JPH0255786A - Method of mixing earth and sand with fibrous material, soil conditioning method, and fiber used therein - Google Patents

Method of mixing earth and sand with fibrous material, soil conditioning method, and fiber used therein

Info

Publication number
JPH0255786A
JPH0255786A JP20715488A JP20715488A JPH0255786A JP H0255786 A JPH0255786 A JP H0255786A JP 20715488 A JP20715488 A JP 20715488A JP 20715488 A JP20715488 A JP 20715488A JP H0255786 A JPH0255786 A JP H0255786A
Authority
JP
Japan
Prior art keywords
sand
earth
mixing
fibrous material
soil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20715488A
Other languages
Japanese (ja)
Other versions
JP2768954B2 (en
Inventor
Kiyoshige Nishibayashi
西林 清茂
Takashi Obinata
隆 小日向
Minoru Maekawa
前川 稔
Tamemaru Ezaki
江嵜 為丸
Yuzuru Sasaki
譲 佐々木
Hiroshi Ogino
博 荻野
Ichiro Hanamori
一郎 花森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Kuraray Co Ltd
Original Assignee
Obayashi Corp
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp, Kuraray Co Ltd filed Critical Obayashi Corp
Priority to JP63207154A priority Critical patent/JP2768954B2/en
Publication of JPH0255786A publication Critical patent/JPH0255786A/en
Application granted granted Critical
Publication of JP2768954B2 publication Critical patent/JP2768954B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)

Abstract

PURPOSE:To homogeneously mix a small amount of fibrous material with earth and sand by subjecting a specified fibrous material together with earth and sand to a centrifugal and vortex diffusion action. CONSTITUTION:0.05-2wt.% fibrous material comprising a monofilament, a multifilament, a tape yarn or a spun yarn, having a fineness of 50-200de and a length of 50-200mm is put into a Loedige mixer equipped with both a blade or shovel which rotates at a relatively slow speed (a peripheral speed of 1-15m/sec) for centrifugal diffusion or agitation of the earth and sand and a chopper which rotates at a high speed (a peripheral speed of 10-100m/sec) to form a vortex therein for diffusion and dispersion of the contents, so that mixing is effected by a centrifugal and vortex diffusion action.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、繊維による土質の補強、改良方法に関し、特
にそのための繊維と土砂の混合方法およびそのための繊
維材料を提供するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method for reinforcing and improving soil quality using fibers, and particularly provides a method for mixing fibers and soil for this purpose, and a fibrous material for this purpose.

〈従来の技術〉 盛土や地盤を引張シ強さを持った木、竹などの天然の材
料で補強し、安定化させる方法は古くから知られておシ
、近年では、合成繊維からなる平面状、帯状、袋状など
の織編布、不織布、ネットなどのいわゆるジオテキスタ
イル、あるいは合成樹脂製ネットいわゆるポリマーグリ
ッド等による補強土工法が開発され、広く適用されてい
る。
<Conventional technology> Methods of reinforcing and stabilizing embankments and ground with natural materials such as wood and bamboo that have tensile strength have been known for a long time, and in recent years, methods of reinforcing and stabilizing embankments and ground with natural materials with tensile strength, such as wood and bamboo, have been known for a long time. Reinforced earthwork methods using so-called geotextiles such as woven and knitted fabrics, non-woven fabrics, nets, etc. in the form of bands, bags, etc., or synthetic resin nets, so-called polymer grids, have been developed and are widely applied.

これらの方法はいずれも盛土等を骨格構造的なもので補
強せんとするもので土質、土壌を改良するものではない
。しかも、これらの補強材は製編織加工など製造、加工
が繁雑で高価なものである。
All of these methods aim to reinforce the embankment etc. with a skeletal structure, and do not improve the soil quality or soil quality. Moreover, these reinforcing materials are expensive and require complicated manufacturing and processing such as weaving and weaving.

またこれらの補強材は、数カに際して特殊な重機を要し
たシ、多くの手間を要し、さらに、土砂に不均等に配列
されるため、同−補強土効果を得る九めKも、材料を多
く使用せねばならず高いコストにつく。
In addition, these reinforcement materials require special heavy equipment and a lot of work, and are arranged unevenly in the soil, so it is difficult to use the materials to achieve the same reinforced soil effect. must be used in large quantities, resulting in high costs.

