JPH0256130A - Optical ring network - Google Patents

Optical ring network

Info

Publication number
JPH0256130A
JPH0256130A JP63206391A JP20639188A JPH0256130A JP H0256130 A JPH0256130 A JP H0256130A JP 63206391 A JP63206391 A JP 63206391A JP 20639188 A JP20639188 A JP 20639188A JP H0256130 A JPH0256130 A JP H0256130A
Authority
JP
Japan
Prior art keywords
optical
frequency
nodes
node
demultiplexers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63206391A
Other languages
Japanese (ja)
Inventor
Kiyoshi Nosu
野須 潔
Hiroshi Toba
弘 鳥羽
Kazuhiro Oda
一弘 織田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP63206391A priority Critical patent/JPH0256130A/en
Publication of JPH0256130A publication Critical patent/JPH0256130A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0278WDM optical network architectures
    • H04J14/0283WDM ring architectures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0241Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths
    • H04J14/0242Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON
    • H04J14/0245Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for downstream transmission, e.g. optical line terminal [OLT] to ONU
    • H04J14/0246Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for downstream transmission, e.g. optical line terminal [OLT] to ONU using one wavelength per ONU
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0241Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths
    • H04J14/0242Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON
    • H04J14/0249Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for upstream transmission, e.g. ONU-to-OLT or ONU-to-ONU
    • H04J14/025Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for upstream transmission, e.g. ONU-to-OLT or ONU-to-ONU using one wavelength per ONU, e.g. for transmissions from-ONU-to-OLT or from-ONU-to-ONU

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

PURPOSE:To eliminate need for giving an address to a transmission signal by allocating a specific optical frequency to each node so as to correspond the address of each node to the optical frequency thereby applying the communication between nodes. CONSTITUTION:Optical transmission lines 1, 2 and plural communication terminal equipment nodes 61-6n are connected by optical multiplexers/demultiplexers 51-5n whose transparent frequency is variable and optical multiplexers/ demultiplexers 41-4n whose transparent frequency is fixed. Each one frequency is allocated to the nodes 61-6n and the optical multiplexers/demultiplexers 41-4n used as a demultiplexer belonging to the node are fixed to the frequency. The accessing between nodes is implemented by tuning the optical multiplexers/ demultiplexers 51-5n used as insertion equipments having a sender side optical source frequency to the transparent frequency. Since it is not required to give addressing to the transmission signal in this way, there is no restriction in number of nodes.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、複数のノードが共通の光7アイパ伝送路を用
いて、ノード開通信を行なう光通信方式に関するもので
あって、特に同一伝送路に従来より多数のノードを接続
することの可能な光源状形通信方式に係る。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to an optical communication system in which a plurality of nodes perform node open communication using a common optical 7-IPA transmission path, and particularly relates to an optical communication system in which a plurality of nodes perform node open communication using a common optical The present invention relates to a light source-shaped communication system that is capable of connecting a larger number of nodes to a network than before.

光ファイバを使用した環状形通信方式は、動画、高速デ
ータ等広帯域の信号にユーザからアクセスすることの可
能な広帯域ユーザ・網インタフエースの実現法の一種と
して有用である。
A circular communication system using optical fibers is useful as a method for realizing a broadband user-network interface that allows users to access broadband signals such as moving images and high-speed data.

〔従来の技術〕[Conventional technology]

光源軟綱は、第6図に示すような基本構成をとろ。 The light source soft rope should have the basic configuration shown in Figure 6.

同図において、100はセンタ、101〜103は通信
端末、104 .105は光(ファイバ)線路を表わし
ている。
In the figure, 100 is a center, 101 to 103 are communication terminals, 104 . 105 represents an optical (fiber) line.

センタ100と通信端末101〜103は、光線路10
4  105で環状に結ばれている。
The center 100 and the communication terminals 101 to 103 are connected to the optical line 10
4 105 are connected in a ring.

従来この種の網では、各通信端末は、第7図に構成を示
すような光・電気結合回路を有するものが多かった。
Conventionally, in this type of network, each communication terminal often had an optical/electrical coupling circuit as shown in FIG.

