JPH0256345B2 - - Google Patents

Info

Publication number
JPH0256345B2
JPH0256345B2 JP5574182A JP5574182A JPH0256345B2 JP H0256345 B2 JPH0256345 B2 JP H0256345B2 JP 5574182 A JP5574182 A JP 5574182A JP 5574182 A JP5574182 A JP 5574182A JP H0256345 B2 JPH0256345 B2 JP H0256345B2
Authority
JP
Japan
Prior art keywords
reaction
group
nitriles
hydroxylamine
general formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5574182A
Other languages
Japanese (ja)
Other versions
JPS58172357A (en
Inventor
Mitsuhisa Tamura
Hiroshi Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP5574182A priority Critical patent/JPS58172357A/en
Priority to US06/444,046 priority patent/US4456562A/en
Priority to DE8282110886T priority patent/DE3270799D1/en
Priority to EP82110886A priority patent/EP0080700B2/en
Publication of JPS58172357A publication Critical patent/JPS58172357A/en
Publication of JPH0256345B2 publication Critical patent/JPH0256345B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はアルデヒドからのニトリル類の改良さ
れた製造方法に関するものであり、更に詳しく
は、一般式()で示されるアルデヒド RCHO () (但しRは置換あるいは無置換アリール基を表わ
す。) とヒドロキシルアミンの無機酸塩とから対応する
ニトリル類()を合成する方法に関するもので
ある。 RCHOヒドロキシルアミン・無機酸塩 ――――――――――――――――――→ RCN
() 本発明の対象であるニトリル類は医農薬中間体
の重要な原料となるものであり、たとえば本発明
の目的生成物の1つであるP−シアノフエノール
はサイアノツクス (O,O−ジメチル−O−P
−シアノフエニルホスホロチオエート)、ブロモ
キシニル (4−シアノ−2,6−ジブロモフエ
ノール)等の農薬の重要な中間体となることが知
られている。 アルデヒドからニトリルを合成するには種々の
方法があるが、そのうち代表的なものは、アルデ
ヒドとヒドロキシルアミン・無機酸塩とからまず
オキシムを合成し、これを単離後酸触媒の共存下
更に脱水反応によつてニトリルとする方法(これ
を2段法と略す)及びアルデヒドとヒドロキシル
アミン・無機酸塩とからなるオキシムを単離する
ことなく直接脱水反応を経てニトリルとする方法
(これを1段法と略す)の2方法である。 本発明者らは先に(特願昭56−194128号)2段
法に於て、共沸脱水しつつ反応をすると、使用す
る酸触媒の量が従来法に較べて大巾に減少可能で
かつ好収率でニトリルが得られること、及びその
際アミド類を共存させると、副反応を抑制し反応
の選択性の一層の向上が図れることを見い出し特
許出願中である。更に我々は、アルデヒドからの
ニトリル合成に於て、オキシム中間体を単離する
2段法に対して、アルデヒドから直接ニトリルを
得る1段法が工程の簡易さなど多くのメリツトが
ある事に着目し、鋭意検討を続けた。 ところでアルデヒドからアルドオキシムを単離
することなく直接に対応するニトリルを得る(1
段法)にも種々の方法が知られている。たとえば
Ger,Offen 2014984に開示の方法、“Synthesis
(1979)722”に開示の方法、“Chem.Ben 107
1221(1974)”に開示の方法、“Synthesis(1981)
739”に開示の方法、特開昭56−169664に開示の
方法、“Helv.Chim.Acta 59,2786(1976)”に開
示の方法等が知られている。しかし、これら方法
では腐蝕性の大きなギ酸を大量に使用するとか、
毒性の大きな二酸化セレンを触媒に用いるとか、
あるいは工業的に入手の困難な特殊なヒドロキシ
ルアミン誘導体を用いたり、高価な脱水剤をアル
デヒドに対し等モル以上用いる必要があるなど、
いずれも工業的プロセスとして実施するには満足
できるものではない。 本発明者らはアルデヒドとヒドロキシルアミン
の無機酸塩とからニトリルを得る反応(1段法)
について詳細に検討した結果、驚くべきことには
水と共沸できる溶媒の存在下にアルデヒドとヒド
ロキシルアミンの無機酸塩とを加熱・混合するこ
とにより、容易にニトリルが得られることを見出
した。 即ち、本発明はアルデヒドとヒドロキシルアミ
ンの無機酸塩とからニトリルへの脱水反応におい
て、反応の進行とともに生成する水を、水と共沸
する溶媒とともに、反応系外へすみやかに共沸留
去することにより、触媒あるいは脱水剤等を加え
なくとも、脱水反応を達成しうること、さらにま
た反応系中に少量のアミド類を添加することによ
り、アルデヒドからニトリルへの選択性が向上
し、目的とするニトリルが高収率で得られること
を特徴とする方法に関するものである。 本発明方法は本発明者らが先に出願している2
段法に於ける共沸脱水法及びアミド添加効果と方
法論の点では同一であるが、アルデヒドとヒドロ
キシルアミン・無機酸塩から1段でニトリルを合
成する場合にも共沸脱水法及びアミドの添加が有
効であろうとは予想し得ぬことであつた。更にま
た、2段法では別途酸触媒の添加が必須であるの
に対し本発明方法の1段法に於ては酸触媒の添加
が不用であるという点は大きな相違点でもある。
このことは以下のような理由からだろうと推察さ
れる。即ち1段法に於ても反応機構的にはオキシ
ム中間体を経由すると仮定すると、その脱水反応
には酸触媒が必要になるだろうが(従来の知見に
よる)、1段法の場合アルデヒドとヒドロキシル
アミン・無機酸塩からオキシムが生成すると同時
に遊離するであろう無機酸が酸触媒的役目を果た
してニトリルを生ずるという考え方である。本発
明方法に於ける共沸脱水の効果は、前記酸触媒の
働きが生成する水によつて弱められるのを防ぐこ
と及び平衡をニトリル生成側にずらすことにある
と考えられる。 一方、反応選択性向上に役立つアミド類の効果
については次の様に考えられる。即ち1つは酸触
媒の酸強度の制御であり、もう1つは溶解度の制
御である。ヒドロキシムアミン・無機酸塩として
例えばヒドロキシムアミン・塩酸塩を用いた場合
は、反応の進行と共に遊離する塩化水素の酸強度
が比較的穏やかなためか、あるいは共沸反応中に
一部HClガスとして系外へ抜けるためか、特にア
ミド類を添加せずとも良好な選択率でニトリルが
得られることもあるが、ヒドロキシルアミン・硫
酸塩を用いた場合は、遊離する硫酸の酸強度が強
いためか、反応の選択性が若干低下する。このヒ
ドロキシルアミン硫酸塩を用いた場合に特にアミ
ド類の添加効果が顕著なのは、硫酸に対するアミ
ド類の中和効果が1因かと推定される。更にヒド
ロキシルアミン・硫酸塩の水溶液を用いるような
場合、反応系は共沸溶媒たる炭化水素またはハロ
ゲン化炭化水素を上層とする2層系になるが(ア
ルデヒドは両層に分配してる)、この2層間の接
触性の向上にアミド類が役立つていると考えるこ
ともできる。 本反応に用いられるアミドとしては、たとえば
ホルムアミド、N−メチルホルムアミド、N,N
−ジメチルホルムアミド、アセトアミド、N−メ
チルアセトアミド、N,N−ジメチルアセトアミ
ド、N−メチルピロリドン、ヘキサメチルホスホ
リツクトリアミド(HMPA)等があげられ、用
いる量としてはアルデヒド1部に対し0.05部〜
1.5部、好ましくは0.1〜0.75部である。 水と共沸する溶媒としてはベンゼン、トルエ
ン、キシレン、クロルベンゼン、ヘプタン等をあ
げることができる。 反応温度は、反応条件に応じて共沸溶媒と水が
共沸により系外に留出する温度である。一般的に
は60℃〜120℃の間となる。 反応は通常、常圧下に於て実施されるが、加圧
下あるいは減圧下においても実施可能である。 本発明の対象たる一般式()で示される置換
あるいは無置換アリールアルデヒドの具体例を挙
げるならば、(o−,m−,p−)オキシベンズ
アルデヒド、(o−,m−,p−)ニトロベンズ