ところで、特開昭55−167170公報には、土砂等
に連続糸を立体的に混入して拘束する補強土工法が提案
されているが、この方法は、特殊な施工機械が必要であ
シ、シかも大量の土砂と糸とを効率よく均一混合するこ
とが困難である。
By the way, Japanese Patent Application Laid-Open No. 55-167170 proposes a reinforced earth construction method in which continuous thread is mixed three-dimensionally into earth and sand to restrain it, but this method requires special construction machinery. However, it is difficult to efficiently and uniformly mix a large amount of soil and thread.

特開昭57−100212公報には、土砂に合成繊維な
どの短線材を混入した補強土が提案されているが、実際
には短線材を土砂に均一に混合することは、きわめて困
難であるにもかかわらず、該公報には、土砂と短線材の
具体的な混合方法が記載されていない。さらに、この公
報によると短線材は土砂に対して重量比で3〜20%と
、高い比率で混合されているが、場合によっては、繊維
リッチな構造物となり、土質、土壌の改良とはいい難い
ものとなる。
JP-A-57-100212 proposes reinforced soil in which short wire materials such as synthetic fibers are mixed with soil and sand, but in reality it is extremely difficult to uniformly mix short wire materials into soil and sand. However, this publication does not describe a specific method for mixing earth and sand and short wire rods. Furthermore, according to this publication, short wire rods are mixed at a high ratio of 3 to 20% by weight with respect to soil, but in some cases, the result is a fiber-rich structure, which is not good for improving soil quality or soil. It will be difficult.

(発明が解決しようとする課題〉 本発明者らの研究によれば、ある程度の長さを有する短
#!維材料であっても、均一に土砂中に分散混合してい
れば、僅かな量で土質を改良し、安定で補強効果の高い
盛土、地盤を形成することがわかったが、少量の短僚維
を均一に土砂中に混入することは極めて困難であL%に
土木工事用として大量の材料を処理するこけほとんど不
可能でΔ ある。
(Problems to be Solved by the Invention) According to the research conducted by the present inventors, even if a short fiber material having a certain length is dispersed and mixed uniformly in soil, only a small amount It was found that soil quality could be improved and embankments and ground with a stable and highly reinforcing effect could be formed. However, it was extremely difficult to uniformly mix small amounts of short fibers into the earth and sand, so L% was used for civil engineering work. It is almost impossible to process large quantities of material.

本発明は、前記の従来技術の様々な問題点を解決し、効
率的かつ経済的な繊維による土質の補強、改良方法、そ
れらを達成するための繊維と土砂の均等な分散、混合方
法、さらKは安定な盛土、地盤の形成方法およびこれに
適した繊維材料を提供せんとするものである。
The present invention solves the various problems of the prior art as described above, and provides an efficient and economical method for reinforcing and improving soil quality using fibers, a method for uniformly dispersing and mixing fibers and soil, and a method for uniformly dispersing and mixing fibers and soil to achieve the same. K aims to provide a stable embankment, a method for forming the ground, and a fiber material suitable for the same.

〈課題を解決するための手段〉 本発明は、太さ50〜2000デニール、長さ50〜2
00■の繊維材料と土砂とを遠心拡散または攪拌作用お
よび渦流拡散または分散作用にょシ混合することを特徴
とする土砂と繊維材料との混合方法および太さ50〜2
000デニール、長さ50〜200−の繊維材料と土砂
とを遠心・渦流拡散作用KJニジ混合することを特徴と
する土質の改良方法に関する。
<Means for Solving the Problems> The present invention has a thickness of 50 to 2000 deniers and a length of 50 to 2
A method for mixing earth and sand and fiber material characterized by mixing the fiber material of 0.00 ■ and earth and sand using centrifugal diffusion or stirring action and eddy current diffusion or dispersion action, and a method of mixing fibrous material with a thickness of 50 to 2
The present invention relates to a soil improvement method characterized by mixing a fibrous material of 1,000 denier and a length of 50 to 200 mm with earth and sand by centrifugal/vortex diffusion action.

