、水素供給量の制御が容
易になされるものとなる。
Furthermore, since the hydrogen injection valve is controlled to open and close at the beginning of the air supply stroke, the hydrogen supply amount can be easily controlled.

まず水素が吸入され、その後に空気が給気され
るので、水素と空気の混合比が可燃範囲となつた
時には、既にシリンダ内が冷却されている状態と
なるので、過早着火、逆火が防止されものとな
る。
Hydrogen is first inhaled and then air is supplied, so by the time the mixture ratio of hydrogen and air reaches the flammable range, the inside of the cylinder has already been cooled, preventing pre-ignition and flashback. It will be prevented.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示すシリンダ内直
接噴射型の水素エンジンを示す断面図、第2図は
本発明の水素供給方法を示す線図、第3図は本発
明の給気弁閉鎖時期をシリンダ内圧力と過給圧と
の関係を定める線図である。又、第4図は従来公
知シリンダ内噴射式の水素エンジンを示す断面
図、第5図は第4図に示すエンジンの水素供給方
法を示す線図、第6図は第4図に示すエンジンの
水素噴射弁閉鎖時期をシリンダ内圧力と水素供給
圧力との関係で定める線図である。 1:ピストン、2:シリンダ、3:排気管、
4:給気管、5:水素ガス供給管、6:排気弁、
7:給気弁、8:水素噴射弁、9:点火プラグ、
10:過給機。
Fig. 1 is a sectional view showing an in-cylinder direct injection type hydrogen engine showing an embodiment of the present invention, Fig. 2 is a diagram showing the hydrogen supply method of the invention, and Fig. 3 is an intake valve of the invention. FIG. 3 is a diagram that determines the relationship between cylinder pressure and supercharging pressure for the closing timing. 4 is a sectional view showing a conventionally known in-cylinder injection type hydrogen engine, FIG. 5 is a diagram showing a method of supplying hydrogen to the engine shown in FIG. 4, and FIG. 6 is a diagram showing a hydrogen supply method for the engine shown in FIG. FIG. 3 is a diagram that determines the hydrogen injection valve closing timing based on the relationship between the cylinder internal pressure and the hydrogen supply pressure. 1: Piston, 2: Cylinder, 3: Exhaust pipe,
4: Air supply pipe, 5: Hydrogen gas supply pipe, 6: Exhaust valve,
7: Air supply valve, 8: Hydrogen injection valve, 9: Spark plug,
10: Supercharger.

Claims (1)

【特許請求の範囲】 1 給気弁と排気弁および水素噴射弁を有する水
素ガスエンジンの比出力向上のため、過給機を設
けた4サイクルシリンダ内直接噴射型水素エンジ
ンにおいて、 排気弁が閉鎖後のピストンTDC付近から水素
噴射弁を開いて水素ガスをシリンダ内に供給し、
所定の期間だけ水素ガスを供給した後該水素噴射
弁を閉じ、この直後に給気弁を開いて給気を行な
い、該給気をBDC以降のシリンダ内圧が給気圧
力に近似する値になるまで行うと同時に、前記水
素ガスの供給量の制御を水素ガス圧一定の下に水
素噴射弁の開弁期間を変更して行なうことを特徴
とするシリンダ内直接噴射型水素エンジンにおけ
る水素供給及び給気方法。
[Claims] 1. In order to improve the specific output of a hydrogen gas engine having an intake valve, an exhaust valve, and a hydrogen injection valve, in a 4-stroke cylinder direct injection hydrogen engine equipped with a supercharger, the exhaust valve is closed. Open the hydrogen injection valve from near the rear piston TDC and supply hydrogen gas into the cylinder.
After supplying hydrogen gas for a predetermined period, the hydrogen injection valve is closed, and immediately after this, the air supply valve is opened to supply air, and the cylinder internal pressure after BDC becomes a value that approximates the air supply pressure. Hydrogen supply and replenishment in an in-cylinder direct injection type hydrogen engine, characterized in that at the same time, the hydrogen gas supply amount is controlled by changing the opening period of the hydrogen injection valve while keeping the hydrogen gas pressure constant. How to care.
JP2891387A 1987-02-10 1987-02-10 Hydrogen and air feeding method in intra-cylinder direct injection type hydrogen engine Granted JPS63195369A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2891387A JPS63195369A (en) 1987-02-10 1987-02-10 Hydrogen and air feeding method in intra-cylinder direct injection type hydrogen engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2891387A JPS63195369A (en) 1987-02-10 1987-02-10 Hydrogen and air feeding method in intra-cylinder direct injection type hydrogen engine

Publications (2)

Publication Number Publication Date
JPS63195369A JPS63195369A (en) 1988-08-12
JPH0257226B2 true JPH0257226B2 (en) 1990-12-04

Family

ID=12261639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2891387A Granted JPS63195369A (en) 1987-02-10 1987-02-10 Hydrogen and air feeding method in intra-cylinder direct injection type hydrogen engine

Country Status (1)

Country Link
JP (1) JPS63195369A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4302540C2 (en) * 1992-01-31 1995-05-18 Mazda Motor Fuel supply device
JP4687666B2 (en) 2007-02-28 2011-05-25 株式会社日立製作所 Engine system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5452004A (en) * 1977-09-19 1979-04-24 Upjohn Co Composition and method of substance

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5452004A (en) * 1977-09-19 1979-04-24 Upjohn Co Composition and method of substance

Also Published As

Publication number Publication date
JPS63195369A (en) 1988-08-12

Similar Documents

Publication Publication Date Title
US4703734A (en) Multi-valve internal combustion engine
WO2006090884A1 (en) Inernal combustion engine
EP1223321A3 (en) Internal combustion engine and fuel injection control device therefor
JP2002180864A (en) Compression self-ignition type internal combustion engine with supercharger
JP2002048035A (en) Cylinder fuel injection engine with supercharger
JPH0385346A (en) Idling rotation controller of two-cycle engine
JPH0257227B2 (en)
JP3286760B2 (en) Control device for in-cylinder injection engine
JP3313410B2 (en) Fuel injection device for in-cylinder fuel injection engine
JPH0257226B2 (en)
JP2923123B2 (en) Spark ignition gas internal combustion engine
JPH03275968A (en) Spark-ignition gas engine
JP6844237B2 (en) Internal combustion engine control device
JP2915293B2 (en) engine
JPH09291827A (en) Two-cycle engine
JPH03213631A (en) Variable compression ratio engine
JPS5836172B2 (en) In-cylinder injection hydrogen engine
JPH06173821A (en) Fuel injection device for engine
JPS5812458B2 (en) In-cylinder injection hydrogen engine
JPH0584373B2 (en)
JPH0571768B2 (en)
JP2003254072A (en) Supercharging pressure control device of supercharger equipped cylinder injection engine
JPH062558A (en) Gas fuel engine
JP3031473B2 (en) Low-speed rotation control device for air-fuel-injected two-cycle engine
JPH04103855A (en) Fuel injection control device for two cycle engine

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term