アルデヒド、(o−,m−,p−)シアノベンズ
アルデヒド、(o−,m−,p−)メトキシベン
ズアルデヒド、(o−,m−,p−)アセトキシ
ベンズアルデヒド、(o−,m−,p−)ホルミ
ルベンズアミド、(o−,m−,p−)ホルミル
−N,N−ジメチルベンズアミド、(o−,m−,
p−)クロルベンズアルデヒド、(2,4−、2,
5−、2,6−、3,4−)ジクロルベンズアル
デヒド、(o−,m−,p−)ブロムベンズアル
デヒド、(2,4−、2,5−、2,6−、3,
4−)ジブロムベンズアルデヒドあるいは上記置
換基を2種類以上有する置換アリールベンズアル
デヒドなどである。中でも本発明方法の効果が顕
著に発現するのはp−オキシベンズアルデヒド及
びp−ニトロベンズアルデヒドである。 本発明で用いるヒドロキシルアミンの無機酸塩
は、ヒドロキシルアミン・硫酸塩またはヒドロキ
シルアミン塩酸塩である。 本発明の方法により得られるニトリルは、反応
系より抽出あるいは蒸留等の操作により容易に回
収でき、使用目的によつては公知の精製技術によ
つてさらに精製することもできる。 以下具体例を挙げて詳細に説明するが本発明は
これらに限定されるのではない。 実施例 1 50mlのフラスコにp−オキシベンズアルデヒド
503mg、ヒドロキシルアミン塩酸塩323mgおよびト
ルエン10mlを仕込みフラスコにデイーン・スター
ク脱水装置を取付け、マグネチツク・スターラー
で撹拌しながら、4時間加熱し留出液中の水を分
解し、トルエンは還流させた。反応終了後、反応
液に水およびメチルイソブチルケトンを加え、撹
拌後分液した。水層は再びメチルイソブチルケト
ンで抽出し、さきの有機層と合せ、ガスクロマト
グラフイー(5%PEG20M,0.5m,190゜(4分保
持)〜220゜(5分保持)、2℃/min)により生成
物の分析を行つた。分析の結果p−オキシベンズ
アルデヒドの転化率は100%であり、p−シアノ
フエノールが449mg(収率91%)およびp−オキ
シベンズアルデヒド・オキシムが6.1mg(収率1.1
%)生成していることが判つた。 実施例 2 p−オキシベンズアルデヒド1.0g、ヒドロキシ
ルアミン硫酸塩768mgおよびトルエン10mlを用い、
反応時間を30分にした以外は実施例1と同様に反
応を行つた。その結果、p−オキシベンズアルデ
ヒドの転化率は100%、p−シアノフエノール収
率は72%、p−オキシベンズアルデヒドオキシム
は収率0%であることが判つた。 実施例 3〜8 p−オキシベンズアルデヒド1.0g、ヒドロキシ
ルアミン硫酸塩672mg、トルエン10mlおよび第1
表記載のアミド、反応温度、反応時間を用いた以
外は実施例2と同様に反応を行い第1表記載の結
果を得た。
The present invention relates to an improved method for producing nitriles from aldehydes, and more specifically, the present invention relates to an improved method for producing nitriles from aldehydes, and more specifically, an aldehyde represented by the general formula () RCHO () (where R represents a substituted or unsubstituted aryl group) and hydroxyl. The present invention relates to a method for synthesizing corresponding nitriles () from inorganic acid salts of amines. RCHO hydroxylamine inorganic acid salt――――――――――――――――――→ RCN
() Nitriles, which are the subject of the present invention, are important raw materials for pharmaceutical and agricultural intermediates. For example, P-cyanophenol, one of the target products of the present invention, is produced from cyanox (O,O-dimethyl- O-P
-cyanophenyl phosphorothioate) and bromoxynil (4-cyano-2,6-dibromophenol). There are various methods for synthesizing nitriles from aldehydes, but the most representative one is to first synthesize oximes from aldehydes and hydroxylamine/inorganic acid salts, isolate them, and then dehydrate them in the coexistence of acid catalysts. A method of producing a nitrile through a reaction (this is abbreviated as the two-step method), and a method of producing a nitrile through a direct dehydration reaction without isolating the oxime consisting of an aldehyde and a hydroxylamine inorganic acid salt (this is a one-step method). There are two methods. The present inventors previously reported (Japanese Patent Application No. 56-194128) that by carrying out the reaction while performing azeotropic dehydration in a two-stage process, the amount of acid catalyst used could be greatly reduced compared to the conventional method. We have also found that nitriles can be obtained in good yields, and that when an amide is present in the process, side reactions can be suppressed and the selectivity of the reaction can be further improved, and we are currently applying for a patent. Furthermore, in the synthesis of nitriles from aldehydes, we have noticed that a one-step method for directly producing nitriles from aldehydes has many advantages, such as a simpler process, compared to a two-step method for isolating an oxime intermediate. and continued to consider the matter earnestly. By the way, the corresponding nitrile can be obtained directly from the aldehyde without isolating the aldoxime (1
Various methods are also known for the step method. for example
Methods disclosed in Ger, Offen 2014984, “Synthesis
(1979) 722”, “Chem. Ben 107 ,
1221 (1974)”, “Synthesis (1981)”
739, the method disclosed in Japanese Patent Application Laid-Open No. 169664, and the method disclosed in Helv.Chim.Acta 59 , 2786 (1976). However, these methods Using large amounts of formic acid,
