JPH0257000B2 - - Google Patents

Info

Publication number
JPH0257000B2
JPH0257000B2 JP59225680A JP22568084A JPH0257000B2 JP H0257000 B2 JPH0257000 B2 JP H0257000B2 JP 59225680 A JP59225680 A JP 59225680A JP 22568084 A JP22568084 A JP 22568084A JP H0257000 B2 JPH0257000 B2 JP H0257000B2
Authority
JP
Japan
Prior art keywords
workpiece
light
laser processing
laser
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59225680A
Other languages
Japanese (ja)
Other versions
JPS61103695A (en
Inventor
Ryosuke Taniguchi
Takashi Ikeda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP59225680A priority Critical patent/JPS61103695A/en
Publication of JPS61103695A publication Critical patent/JPS61103695A/en
Publication of JPH0257000B2 publication Critical patent/JPH0257000B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/04Automatically aligning, aiming or focusing the laser beam, e.g. using the back-scattered light

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、三次元レーザ加工機、特に三次元の
面を有する被加工物を切断、溶接等のレーザ加工
を行う三次元レーザ加工機に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a three-dimensional laser processing machine, and particularly to a three-dimensional laser processing machine that performs laser processing such as cutting and welding on a workpiece having a three-dimensional surface. It is something.

[従来技術] 第4図は従来の三次元レーザ加工機のシステム
の構成を示すブロツク図である。図において、1
はレーザ発振器、2は発振器1により発振され
た、5軸のレーザ光路系、3はレーザ光路を制御
する制御装置、4はレーザ加工ヘツド、5は三次
元自由曲面を有する被加工物、6は加工システム
の運転あるいは教示を行う操作卓である。
[Prior Art] FIG. 4 is a block diagram showing the system configuration of a conventional three-dimensional laser processing machine. In the figure, 1
2 is a laser oscillator, 2 is a five-axis laser optical path system oscillated by the oscillator 1, 3 is a control device for controlling the laser optical path, 4 is a laser processing head, 5 is a workpiece having a three-dimensional free-form surface, and 6 is a workpiece having a three-dimensional free-form surface. This is a console that operates or teaches the processing system.

従来の三次元レーザ加工機は上記のように構成
されており、レーザ加工する際、レーザ加工ヘツ
ド4を被加工物5からの高さと被加工物5に対す
る姿勢(投射レーザ光の光軸と被加工物の面との
角度)が一定範囲になるようにして移動させる。
そのためレーザ加工前に、オペレータが操作卓6
を操作して手動で光軸を動かしながら加工軌跡の
開始点と終点を教示し、その間は補間データを使
用して加工軌跡のプログラムをする。
A conventional three-dimensional laser processing machine is configured as described above, and when performing laser processing, the laser processing head 4 is adjusted to the height from the workpiece 5 and the attitude relative to the workpiece 5 (the optical axis of the projected laser beam and the workpiece). Move the workpiece so that the angle between the workpiece and the surface of the workpiece remains within a certain range.
Therefore, before laser processing, the operator must
The start and end points of the machining trajectory are taught while manually moving the optical axis by operating the , during which time the machining trajectory is programmed using interpolated data.

なお、特公昭59―52036号公報には加工用レー
ザ光の誤照射を防止するためレーザ照射端と対象
物とのの距離を計測する距離測定装置を設け、該
距離測定装置を照準光用の可視光レーザービーム
に対しある傾斜角度で設置された指向性をもつ光
検出器により構成したものが示されている。
In addition, in order to prevent erroneous irradiation of the processing laser beam, Japanese Patent Publication No. 59-52036 provides a distance measuring device that measures the distance between the laser irradiation end and the target object, and the distance measuring device is used as the aiming light. A configuration is shown in which a directional photodetector is installed at a certain angle of inclination to the visible laser beam.