さらに、本発明は、太さ50〜2000デニール、長さ
50〜200−の繊維材料と土砂とを、遠心・渦流拡散
作用により混合した材料を用いることを特徴とする盛土
、地盤形成方法に関し、また、これらの方法に適した太
さ50〜2000デニール、長さ50〜200mの合成
繊維モノフィラメント、マルチフィラメント、テープヤ
ーン−紡績糸からなる土砂混入用繊維材料を提供するも
のである。
Furthermore, the present invention relates to an embankment and ground formation method characterized by using a material obtained by mixing a fibrous material with a thickness of 50 to 2000 deniers and a length of 50 to 200 denier and earth and sand by centrifugal/vortex diffusion action, Further, the present invention provides a fiber material for mixing soil and sand, which is suitable for these methods and is made of synthetic fiber monofilament, multifilament, tape yarn, or spun yarn and has a thickness of 50 to 2000 deniers and a length of 50 to 200 m.

本発明者らは、山土等の土砂にカットされた繊維材料を
均一に分散混合したときの土砂に対する補強効果すなわ
ち土質改良効果について検討した結果、その長さは補強
土効果、土質改良効果に対しては1重要なファクターの
一つであることを見い出した。すなわち、50箇未満で
も補強効果は得られるが、その程度は比較的小さい。と
くに、粘着力の小さい土砂ではその効果が明確になった
The present inventors investigated the reinforcing effect on earth and sand, that is, the soil quality improvement effect, when cut fiber materials are uniformly dispersed and mixed into earth and sand such as mountain soil. We found that this is one of the most important factors. That is, although a reinforcing effect can be obtained even with fewer than 50 points, the degree of reinforcement is relatively small. This effect was especially clear for soil with low adhesive strength.

他方200箇以上においては、これ以上、長くしても補
強効果は大同小異であり、さらに土砂中への均一分散、
混合は極めて困難になると思われた。
On the other hand, at more than 200 points, even if the length is longer than this, the reinforcing effect is the same or slightly different, and furthermore, the reinforcement is uniformly dispersed in the soil,
Mixing was expected to be extremely difficult.

上記のような理由から、繊維材料の長さは、50〜20
0■が有効であり、@に70〜150■が好適な範囲で
あることがわかった。
For the above reasons, the length of the fiber material is 50 to 20
It was found that 0 ■ is effective and @70 to 150 ■ is a suitable range.

しかしながら、前記の長さの繊維材料も、土砂への均一
分散混合の点から考えると必ずしも好適なものとはいえ
ない。
However, the fiber material having the above-mentioned length is not necessarily suitable from the viewpoint of uniform dispersion and mixing into the earth and sand.

本発明者らは、カットされた繊維材料と土砂の実用的な
混合方法について検討した。まず、従来汎用のコンクリ
ートミキテー等を使用した場合、繊維材料と土砂の比重
差が大きすぎるため、繊維材料が上方や横壁部に偏在化
したり、回転体にからみ付いたシして均一な分散、混合
は不可能であった。この場合、長時間混合、攪拌しても
、−!、た、高速攪拌しても同様であった。このような
ことから、通常の混合機を用いる方法では、特にロング
カット長の繊維材料と土砂を均等に分散・混合すること
は不可能と考え、繊維と土砂に三次元流動を与えられる
遠心拡散と渦流拡散を併せ有する混合機に着目し、混合
実験を実施した結果、驚くべきことに、数分間のような
短時間でロングカット長の繊維材料と土砂が均等に分散
・混合し得ることを見い出したのである。この場合、土
砂を入れた混合機に所定量のロングカット長の繊維材料
を分割あるいは一度に全量投入しても、混合性には大差
なく、また、数分間の攪拌、混合のため繊維材料の損傷
による引張強度の低下は10%以下の軽微なものであっ
た。
The present inventors investigated a practical method for mixing cut fiber materials and earth and sand. First, when conventional general-purpose concrete mixers were used, the difference in specific gravity between the fibrous material and the earth and sand was too large, so the fibrous material was unevenly distributed above and on the side walls, or got entangled with the rotating body and was not evenly dispersed. , mixing was not possible. In this case, even if you mix and stir for a long time, -! The same result was obtained even with high-speed stirring. For this reason, we believe that it is impossible to evenly disperse and mix long-cut fiber materials and sand using a method that uses a normal mixer, and we believe that centrifugal diffusion, which can give three-dimensional flow to fibers and sand, is impossible. We focused on a mixer that has both vortex diffusion and vortex diffusion, and as a result of conducting mixing experiments, we surprisingly found that long-cut length fibers and soil could be evenly dispersed and mixed in a short period of time, such as a few minutes. I found it. In this case, even if a predetermined amount of long-cut fiber material is divided into parts or all at once into a mixer containing earth and sand, there is no significant difference in mixability. The decrease in tensile strength due to damage was slight, less than 10%.