Using highly toxic selenium dioxide as a catalyst,
Alternatively, it is necessary to use special hydroxylamine derivatives that are difficult to obtain industrially, or to use an expensive dehydrating agent in an amount equal to or more than the aldehyde.
None of these methods are satisfactory for implementation as an industrial process. The present inventors have developed a reaction to obtain a nitrile from an aldehyde and an inorganic acid salt of hydroxylamine (one-step method).
As a result of detailed studies, it was surprisingly discovered that a nitrile can be easily obtained by heating and mixing an aldehyde and an inorganic acid salt of hydroxylamine in the presence of a solvent capable of azeotroping with water. That is, in the dehydration reaction of an aldehyde and an inorganic acid salt of hydroxylamine to a nitrile, the present invention quickly azeotropically distills water generated as the reaction progresses out of the reaction system together with a solvent that is azeotropic with water. As a result, the dehydration reaction can be achieved without adding a catalyst or dehydrating agent, and furthermore, by adding a small amount of amides to the reaction system, the selectivity from aldehyde to nitrile can be improved, achieving the desired goal. The present invention relates to a method characterized in that a nitrile is obtained in high yield. The method of the present invention was previously applied for by the present inventors.
The azeotropic dehydration method and the addition of an amide in the step method are the same in terms of effect and methodology, but the azeotropic dehydration method and the addition of an amide are also used when synthesizing a nitrile from an aldehyde and a hydroxylamine/inorganic acid salt in one step. It was unimaginable that it would be effective. Furthermore, there is a big difference in that the two-stage method requires the addition of an acid catalyst separately, whereas the one-stage method of the present invention does not require the addition of an acid catalyst.
This is presumably due to the following reasons. In other words, even in the one-stage process, assuming that the reaction mechanism goes through an oxime intermediate, an acid catalyst would be required for the dehydration reaction (according to conventional knowledge), but in the one-stage process, an acid catalyst would be required for the dehydration reaction, but in the one-stage process, aldehyde and The idea is that the inorganic acid that would be liberated at the same time as the oxime is produced from the hydroxylamine inorganic acid salt plays the role of an acid catalyst and produces a nitrile. It is believed that the effect of azeotropic dehydration in the method of the present invention is to prevent the action of the acid catalyst from being weakened by the produced water and to shift the equilibrium toward nitrile production. On the other hand, the effect of amides useful for improving reaction selectivity is considered as follows. That is, one is to control the acid strength of the acid catalyst, and the other is to control the solubility. For example, when hydroxymamine hydrochloride is used as the hydroxymamine inorganic acid salt, this may be because the acid strength of hydrogen chloride liberated as the reaction progresses is relatively mild, or because some HCl gas is released during the azeotropic reaction. Nitrile can sometimes be obtained with good selectivity even without the addition of amides, perhaps because it escapes from the system as Otherwise, the selectivity of the reaction decreases slightly. The reason why the effect of adding amides is especially remarkable when using this hydroxylamine sulfate is presumed to be due to the neutralizing effect of amides on sulfuric acid. Furthermore, when using an aqueous solution of hydroxylamine/sulfate, the reaction system becomes a two-layer system with the azeotropic solvent, hydrocarbon or halogenated hydrocarbon, as the upper layer (the aldehyde is distributed in both layers). It can also be considered that amides are useful in improving the contact between the two layers. Examples of amides used in this reaction include formamide, N-methylformamide, N,N