しかし、同公報のものはレーザメスとしての利
用に際しての加工用レーザ光の誤照射を防止する
目的のものであり、対象物との距離に対応して加
工軌跡を自動的に教示するものではなく、加工用
レーザ光の照射を自動的にON―OFF制御するも
のである。
However, the method in this publication is intended to prevent erroneous irradiation of the processing laser beam when used as a laser scalpel, and does not automatically teach the processing trajectory according to the distance to the object. This automatically controls ON/OFF of the irradiation of laser light for processing.

[発明が解決しようとする問題点] 上記のような従来の三次元レーザ加工機では、
加工軌跡をプログラムするのに、オペレータが被
加工物の三次元自由曲面に対するレーザ加工ヘツ
ドの位置と姿勢(角度)を目分量で決めて教示し
ているため、教示点の選定の失敗あるいは教示点
の設定に時間がかかり過ぎる等の問題があつた。
[Problems to be solved by the invention] In the conventional three-dimensional laser processing machine as described above,
When programming the machining trajectory, the operator determines and teaches the position and orientation (angle) of the laser processing head relative to the three-dimensional free-form surface of the workpiece by eye, resulting in failure in teaching point selection or teaching point selection. There were problems such as it taking too much time to set up.

本発明はかかる問題点を解決するためになされ
たもので、教示作業を短時間に容易にし、かつ正
確に行いうると共に、光軸制御あるいは三次元座
標の計測が可能な三次元レーザ加工機を得ること
を目的とする。
The present invention has been made to solve these problems, and provides a three-dimensional laser processing machine that can perform teaching work easily and accurately in a short time, and can also control the optical axis or measure three-dimensional coordinates. The purpose is to obtain.

[問題点を解決するための手段] 本発明に係る三次元レーザ加工機は、三次元の
面を有する被加工物を加工する三次元レーザ加工
機において、所定波長の加工用レーザ光を被加工
物の面に投射するレーザ加工ヘツドと、加工用レ
ーザ光と同軸であつて、加工用レーザ光と波長が
異なる計測用のレーザ光を被加工物の面に投射す
る光源と、被加工物から反射され、レーザ加工ヘ
ツドと被加工物の面との距離及び投射レーザ光の
光軸と被加工物の面との角度並びに被加工物の材
質・色の条件によつて反射光の受光量が変化して
入力される受光器と、受光量の変化からレーザ加
工ヘツドと被加工物の面との距離を一定の演算式
に基づいて演算する回路と、この演算結果を表示
する表示装置と、上記回路で演算された値を基準
値と比較して受光量が一定値となるように光源の
出力量を変化させる回路と、この回路の変化値を
表示する表示手段とを備えた構成としたものであ
る。
[Means for Solving the Problems] A three-dimensional laser processing machine according to the present invention is a three-dimensional laser processing machine that processes a workpiece having a three-dimensional surface. A laser processing head that projects onto the surface of an object, a light source that projects a measurement laser beam onto the surface of the workpiece that is coaxial with the processing laser beam and has a different wavelength from the processing laser beam, and a light source that projects the measurement laser beam onto the workpiece surface. The amount of reflected light received depends on the distance between the laser processing head and the surface of the workpiece, the angle between the optical axis of the projected laser beam and the surface of the workpiece, and the material and color conditions of the workpiece. a light receiver that receives changing input; a circuit that calculates the distance between the laser processing head and the surface of the workpiece from changes in the amount of received light based on a certain calculation formula; and a display device that displays the calculation results. The configuration includes a circuit that compares the value calculated by the above circuit with a reference value and changes the output amount of the light source so that the amount of received light becomes a constant value, and a display means that displays the changed value of this circuit. It is something.