同図において、106  107は電気・光変換部(図
においては略号にてEloと表示)、110 .111
は元系制御部、108 .109は光・電気変換部(図
においては略号にてQ/Eと表示)、112は端末制御
部を表わしている。
In the figure, 106, 107 are electrical/optical converters (abbreviated as Elo in the figure), 110. 111
is the original control unit, 108. Reference numeral 109 represents an optical/electrical conversion unit (abbreviated as Q/E in the figure), and 112 represents a terminal control unit.

光線路104を伝搬する光信号は、光・電気変換部10
8で電気信号に変換され、端末制御部112からの信号
が、元糸制御部111で重畳され、電気・光変換部10
7で再び光信号に変換されて、光線路105上を伝搬す
る。
The optical signal propagating through the optical path 104 is transmitted through the optical-to-electrical converter 10
8, the signal from the terminal control section 112 is superimposed on the original yarn control section 111, and the electrical/optical conversion section 10
At step 7, the signal is converted into an optical signal again and propagated on the optical path 105.

この上うな光ループ網では、環状に結合された通信端末
の内−つでも障害があるとループ全体の通信が出来なく
なる。
Furthermore, in such an optical loop network, if any one of the communication terminals connected in a ring has a failure, communication throughout the loop becomes impossible.

この欠点を除くため、第6図に示したように光線路を二
重ループ化することが従来行なわれている。
In order to eliminate this drawback, conventional practice has been to form the optical path into a double loop as shown in FIG.

すなわち、光線路104  105を用いて相互に逆方
向の二つの通信路を作り、通常はその内の一つを用いて
通信を灯ない、障害時は、二つの通信路を用いて通信を
行なっている。
That is, optical lines 104 and 105 are used to create two communication paths in opposite directions, and normally one of them is used to turn off communication, but in the event of a failure, communication is performed using the two communication paths. ing.

同図に示すように、このような従来の構成においては、
光回路に識別機能がないため、時分割された送信信号の
先頭に送り先のアドレスをつけることにより、受信側で
必要な信号かどうかを区別していた。
As shown in the figure, in such a conventional configuration,
Since optical circuits do not have an identification function, the receiving side can distinguish whether the signal is needed by adding the destination address to the beginning of the time-divided transmission signal.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述したような従来の光源状形通信網においでは、送信
信号の先頭に送り先のアドレスを付けなければならない
という制御上の煩わしさがあるにのため、システムの拡
張性、高速性、耐高トラヒック性に限界があり、また、
接続可能なノード数が制約を受けた。
In the conventional light source type communication network as described above, there is a control problem in that the destination address must be added to the beginning of the transmitted signal. There are limits to sexuality, and
The number of nodes that can be connected was restricted.

本発明は、このような従来の方式の欠点に鑑み、送信信
号にアドレスをつける必要がなく、ノード数の制約を受
けることのない光源状形通信方式を提供することを目的
としている。
SUMMARY OF THE INVENTION In view of the drawbacks of the conventional methods, it is an object of the present invention to provide a light source type communication method that does not require addresses to be attached to transmission signals and is not limited by the number of nodes.

〔課題を解決するための手段〕[Means to solve the problem]

本発明によれば、上述の目的は、前記特許請求の範囲に
記載した手段により達成される。
According to the invention, the above-mentioned object is achieved by the means specified in the claims.

すなわち、本発明は、センタ/−ドと複数の通信端末等
のノードが光線路を介して環状に結合されて成る光環状
網形の通信系であって、各ノードに光伝送路上の光信号
を抽出し、あるいは、光伝送路上に光信号を送出するた
めの光分岐・挿入器と、発振光の周波数を変化せしめ得
る光源とを具備せしめ、前記光分岐・挿入器として光合
分波器を使用するととらに、各ノードごとに固有の少な
くとも一つの光周波数を割り当て、各7一ド間で通信を
行なう光源状網である。
That is, the present invention provides an optical ring network communication system in which nodes such as a center node and a plurality of communication terminals are connected in a ring via optical lines, and each node receives an optical signal on an optical transmission path. or an optical multiplexer/demultiplexer for extracting the optical signal or transmitting an optical signal onto an optical transmission path, and a light source capable of changing the frequency of the oscillated light, and using an optical multiplexer/demultiplexer as the optical multiplexer/demultiplexer. In addition, it is a light source network that allocates at least one unique optical frequency to each node and communicates between each node.