- Dimethylformamide, acetamide, N-methylacetamide, N,N-dimethylacetamide, N-methylpyrrolidone, hexamethylphosphoric triamide (HMPA), etc., and the amount used is 0.05 part to 1 part of aldehyde.
1.5 parts, preferably 0.1 to 0.75 parts. Examples of solvents that are azeotropic with water include benzene, toluene, xylene, chlorobenzene, and heptane. The reaction temperature is the temperature at which the azeotropic solvent and water are azeotropically distilled out of the system depending on the reaction conditions. Generally, it will be between 60℃ and 120℃. The reaction is usually carried out under normal pressure, but it can also be carried out under increased pressure or reduced pressure. Specific examples of substituted or unsubstituted aryl aldehydes represented by the general formula () that are the subject of the present invention include (o-, m-, p-)oxybenzaldehyde, (o-, m-, p-) nitro Benzaldehyde, (o-,m-,p-)cyanobenzaldehyde, (o-,m-,p-)methoxybenzaldehyde, (o-,m-,p-)acetoxybenzaldehyde, (o-,m-,p- ) formylbenzamide, (o-,m-,p-)formyl-N,N-dimethylbenzamide, (o-,m-,
p-) Chlorbenzaldehyde, (2,4-,2,
5-,2,6-,3,4-)dichlorobenzaldehyde, (o-,m-,p-)brombenzaldehyde, (2,4-,2,5-,2,6-,3,
4-) Dibromobenzaldehyde or substituted arylbenzaldehyde having two or more types of the above substituents. Among them, p-oxybenzaldehyde and p-nitrobenzaldehyde are particularly effective for the method of the present invention. The inorganic acid salt of hydroxylamine used in the present invention is hydroxylamine sulfate or hydroxylamine hydrochloride. The nitrile obtained by the method of the present invention can be easily recovered from the reaction system by operations such as extraction or distillation, and depending on the purpose of use, it can be further purified by known purification techniques. The present invention will be described in detail below using specific examples, but the present invention is not limited thereto. Example 1 P-oxybenzaldehyde in a 50ml flask
503 mg of hydroxylamine hydrochloride, 323 mg of hydroxylamine hydrochloride, and 10 ml of toluene were charged, a Dean Stark dehydrator was attached to the flask, and the water in the distillate was decomposed by heating for 4 hours while stirring with a magnetic stirrer, and the toluene was refluxed. After the reaction was completed, water and methyl isobutyl ketone were added to the reaction solution, and the mixture was stirred and then separated. The aqueous layer was extracted again with methyl isobutyl ketone, combined with the previous organic layer, and subjected to gas chromatography (5% PEG20M, 0.5 m, 190° (held for 4 minutes) to 220° (held for 5 minutes), 2°C/min). The product was analyzed by . As a result of analysis, the conversion rate of p-oxybenzaldehyde was 100%, p-cyanophenol was 449 mg (yield 91%), and p-oxybenzaldehyde oxime was 6.1 mg (yield 1.1).
%) was found to be generated. Example 2 Using 1.0 g of p-oxybenzaldehyde, 768 mg of hydroxylamine sulfate and 10 ml of toluene,
The reaction was carried out in the same manner as in Example 1 except that the reaction time was changed to 30 minutes. As a result, it was found that the conversion rate of p-oxybenzaldehyde was 100%, the yield of p-cyanophenol was 72%, and the yield of p-oxybenzaldehyde oxime was 0%. Examples 3-8 1.0 g of p-oxybenzaldehyde, 672 mg of hydroxylamine sulfate, 10 ml of toluene and
The reaction was carried out in the same manner as in Example 2, except that the amide, reaction temperature, and reaction time shown in the table were used, and the results shown in Table 1 were obtained.