[作用] 本発明の三次元レーザ加工機においては、光源
から投射された計測用のレーザ光が、被計測面で
反射されて受光器に受光されるとき、レーザ加工
ヘツドと被計測面との距離、投射レーザ光の光軸
と被計測面との角度、並びに被加工物の材質・色
の条件によつて受光量が変化することを考慮し
て、受光器からの信号に基づいて演算されたレー
ザ加工ヘツドと被計測面との距離を表示すると共
に、受光量を一定にするように変化される光源の
出力量を表示することによつて、この光源の出力
量からレーザ加工ヘツドの角度・被加工物の条件
を知り、これによつて三次元レーザ加工機の操
作・教示動作等を行うことが可能になる。
[Function] In the three-dimensional laser processing machine of the present invention, when the measurement laser beam projected from the light source is reflected by the surface to be measured and received by the light receiver, the contact between the laser processing head and the surface to be measured is It is calculated based on the signal from the receiver, taking into account that the amount of light received changes depending on the distance, the angle between the optical axis of the projected laser beam and the surface to be measured, and the material and color conditions of the workpiece. By displaying the distance between the laser processing head and the measured surface, and displaying the output amount of the light source that is changed to keep the amount of received light constant, the angle of the laser processing head can be determined from the output amount of the light source.・Know the conditions of the workpiece, and based on this knowledge, you will be able to operate and teach the three-dimensional laser processing machine.

[実施例] 第1図は本発明の一実施例を示すブロツク図、
第2図は第1図の光センサーのシステムを示すブ
ロツク図である。第1図,第2図において、1〜
3及び5,6は従来装置と同一のものである。
[Example] FIG. 1 is a block diagram showing an example of the present invention.
FIG. 2 is a block diagram showing the optical sensor system of FIG. 1. In Figures 1 and 2, 1~
3, 5, and 6 are the same as the conventional device.

4は内部の投光光路系15にハーフミラー21
が設けられて、所定波長の加工用レーザ光D(破
線で示す)を被加工物5の面に投射するレーザ加
工ヘツド、7はレーザ加工ヘツド4に設けた光セ
ンサーで、後述の光源13と受光器14で構成さ
れている。13は半導体レーザ発振器で構成され
た光源であり、加工用レーザ光Dと波長とが異な
る計測用のレーザ光B(実線で示す)を被加工物
5の面に投射すると共に、投光光軸系15におい
て加工用レーザ光Dと同軸に投射するように構成
されている。14は被加工物5の面から散乱され
た光の一部Cを受光するP S D(Position
sensitive device;半導体位置検出センサー)等
の受光素子を設けた受光器であり、計測用レーザ
光Bの波長に々うように構成されている。16は
受光器14からの信号を処理してレーザ加工ヘツ
ド4と被加工物5の面との距離を演算する回路、
17は受光器14に入力された受光量を一定の演
算式に基づいて演算すると共に、光源13の出力
量を変化させる回路、18は距離データの出力ラ
イン、20は光源13の出力量の出力ライン、2
2は増幅器、8は回路16で演算された距離情報
を出力する表示装置、9は回路17で演算された
光源13の出力量を表示する表示装置である。な
お、受光器14の手前にはレンズが設けられてい
るが、図示は省略している。
4 is a half mirror 21 in the internal light projection optical path system 15.
is provided with a laser processing head that projects a processing laser beam D (indicated by a broken line) of a predetermined wavelength onto the surface of the workpiece 5; 7 is an optical sensor provided on the laser processing head 4, and is connected to a light source 13 to be described later. It is composed of a light receiver 14. Reference numeral 13 denotes a light source composed of a semiconductor laser oscillator, which projects a measuring laser beam B (indicated by a solid line) having a wavelength different from that of the processing laser beam D onto the surface of the workpiece 5, and also directs the projection optical axis. The system 15 is configured to project the beam coaxially with the processing laser beam D. 14 is a PSD (Position) that receives part C of the light scattered from the surface of the workpiece 5.
This is a light receiver equipped with a light receiving element such as a sensitive device (semiconductor position detection sensor), and is configured to match the wavelength of the measurement laser beam B. 16 is a circuit that processes the signal from the light receiver 14 and calculates the distance between the laser processing head 4 and the surface of the workpiece 5;
17 is a circuit that calculates the amount of light received by the light receiver 14 based on a certain calculation formula and changes the output amount of the light source 13; 18 is a distance data output line; and 20 is an output of the output amount of the light source 13. line, 2
2 is an amplifier; 8 is a display device that outputs the distance information calculated by the circuit 16; and 9 is a display device that displays the output amount of the light source 13 calculated by the circuit 17. Note that a lens is provided in front of the light receiver 14, but is not shown.