〔作 用〕[For production]

本発明は、各信号を光周波数多重し、上述したように各
ノードでの光分岐・挿入器として光合分波器を使用する
ものであって、光分岐・挿入器が原理的に無損失である
こと、送信信号に送り先のアドレスを付ける必要のない
こと等の点において、従来の技術とは異なるものである
The present invention optically frequency multiplexes each signal and uses an optical multiplexer/demultiplexer as an optical drop/adder at each node as described above, and the optical drop/dropper is lossless in principle. This technology differs from conventional technology in that there is no need to attach a destination address to a transmitted signal.

そのため、本発明によれば、ノード数の制約がなく、シ
ステムの拡張性の高い高性能の通信系を構築することが
可能となる。
Therefore, according to the present invention, there is no restriction on the number of nodes, and it is possible to construct a high-performance communication system with high system expandability.

〔実施例〕〔Example〕

第1図は、本発明の一実施例の光源状形通信網の構成を
示す図である。
FIG. 1 is a diagram showing the configuration of a light source-shaped communication network according to an embodiment of the present invention.

通信網全体の構成は、先に示した第6図と同じである。The overall configuration of the communication network is the same as that shown in FIG. 6 above.

同図において、1,2は光7フイバ伝送路を表わしてお
り、3はセンタノード、4.〜4n光分岐器として用い
る光合分波器、51〜5nは光挿入器として用いる光合
分波器、61〜6゜は通信端末ノードを表わしている。
In the figure, 1 and 2 represent seven optical fiber transmission lines, 3 is a center node, 4. -4n optical multiplexer/demultiplexers used as optical splitters, 51-5n optical multiplexer/demultiplexers used as optical adders, and 61-6° represent communication terminal nodes.

同図において、光分岐器4、〜4oは透過周波数を固定
した光合分波器であり、光挿入器5〜5nは透過周波数
が可変の光合分波器である。
In the figure, optical splitters 4, to 4o are optical multiplexers/demultiplexers with fixed transmission frequencies, and optical adders 5 to 5n are optical multiplexers/demultiplexers with variable transmission frequencies.

本実施例では、各ノードに一つずつ周波数(f、   
f2.  ・・・・・・ 、f、)を割り当て、そのノ
ードに属する分岐器として用いる光合分波器の透過周波
数をその値に固定する。ノード間のアクセスは送り側の
光源周波数と挿入器として用いる光合分波器の透過周波
数を同調することにより可能である。
In this example, each node has one frequency (f,
f2. ..., f,), and fix the transmission frequency of the optical multiplexer/demultiplexer used as a splitter belonging to that node to that value. Access between nodes is possible by tuning the transmitting side light source frequency and the transmission frequency of the optical multiplexer/demultiplexer used as an inserter.

例えば、ノード6゜から61にアクセスするには、まず
、ノード6□の光合分波器5□の透過周波数をflに同
y4させ、ノード6□の光源周波数をflにしで送信す
る。ノード6、の光合分波器41は予めf、のみ透過す
るように設。
For example, in order to access 61 from node 6°, first, the transmission frequency of optical multiplexer/demultiplexer 5□ of node 6□ is set to y4 to be fl, and the light source frequency of node 6□ is set to fl and is transmitted. The optical multiplexer/demultiplexer 41 of the node 6 is set in advance to transmit only f.

定されており、ノード6□から送信された周波数F、の
信号を選択的に受信することができる。
It is possible to selectively receive the signal of frequency F transmitted from node 6□.

半導体レーザを光源とした場合、光源周波数の同調は温
度やバイアス電流を変化させることにより可能である。
When a semiconductor laser is used as a light source, the light source frequency can be tuned by changing the temperature and bias current.