【表】 実施例 9 p−オキシベンズアルデヒド300g、10%ヒド
ロキシルアミン硫酸塩水溶液72ml(ヒドロキシル
アミン含有量0.247mol)、ホルムアミド15ml、ト
ルエン300mlを500ml4口フラスコに仕込み、実施
例1と同様の反応装置を用い110℃で4時間反応
した。反応終了後28%苛性ソーダ水溶液9.2gと水
25mlを加え撹拌したところ、反応液は3層に分離
し、最上層と中間層には生成したp−シアノフエ
ノールのうちの99%が存在し、水層には1%のp
−シアノフエノールが含まれていた。尚、p−オ
キシベンズアルデヒドの転化率は100%、p−シ
アノフエノールの収率は94%、p−オキシベンズ
アルデヒドオキシムの収率は0.2%であつた。 実施例 10 p−ニトロベンズアルデヒド501mg、ヒドロキ
シルアミン硫酸塩272mg、DMF0.1ml、およびト
ルエン5mlを25mlフラスコに仕込み、実施例1と
同様の反応装置を用い撹拌下に6時間加熱還流し
た。反応終了後実施例1と同様の後処理を行い、
ガスクロマトグラフイー分析を行つた結果、p−
ニトロベンズアルデヒドの転化率は88%、p−ニ
トロベンゾニトリルの収率は80%であることが判
つた。
[Table] Example 9 300 g of p-oxybenzaldehyde, 72 ml of 10% hydroxylamine sulfate aqueous solution (hydroxylamine content 0.247 mol), 15 ml of formamide, and 300 ml of toluene were charged into a 500 ml 4-necked flask, and a reaction apparatus similar to that of Example 1 was set up. The reaction was carried out for 4 hours at 110°C. After the reaction is complete, add 9.2g of 28% caustic soda aqueous solution and water.
When 25 ml of p-cyanophenol was added and stirred, the reaction solution separated into three layers, with 99% of the produced p-cyanophenol present in the top layer and middle layer, and 1% p-cyanophenol in the aqueous layer.
- Contains cyanophenols. The conversion rate of p-oxybenzaldehyde was 100%, the yield of p-cyanophenol was 94%, and the yield of p-oxybenzaldehyde oxime was 0.2%. Example 10 501 mg of p-nitrobenzaldehyde, 272 mg of hydroxylamine sulfate, 0.1 ml of DMF, and 5 ml of toluene were charged into a 25 ml flask, and heated under reflux for 6 hours with stirring using the same reaction apparatus as in Example 1. After the reaction was completed, the same post-treatment as in Example 1 was carried out,
As a result of gas chromatography analysis, p-
It was found that the conversion of nitrobenzaldehyde was 88% and the yield of p-nitrobenzonitrile was 80%.