上述の光センサー7は、一般的には光変位計と
も呼ばれ、受光器14に光検出用の電力を供給す
る2つの電源を有し(図示せず)、この2つの電
源の一方から流れる電流をIA、他方から流れる電
流をIBとしたとき、IA+IBが受光量に比例するよ
うに構成されたものである。このような光センサ
ー及び距離計測方法は、例えば特公昭56―10561
号公報に記載されているものであるから、ここで
は簡単に説明する。
The above-mentioned optical sensor 7 is also generally called an optical displacement meter, and has two power supplies (not shown) that supply power for light detection to the light receiver 14, and the power flows from one of these two power supplies. When the current is I A and the current flowing from the other side is I B , the structure is such that I A + I B is proportional to the amount of light received. Such optical sensors and distance measurement methods are known, for example, from the Japanese Patent Publication No. 56-10561.
Since it is described in the above publication, it will be briefly explained here.

上記のように構成された三次元レーザ加工機に
おいて、第3図の斜線で示す被加工物5の三次元
の面に光源13のレーザ光を投射すると、反射さ
れる光の重心の位置(第3図のA点に相当する位
置を重心とする)はレーザ加工ヘツド4と被計測
面との距離やレーザ加工ヘツド4の角度により変
動する。すなわち、受光器14においての受光位
置(重心位置)はレーザ加工ヘツド4と批計測面
との距離に対応したものとなる。そこで受光器1
4により反射光を受光し、2つの電流IA,IBに変
換して取り出す。回路16は入力した電流IA,IB
により次式に基づく演算を行う。
In the three-dimensional laser processing machine configured as described above, when the laser beam from the light source 13 is projected onto the three-dimensional surface of the workpiece 5 shown by diagonal lines in FIG. 3) varies depending on the distance between the laser processing head 4 and the surface to be measured and the angle of the laser processing head 4. That is, the light receiving position (center of gravity position) in the light receiver 14 corresponds to the distance between the laser processing head 4 and the measuring surface. Therefore, receiver 1
4 receives the reflected light, converts it into two currents I A and I B and takes them out. The circuit 16 receives the input currents I A and I B
The calculation based on the following equation is performed.

l=IA−IB/IA+IB …(1) なお、lはレーザ加工ヘツドの変位に相当す
る。この演算された変位lは距離表示装置8で表
示される。
l=I A −I B /I A +I B (1) Note that l corresponds to the displacement of the laser processing head. This calculated displacement l is displayed on the distance display device 8.

なお、受光器14の受光量は、加工ヘツド4と
被計測面との距離に反比例した値となる。また、
受光量は被計測面の材質や色、加工ヘツド4の姿
勢(角度)によつて影響を受けるが、式(1)におい
て、分子を分母「IA+IB」で除すことによおり、
距離の値は受光量が小さくなると、その精度が低
下するものとなる。そのため、受光量を一定にす
るように制御を行う。
Note that the amount of light received by the light receiver 14 is inversely proportional to the distance between the processing head 4 and the surface to be measured. Also,
The amount of light received is affected by the material and color of the surface to be measured and the attitude (angle) of the processing head 4, but by dividing the numerator by the denominator "I A + I B " in equation (1),
The accuracy of the distance value decreases as the amount of received light decreases. Therefore, control is performed to keep the amount of light received constant.

次いで加算された電流IA+IBを回路17に入力
し、次式に基づく演算を行う。
Next, the added current I A +I B is input to the circuit 17, and calculation based on the following equation is performed.