第2図は/−ド内の装置構成の例を示すブロック図であ
る。
FIG. 2 is a block diagram showing an example of the device configuration within the /-domain.

同図において7,8は元系制御部、9は共通制御部、1
0は光・電気変換部(図においては略号にてO/Eと表
示)、11は電気・光変換部(図においては略号にてE
loと表示)を表わしている。
In the same figure, 7 and 8 are elementary control units, 9 is a common control unit, and 1
0 is an optical/electrical converter (abbreviated as O/E in the figure), and 11 is an electrical/optical converter (abbreviated as E in the figure).
(displayed as lo).

第3図は、光分岐・挿入器用光合分波器として用いる光
導波路形の二重リング共振話形チャネル分波器の構成の
例を示す図であって、12は光導波路、13.  13
2はリング形光導波路、14は熱電極、15はリード線
、16は光方向性結合器を表わしている。
FIG. 3 is a diagram showing an example of the configuration of an optical waveguide type double ring resonant spoken channel demultiplexer used as an optical multiplexer/demultiplexer for an optical drop/dropper. 13
2 represents a ring-shaped optical waveguide, 14 a thermal electrode, 15 a lead wire, and 16 an optical directional coupler.

本二重すング形チャネル分波器では、リング導波路の直
径が互いに異なっており、また、共振周波数間隔は各々
のリングの共振周波数間隔の最小公倍数となる。
In this dual ring type channel splitter, the diameters of the ring waveguides are different from each other, and the resonant frequency interval is the least common multiple of the resonant frequency intervals of each ring.

また、共振周波数の周朋は、導波路の伝搬定数(等何月
折率)を変化することにより可能であり、実際にはtt
S3図に示すように、導波路上に熱変調、あるいは電気
光学効果による変調等を行なうための電極を設定するこ
とにより実現できる。
In addition, the frequency of the resonant frequency can be adjusted by changing the propagation constant (equal index of refraction) of the waveguide, and in reality, it is
As shown in Fig. S3, this can be realized by setting electrodes on the waveguide for performing thermal modulation or modulation by electro-optic effect.

第4図は、第3図に示、した二重リング共振話形チャネ
ル分波器の透過損失の周波数依存性を模式的に示したも
のである。
FIG. 4 schematically shows the frequency dependence of the transmission loss of the double ring resonant spoken channel splitter shown in FIG.

透過損失は、一定の周波数間隔ΔFで繰り返し零となる
。従って、周波数多重を行なうために使用可能な周波数
帯域は最大ΔFとなる。
The transmission loss repeatedly becomes zero at constant frequency intervals ΔF. Therefore, the maximum frequency band available for frequency multiplexing is ΔF.

また、低透過損失領域の幅をΔfとすれば周波数多重可
能なチャネル数NはN=ΔF/Δfとなる。
Further, if the width of the low transmission loss region is Δf, the number N of channels that can be frequency multiplexed is N=ΔF/Δf.

tlS5図はΔF = 40 G Hz″ChCh設計
重リング共振話形チャネル分波器の透過損失の周波数依
存性の計算例を示したものである。
Figure tlS5 shows an example of calculating the frequency dependence of the transmission loss of a ΔF = 40 GHz'' ChCh designed double ring resonant spoken channel duplexer.

本計算例では、屈折率1.46の石英系光導波路を仮定
しており、リング導波路の半径は、各々5736.8μ
m、6556.3μ鶴、各々のリング導波路と入出力光
導波路の電力結合係数に1は0.12、 リング導波路
間の電力結合係数に2はo、ooeである。
In this calculation example, a silica-based optical waveguide with a refractive index of 1.46 is assumed, and the radius of each ring waveguide is 5736.8μ.
m, 6556.3 μTsuru, 1 is 0.12 for the power coupling coefficient between each ring waveguide and input/output optical waveguide, and 2 is o, ooe for the power coupling coefficient between ring waveguides.