Claims (1)

【特許請求の範囲】 1 一般式()で示されるアルデヒド(式中、
Rは置換あるいは無置換アリール基を表わす。) RCHO () とヒドロキシルアミンの無機酸塩とから対応する
ニトリル類を合成する反応に於て、加熱した反応
器中において、反応の進行と共に生ずる水を水と
共沸する溶媒と共に反応系外へ共沸留去すること
を特徴とするニトリル類の製造法。 2 ニトリル類を合成する反応をアミド類の存在
下に行う特許請求の範囲第1項記載のニトリル類
の製造法。 3 一般式()で示される置換アリール基の置
換基が、ヒドロキシル基、ニトロ基、シアノ基、
アルコキシル基、アルコキシカルボニル基、アミ
ド基あるいはハロゲン原子である特許請求の範囲
第1または2項記載の方法。 4 一般式()で示される置換アリールアルデ
ヒドがバラヒドロキシベンズアルデヒドであり、
それから得られるニトリル化合物がバラシアノフ
エノールである特許請求の範囲第1または2項記
載の方法。 5 アミド類が、ホルムアミド、N−メチルホル
ムアミド、N,N−ジメチルホルムアミド、アセ
トアミド、N−メチルアセトアミド、N,N−ジ
メチルアセトアミド、N−メチルピロリドンある
いはヘキサメチルホスホリツクトリアミドである
特許請求の範囲第2、3または4項記載の方法。 6 水と共沸する溶媒が、ベンゼン、トルエン、
キシレン、クロルベンゼンあるいはヘプタンであ
る特許請求の範囲第1、2、3、4または5項記
載の方法。
[Claims] 1 Aldehyde represented by the general formula () (in the formula,
R represents a substituted or unsubstituted aryl group. ) In the reaction of synthesizing the corresponding nitriles from RCHO () and an inorganic acid salt of hydroxylamine, water generated as the reaction progresses in a heated reactor is discharged from the reaction system together with a solvent that is azeotropic with water. A method for producing nitriles, characterized by azeotropic distillation. 2. The method for producing nitriles according to claim 1, wherein the reaction for synthesizing nitriles is carried out in the presence of amides. 3 The substituent of the substituted aryl group represented by the general formula () is a hydroxyl group, a nitro group, a cyano group,
The method according to claim 1 or 2, which is an alkoxyl group, an alkoxycarbonyl group, an amide group, or a halogen atom. 4 The substituted aryl aldehyde represented by the general formula () is parahydroxybenzaldehyde,
3. The method according to claim 1, wherein the nitrile compound obtained therefrom is balacyanophenol. 5 Claims in which the amides are formamide, N-methylformamide, N,N-dimethylformamide, acetamide, N-methylacetamide, N,N-dimethylacetamide, N-methylpyrrolidone, or hexamethylphosphorictriamide. The method according to item 2, 3 or 4. 6 Solvents that azeotrope with water include benzene, toluene,
The method according to claim 1, 2, 3, 4 or 5, wherein xylene, chlorobenzene or heptane is used.
JP5574182A 1981-12-02 1982-04-02 Preparation of nitrile Granted JPS58172357A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP5574182A JPS58172357A (en) 1982-04-02 1982-04-02 Preparation of nitrile
US06/444,046 US4456562A (en) 1981-12-02 1982-11-23 Process for producing nitriles
DE8282110886T DE3270799D1 (en) 1981-12-02 1982-11-24 A process for producing nitrile compounds
EP82110886A EP0080700B2 (en) 1981-12-02 1982-11-24 A process for producing nitrile compounds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5574182A JPS58172357A (en) 1982-04-02 1982-04-02 Preparation of nitrile