ILD=(Is−K)・F …(2) なお、Is=IA+IB F=伝達関数 K=基準値 基準値Kは、光センサー7が計測する被加工物
5の面との距離、被加工物の材質・色及びレーザ
加工ヘツド4の姿勢(角度)が一定の状態にある
場合の受光量を基準として設定したものである。
従つて、演算された値ILDが0値に近い場合は、
レーザ加工ヘツド4の距離や姿勢(角度)及び被
加工物5の面の条件が基準値Kの設定条件と同じ
であることになる。ここで、ILDが0値よりずれ
る場合は、被計測面の材質、色及びレーザ加工ヘ
ツド4の姿勢と被計測面からの距離が基準値から
変化していることになる。そこでILDが一定の範
囲内にあるようにするためには、受光器14の受
光量が一定になるように光源13の出力量(発光
量)を制御し、ILDの変化に対応した光源の出力
量を出力表示装置9で表示する。例えば被加工物
5の自由曲面に対するレーザ加工ヘツド4の姿勢
(角度)が変り、受光器14の受光量が小さくな
ると回路17で受光量が一定になるように上記出
力量が大きくなるよう制御されることになる。従
つてその出力量が被加工物5の三次元面の状態
(材質・色等)及びレーザ加工ヘツド4の被計測
面に対する姿勢(角度)を示すことになる。
I LD = (I s - K)・F...(2) In addition, I s = I A + I B F = transfer function K = reference value The reference value K is the surface of the workpiece 5 measured by the optical sensor 7. This is set based on the amount of light received when the distance, the material and color of the workpiece, and the attitude (angle) of the laser processing head 4 are constant.
Therefore, if the calculated value I LD is close to 0 value,
The distance and posture (angle) of the laser processing head 4 and the surface conditions of the workpiece 5 are the same as the setting conditions of the reference value K. Here, if ILD deviates from the 0 value, this means that the material and color of the surface to be measured, the attitude of the laser processing head 4, and the distance from the surface to be measured have changed from the reference values. Therefore, in order to keep I LD within a certain range, the output amount (emission amount) of the light source 13 is controlled so that the amount of light received by the photoreceiver 14 is constant, and the light source is adjusted to correspond to the change in I LD . The output amount is displayed on the output display device 9. For example, when the attitude (angle) of the laser processing head 4 with respect to the free-form surface of the workpiece 5 changes and the amount of light received by the light receiver 14 decreases, the output amount is controlled by the circuit 17 to increase so that the amount of light received is constant. That will happen. Therefore, the output amount indicates the state (material, color, etc.) of the three-dimensional surface of the workpiece 5 and the attitude (angle) of the laser processing head 4 with respect to the surface to be measured.

オペレータは上述のリアルタイムに表示される
光源13の出力量を見て、上記諸条件に関係する
情報を知り、これに基づいて三次元レーザ加工機
の教示動作、操作(レーザ加工ヘツドを動かす)
等を行うことができる。
The operator sees the output amount of the light source 13 displayed in real time, learns information related to the above conditions, and based on this, teaches and operates the three-dimensional laser processing machine (moves the laser processing head).
etc. can be done.

例えば、距離の変化は式(1)より求まるから、残
りの変化条件は被加工物の材質・色、加工ヘツド
の姿勢(角度)となるが、被加工物の一定の範囲
内では、材質・色は変化しないとみてよいので、
残る条件は加工ヘツドの姿勢のみとなる。
For example, since the change in distance is determined by equation (1), the remaining change conditions are the material and color of the workpiece, and the attitude (angle) of the machining head. It can be assumed that the color does not change, so
The only remaining condition is the attitude of the processing head.

そこで、加工ヘツド4の被計測面に対する角度
を、レーザ光が面に鉛直になるように制御して、
教示動作等を行うようにすれば、加工精度が向上
することになる。
Therefore, the angle of the processing head 4 with respect to the surface to be measured is controlled so that the laser beam is perpendicular to the surface.
If the teaching operation or the like is performed, the machining accuracy will be improved.