本計算例では、クロストークの最悪値は、14dBであ
り、クロストークによる劣化は、殆ど生じないものと考
えられる。
In this calculation example, the worst value of crosstalk is 14 dB, and it is considered that almost no deterioration due to crosstalk occurs.

また、3dB透過帯域幅Δfは 190MHzであり、
周波数多重可能なチャネル数は210となる。
Also, the 3dB transmission bandwidth Δf is 190MHz,
The number of channels that can be frequency multiplexed is 210.

このことは、従来の光パス方式と比較して、ノード数が
20倍以上と、なることを示している。
This indicates that the number of nodes is 20 times or more compared to the conventional optical path method.

また、本質的には分岐・挿入器による損失の増加はなく
、ノード数の制限要因とはならない。
In addition, there is essentially no increase in loss due to the drop/add device, and it does not become a limiting factor for the number of nodes.

一方、可同調形の光合分波器は、波長分離素子として可
動形の回折格子を使用したり、−重リング共振器により
構成することができる。
On the other hand, a tunable optical multiplexer/demultiplexer can use a movable diffraction grating as a wavelength separation element, or can be configured with a double ring resonator.

しかし、回折格子を用いた光合分波器ではチャネル数が
光ファイバと回折格子との結合損失で制限され、現在ま
でに実現されているものでは、最大20チャネル程度で
ある。
However, in an optical multiplexer/demultiplexer using a diffraction grating, the number of channels is limited by the coupling loss between the optical fiber and the diffraction grating, and the maximum number of channels realized to date is about 20 channels.

また、−重リング共振器で、上記二重リング共振器と同
一のΔFを有するものを作製するためには、リングの半
径を約半分にする必要があり、導波路の曲がりによる放
射損失が着しく増加する可能性がある。そのため、−重
リング共振器の場合も、チャネル数を多くとることが難
しい。
Furthermore, in order to fabricate a double ring resonator with the same ΔF as the double ring resonator described above, the radius of the ring must be approximately halved, and radiation loss due to bending of the waveguide will occur. There is a possibility that it will increase significantly. Therefore, it is difficult to increase the number of channels even in the case of a double ring resonator.

従って、本発明の分岐・挿入器用光合分波器は、第3図
に示したような光導波路二重リング共振器を用いること
が望ましい。
Therefore, it is desirable that the optical multiplexer/demultiplexer for a drop/adder according to the present invention uses an optical waveguide double ring resonator as shown in FIG.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本方式ではノードの7ドレスを光
周波数に対応させるので送信信号に送り先のアドレスを
つける必要がないこと、また二重リング共振器形チャネ
ル分波器を分岐挿入器として使用することにより、挟間
波数間隔で整列した多数の光周波数を原理的には無損失
で選択的に透過することができ、多数のノードを接続す
ること等の利点がある。
As explained above, in this method, the 7 addresses of the node correspond to the optical frequency, so there is no need to attach a destination address to the transmitted signal, and a double ring resonator type channel demultiplexer is used as a drop-adder. By doing so, it is possible in principle to selectively transmit a large number of optical frequencies arranged at narrow wave number intervals without loss, and there are advantages such as connecting a large number of nodes.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の位置実施例の光源状形通信網の構成を
示す図、第2図は/−ド内の装置構成の例を示すブロッ
ク図、第3図は光導波路形二重すング共振器形チャネル
分波器の構成の例を示す図、tJS4図は二重リング共
振器形チャネル分波器の透過損失の周波数依存性を模式
的に示した図、第5図は二重リング共振器形チャネル分
波器の透過損失の周波数依存性の計算例を示す図、第6
図は従来の光源軟綱の基本構成を示す図、第7図は従来
の通信端末の構成を示す図である。 1 2 ・・・・・・光フアイバ伝送路、   3・・
・・・・ センタノード、    4.〜4o ・・・
・・・光分岐器として用いる光合分波器、   51〜
50・・・・・・光挿入器として用いる光合分波器、6
□〜60・・・・・・通信端末ノード、   78・・
・・・・元系制御部、    9 ・・・・・・共通制
御部、10 ・・・・・・光・電気変換部、    1
1 ・・・・・・電気・光変換部、    12 ・・
・・・・光導波路、13、.13□・・・・・・ リン
グ形光導波路、14 ・・・・・・熱電極、    1
5 ・・・・・・ リード線、  16 ・・・・・・
光方向性結合器代理人 弁理士  本  間     
崇ft fz −−−h  −−fn 周 波 数 第 図 周 波 板 (ωな) 洛 図
FIG. 1 is a diagram showing the configuration of a light source type communication network according to an embodiment of the present invention, FIG. tJS4 is a diagram schematically showing the frequency dependence of the transmission loss of a double ring resonator type channel duplexer. Figure 6 showing an example of calculating the frequency dependence of transmission loss of a ring resonator type channel splitter.
The figure shows the basic configuration of a conventional light source soft rope, and FIG. 7 shows the configuration of a conventional communication terminal. 1 2...Optical fiber transmission line, 3...
... Center node, 4. ~4o...
...Optical multiplexer/demultiplexer used as an optical splitter, 51~
50... Optical multiplexer/demultiplexer used as an optical adder, 6
□~60...Communication terminal node, 78...
・・・・Common control unit, 9 ・・・・Common control unit, 10 ・・・・Optical/electric conversion unit, 1
1... Electricity/optical conversion section, 12...
...optical waveguide, 13,. 13□...Ring-shaped optical waveguide, 14...Thermal electrode, 1
5 ・・・・・・Lead wire, 16 ・・・・・・
Optical directional coupler agent Patent attorney Honma
Takashi ft fz ---h --fn Frequency diagram Frequency board (ωna) Raku diagram