Publications (2)

Publication Number Publication Date
JPS58172357A JPS58172357A (en) 1983-10-11
JPH0256345B2 true JPH0256345B2 (en) 1990-11-29

Family

ID=13007277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5574182A Granted JPS58172357A (en) 1981-12-02 1982-04-02 Preparation of nitrile

Country Status (1)

Country Link
JP (1) JPS58172357A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63145262A (en) * 1986-12-08 1988-06-17 Central Glass Co Ltd Production of trifluoromethylbenzonitrile
JP4538993B2 (en) * 2001-06-26 2010-09-08 宇部興産株式会社 Process for producing β-ketonitrile derivatives
JP2009126785A (en) * 2007-11-19 2009-06-11 Mitsubishi Gas Chem Co Inc Method for producing 2-iodo-3,4-dimethoxybenzonitrile
JP2009126784A (en) * 2007-11-19 2009-06-11 Mitsubishi Gas Chem Co Inc Method for producing 2-iodo-3,4-dimethoxybenzonitrile
CN109593073A (en) * 2019-01-22 2019-04-09 河北工业大学 A kind of method that 2,5- furans dicarbaldehyde catalyzes and synthesizes 2,5- dicyano furans

Also Published As

Publication number Publication date
JPS58172357A (en) 1983-10-11

Similar Documents

Publication Publication Date Title
EP0566468B1 (en) Process for the preparation of a biphenyl derivative
Hajipour et al. Zr (HSO 4) 4 catalyzed one-pot strecker synthesis of α-amino nitriles from aldehydes and ketones under solvent-free conditions
CN115286514B (en) Preparation method of 4' -chloro-2-aminobiphenyl sulfate
EP0080700B2 (en) A process for producing nitrile compounds
Sharghi et al. Titanium oxide (TiO2) catalysed one-Step Beckmann rearrangement of aldehydes and ketones in solvent free conditions
JPH0256345B2 (en)
JP2004502765A (en) Method for producing 2-alkyl-3-aryl- or -heteroaryloxaziridine and novel 2-alkyl-3-aryloxaziridine
WO2005110962A1 (en) Process for producing adipic acid
US3883590A (en) Preparation of n-alkylarylcarboxamides
CN115108976A (en) Method for preparing pyridine carboxamide through one-step oxidative amidation
JP3806962B2 (en) Method for producing 3,5-bis (trifluoromethyl) bromobenzene
JPH0262854A (en) Production of substituted phenoxyethylamines
JPH0560821B2 (en)
US5424436A (en) Processes for the synthesis of unsymmetrical secondary amines
JPH0259144B2 (en)
JP3130650B2 (en) Method for producing 5-phenylhydantoin
JP4218277B2 (en) Method for producing amide compound
JP2004059553A (en) Method for producing amide compound
KR20020019464A (en) Process for producing amide compound
JPS6238346B2 (en)
JPH03271273A (en) Production of 2-chloro-5-(aminomethyl)pyridine
Rondestvedt Jr Aminations with ammonia and formamide. Synthesis of terephthalamic acid and of p-nitroaniline
JP2003238520A (en) Production of sulfonic acid and method for producing amide using the same
JPH0987214A (en) Production of 4,4'-bis(chloromethyl)biphenyl
JP2002234870A (en) Method for producing amide compound