三次元レーザ加工機において、レーザ加工ヘツ
ドを被加工物の面に鉛直に保つように教示動作を
行うことは非常に手間がかかるが、上記実施例の
ようにすれば、加工ヘツドの姿勢の情報が表示さ
れるので、教示動作が容易にできるようになる。
それ故、教示動作の速度が向上されることにな
る。
In a three-dimensional laser processing machine, it is very time-consuming to perform teaching operations to keep the laser processing head perpendicular to the surface of the workpiece, but if you do as in the above example, information on the posture of the processing head can be obtained. is displayed, making the teaching operation easier.
Therefore, the speed of the teaching operation will be improved.

[発明の効果] 本発明は以上のように構成したので、レーザ加
工ヘツドと被加工物の面との距離、レーザ加工ヘ
ツドの姿勢(角度)並びに被加工物の材質・色の
条件に関する情報が、リアルタイムに表示され、
この表示に基づいてオペレータがレーザ光軸の操
作等を行い、短時間で簡単、かつ、正確に教示作
業を行うようにすることを可能にする効果があ
る。
[Effects of the Invention] Since the present invention is configured as described above, information regarding the distance between the laser processing head and the surface of the workpiece, the attitude (angle) of the laser processing head, and the conditions of the material and color of the workpiece can be obtained. , displayed in real time,
Based on this display, the operator can operate the laser optical axis, etc., and has the effect of enabling the operator to easily and accurately perform teaching work in a short time.

また距離情報と姿勢情報をフイードババツクし
て光軸制御することにより、被加工物の三次元座
標の計測あるいは加工ヘツドの位置と姿勢を修正
しながら連続トラツキング加工を行うことが可能
となる効果がある。
In addition, by controlling the optical axis by feeding back distance information and orientation information, it is possible to perform continuous tracking processing while measuring the three-dimensional coordinates of the workpiece or correcting the position and orientation of the processing head. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示すブロツク図、
第2図は第1図の光センサーのシステムを示すブ
ロツク図、第3図は被加工物の表面からの反射光
の分布を示す説明図、第4図は従来の三次元レー
ザ加工機のシステムの構成を示すブロツク図であ
る。 1…レーザ発振器、2…レーザ光路系、3…光
軸制御装置、4…レーザ加工ヘツド、5…被加工
物、6…操作卓、7…光センサー、8…距離表示
装置、9…光源の出力量表示装置、13…光源、
14…受光器、15…投光光路系、16…距離演
算回路、17…出力量の演算回路。なお、各図
中、同一符号は同一または相当部分を示す。
FIG. 1 is a block diagram showing one embodiment of the present invention;
Figure 2 is a block diagram showing the optical sensor system in Figure 1, Figure 3 is an explanatory diagram showing the distribution of reflected light from the surface of the workpiece, and Figure 4 is the system of a conventional three-dimensional laser processing machine. FIG. DESCRIPTION OF SYMBOLS 1... Laser oscillator, 2... Laser optical path system, 3... Optical axis control device, 4... Laser processing head, 5... Workpiece, 6... Operation console, 7... Optical sensor, 8... Distance display device, 9... Light source Output amount display device, 13... light source,
14... Light receiver, 15... Light emitting optical path system, 16... Distance calculation circuit, 17... Output amount calculation circuit. In each figure, the same reference numerals indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】 1 三次元の面を有する被加工物を加工する三次
元レーザ加工機において、 所定波数の加工用レーザ光を被加工物の面に投
射するレーザ加工ヘツドと、前記加工用レーザ光
と同軸であつて、該加工用レーザ光と波長が異な
る計測用のレーザ光を被加工物の面に投射する光
源と、被加工物から反射され、前記レーザ加工ヘ
ツドと被加工物の面との距離及び投射レーザ光の
光軸と被加工物の面との角度並びに被加工物の材
質・色の条件によつて反射光の受光量が変化して
入力される受光器と、前記受光量の変化から前記
レーザ加工ヘツドと被加工物の面との距離を一定
の演算式に基づいて演算する回路と、この演算結
果を表示する表示装置と、前記回路で演算された
値を基準値と比較して前記受光量が一定値となる
ように前記光源の出力量を変化させる回路と、こ
の回路の変化値を表示する表示手段とを備えたこ
とを特徴とする三次元レーザ加工機。
[Scope of Claims] 1. A three-dimensional laser processing machine that processes a workpiece having a three-dimensional surface, comprising: a laser processing head that projects processing laser light of a predetermined wave number onto the surface of the workpiece; A light source that projects a measuring laser beam coaxial with the laser beam and having a wavelength different from that of the processing laser beam onto the surface of the workpiece; a light receiver into which the amount of reflected light received changes depending on the distance from the surface, the angle between the optical axis of the projected laser beam and the surface of the workpiece, and the material and color conditions of the workpiece; A circuit that calculates the distance between the laser processing head and the surface of the workpiece from changes in the amount of received light based on a certain calculation formula, a display device that displays the calculation results, and a reference to the value calculated by the circuit. A three-dimensional laser processing machine comprising: a circuit that changes the output amount of the light source so that the received light amount becomes a constant value when compared with a value; and a display means that displays the changed value of this circuit. .
JP59225680A 1984-10-29 1984-10-29 Three-dimensional laser beam machine Granted JPS61103695A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59225680A JPS61103695A (en) 1984-10-29 1984-10-29 Three-dimensional laser beam machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59225680A JPS61103695A (en) 1984-10-29 1984-10-29 Three-dimensional laser beam machine