Claims (1)

【特許請求の範囲】 センタノードと複数の通信端末等のノードが光線路を介
して環状に結合されて成る光環状網形の通信系であって
、 各ノードに光伝送路上の光信号を抽出し、あるいは、光
伝送路上に光信号を送出するための光分岐・挿入器と、
発振光の周波数を変化せしめ得る光源とを具備せしめ、
前記光分岐・挿入器として光合分波器を使用するととも
に、各ノードごとに固有の少なくとも一つの光周波数を
割り当て、各ノード間で通信を行なうことを特徴とする
光環状網。
[Claims] An optical ring network communication system in which a center node and nodes such as a plurality of communication terminals are connected in a ring via optical lines, and each node extracts an optical signal on the optical transmission path. or an optical branch/adder for sending optical signals onto an optical transmission path;
and a light source capable of changing the frequency of the oscillated light,
An optical ring network characterized in that an optical multiplexer/demultiplexer is used as the optical branch/adder, at least one unique optical frequency is assigned to each node, and communication is performed between the nodes.
JP63206391A 1988-08-22 1988-08-22 Optical ring network Pending JPH0256130A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63206391A JPH0256130A (en) 1988-08-22 1988-08-22 Optical ring network

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63206391A JPH0256130A (en) 1988-08-22 1988-08-22 Optical ring network

Publications (1)

Publication Number Publication Date
JPH0256130A true JPH0256130A (en) 1990-02-26

Family

ID=16522572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63206391A Pending JPH0256130A (en) 1988-08-22 1988-08-22 Optical ring network

Country Status (1)

Country Link
JP (1) JPH0256130A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04369130A (en) * 1991-06-17 1992-12-21 Nippon Telegr & Teleph Corp <Ntt> Optical wavelength multiplex communication system
JPH05102928A (en) * 1991-10-07 1993-04-23 Nippon Telegr & Teleph Corp <Ntt> Optical communication system
JPH07226718A (en) * 1994-02-15 1995-08-22 Nec Corp Optical signal transmission system
US5879639A (en) * 1996-02-06 1999-03-09 Mitsubishi Jukogyn Kabushiki Kaisha Wet flue gas desulfurization system
US6023359A (en) * 1996-10-04 2000-02-08 Nec Corporation Optical wavelength-division multiplex transmission equipment with a ring structure
JP2003018144A (en) * 2001-06-29 2003-01-17 Nec Corp Quantum code multinode network, and method of distributing key on multinode network, and quantum coder
JP2004527945A (en) * 2001-03-09 2004-09-09 ルメンティス アクチボラゲット Flexible WDM ring network
JP2004274636A (en) * 2003-03-12 2004-09-30 Nec Corp Wavelength division multiplex transmission system, and remote apparatus and station apparatus employed for the system
JP2016012840A (en) * 2014-06-30 2016-01-21 富士通株式会社 Optical transmission system, transmitter, receiver, and optical transmission method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56112142A (en) * 1980-02-12 1981-09-04 Toshiba Corp Wave length multistar type network

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56112142A (en) * 1980-02-12 1981-09-04 Toshiba Corp Wave length multistar type network

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04369130A (en) * 1991-06-17 1992-12-21 Nippon Telegr & Teleph Corp <Ntt> Optical wavelength multiplex communication system
JPH05102928A (en) * 1991-10-07 1993-04-23 Nippon Telegr & Teleph Corp <Ntt> Optical communication system
JPH07226718A (en) * 1994-02-15 1995-08-22 Nec Corp Optical signal transmission system
US5879639A (en) * 1996-02-06 1999-03-09 Mitsubishi Jukogyn Kabushiki Kaisha Wet flue gas desulfurization system
US6023359A (en) * 1996-10-04 2000-02-08 Nec Corporation Optical wavelength-division multiplex transmission equipment with a ring structure
JP2004527945A (en) * 2001-03-09 2004-09-09 ルメンティス アクチボラゲット Flexible WDM ring network
JP2003018144A (en) * 2001-06-29 2003-01-17 Nec Corp Quantum code multinode network, and method of distributing key on multinode network, and quantum coder
JP2004274636A (en) * 2003-03-12 2004-09-30 Nec Corp Wavelength division multiplex transmission system, and remote apparatus and station apparatus employed for the system
US7684703B2 (en) 2003-03-12 2010-03-23 Nec Corporation Wavelength division multiplexing transmission system and remote apparatus and station apparatus used therein
US8139940B2 (en) 2003-03-12 2012-03-20 Nec Corporation Wavelength division multiplexing transmission system and remote apparatus and station apparatus used therein
JP2016012840A (en) * 2014-06-30 2016-01-21 富士通株式会社 Optical transmission system, transmitter, receiver, and optical transmission method

Similar Documents

Publication Publication Date Title
CA2154017C (en) Tunable add/drop optical filtering method and apparatus
JP3308525B2 (en) network
US6185023B1 (en) Optical add-drop multiplexers compatible with very dense WDM optical communication systems
US5748349A (en) Gratings-based optical add-drop multiplexers for WDM optical communication system
US5712932A (en) Dynamically reconfigurable WDM optical communication systems with optical routing systems
US5774606A (en) Optical fiber transmission system with a passive optical router
JPH10164021A (en) Optical circuit for wavelength multiplex communication and optical transmission communication system provided with the same
EP1033841B1 (en) Reconfigurable add/drop for optical fiber communication systems
US4775210A (en) Voice and data distribution system with fiber optic multinode star network
JPH0256130A (en) Optical ring network
US6205269B1 (en) Optical add/drop multiplexer
EP1009120A2 (en) Multichannel optical ADD/DROP, multiplexor/demultiplexor
JP2713324B2 (en) Lightwave address system
US6456754B1 (en) WDM transmitter and receiver
JPS63304731A (en) Optical communication method
JPS63318833A (en) Optical communication system
JPH07121140B2 (en) WDM optical switching circuit
JP2658114B2 (en) Wavelength conversion switch
JP2630695B2 (en) Optical communication system
JPH0629925A (en) Telecommunication network
JPS60103835A (en) System for constituting optical switch
JP3318556B2 (en) Communication method
Fujiwara et al. Optical switching in coherent lightwave systems
JP3324605B2 (en) Transmission equipment
CN118671994A (en) Optical up-down wave device, optical up-down wave system and optical communication equipment