Publications (2)

Publication Number Publication Date
JPS61103695A JPS61103695A (en) 1986-05-22
JPH0257000B2 true JPH0257000B2 (en) 1990-12-03

Family

ID=16833099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59225680A Granted JPS61103695A (en) 1984-10-29 1984-10-29 Three-dimensional laser beam machine

Country Status (1)

Country Link
JP (1) JPS61103695A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2807461B2 (en) * 1988-01-08 1998-10-08 ファナック 株式会社 Three-dimensional shape processing laser device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52145898A (en) * 1976-05-28 1977-12-05 Siemens Ag Method of and device for machining work precisely placed in shining area of working laser
JPS579592A (en) * 1980-06-20 1982-01-19 Masao Saito Preventing device for erroneous irradiation of laser for working

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52145898A (en) * 1976-05-28 1977-12-05 Siemens Ag Method of and device for machining work precisely placed in shining area of working laser
JPS579592A (en) * 1980-06-20 1982-01-19 Masao Saito Preventing device for erroneous irradiation of laser for working

Also Published As

Publication number Publication date
JPS61103695A (en) 1986-05-22

Similar Documents

Publication Publication Date Title
US6040903A (en) Electro-optical measuring device for determining the relative position of two bodies, or of two surface areas of bodies, in relation to each other
JP4926180B2 (en) How to determine the virtual tool center point
CN106353764B (en) Laser measuring device
CN112424563A (en) Multi-dimensional measurement system for accurately calculating position and orientation of dynamic object
CA2998713C (en) Method for guiding a machining head along a track to be machined
JPH08254409A (en) Three-dimensional shape measuring and analyzing method
JPH0257000B2 (en)
WO1994027791A1 (en) Attitude control method for visual sensor of industrial robot
JPH0123041B2 (en)
JP2502533B2 (en) Welding robot with sensor
JP2542615B2 (en) Machining line teaching method
JP2000193429A (en) Shape measuring device
JPH06241796A (en) Surverying device
JP2577950B2 (en) Non-contact digitizer
JPH0263684A (en) Method for profiling weld line
JPH077303B2 (en) Robot teaching method
JPS63252204A (en) Distance and angle-of-inclination measuring device
JP2567425B2 (en) 3D thermal cutting machine
JPH074932A (en) Method and apparatus for measurement of shape of object
JPH08215847A (en) Control method of welding robot
JPH10137963A (en) Copying control method for torch axis of laser beam machine
JPS59214704A (en) Automatic device using laser
JPS63225120A (en) One-man surveying system
JPS62259011A (en) Distance detector
JP3022445B2 (en) Positioning robot system and robot positioning method