このような混合機としては1例えば、混合機内に比較的
低速回転し、土砂を遠心拡散または攪拌する羽根または
ショベルと、高速回転し機内に渦流を形成し、内容物を
拡散分散するチョッパー(小型羽根)を備えたもの、あ
るいは内壁面に攪拌羽根を有する回転ドラム内に高速回
転するチョッパーを備えたものが有効である。その代表
的なものとしては、レーデイゲ社製のレーディゲミキサ
ーがある。
Examples of such mixers are 1, for example, a blade or shovel that rotates at a relatively low speed to centrifugally diffuse or stir the soil, and a chopper (small size) that rotates at high speed to form a vortex inside the mixer to diffuse and disperse the contents. It is effective to use a rotary drum with stirring blades on the inner wall, or a chopper that rotates at high speed within a rotating drum that has stirring blades on its inner wall. A typical example is the Loedige mixer manufactured by Loedige.

ここで遠心拡散とは、混合機内の被混合物を全体的に攪
拌・混合することを意味し、異体的には混合機内寸法(
径)にほぼ近い寸法を有する羽根、ショベルあるいは回
転ドラム内壁面取付の羽根等(羽根、ショベル等の回転
体の最大径の速度)は1〜15m/秒の範囲の比較的低
速回転が好ましい〇 一方、渦流拡散は、被混合物に高度な分散性を与える本
ので、具体的には、混合機内寸法(径)に対し1/3〜
1150寸法(径)の単段、多段あるいは針状羽根(以
下総称してチョッパーと呼ぶ)等が使用可能であ夛、そ
の周速度は10〜100m/秒で、かつ前記遠心拡散の
周速度よシも高速度の超高速回転が好ましい。またこの
チョッパーを複数個設けることは、特に大容量混合の際
に好ましく、有効である。前記したレーデイゲ社製のレ
ーデイゲミキサーは、上記条件を満足するものである。
Here, centrifugal diffusion means stirring and mixing the entire mixture in the mixer.
It is preferable to rotate at a relatively low speed in the range of 1 to 15 m/sec for blades, blades, etc. that are attached to the inner wall of shovels or rotating drums (speed of the maximum diameter of rotating bodies such as blades, shovels, etc.) that have dimensions approximately close to the diameter).〇 On the other hand, eddy current diffusion gives a high degree of dispersibility to the mixed materials, so specifically, it is 1/3 to 1/3 of the internal dimension (diameter) of the mixer
It is possible to use single-stage, multi-stage, or needle-like blades (hereinafter collectively referred to as choppers) with dimensions (diameter) of Also, it is preferable to rotate at a very high speed. Moreover, it is preferable and effective to provide a plurality of choppers, especially when mixing a large amount. The Lödeige mixer manufactured by Lödeige Co., Ltd. mentioned above satisfies the above conditions.

前記のような混合方法を採用するとき、混合機内では土
砂と繊維材料が渦流作用で拡散、分散を繰シ返されなが
ら、全体的に遠心拡散作用によってさらに混合され、均
一に両材料を混合することができるが、繊維材料のカッ
ト長が長い場合、混合中に繊維材料が互いに交絡して、
いわゆるファイバーボール状となシ、均等に分散・混合
できないばか夛でなく、さらに補強効果が顕著に低下す
るという場合がある。
When using the above-mentioned mixing method, the soil and fiber material are repeatedly diffused and dispersed by the vortex action in the mixer, and are further mixed overall by the centrifugal diffusion action, thereby uniformly mixing both materials. However, if the cut length of the fibrous material is long, the fibrous material may become entangled with each other during mixing.
In addition to the so-called fiber ball shape, which cannot be uniformly dispersed and mixed, the reinforcing effect may be significantly reduced.

このような不都合を回避するため1本発明に用いる繊維
材料の太さ(繊維材料が集束体の場合、本発明で言う繊
維材料の太さとは集束体の太さを意味する)は、マルチ
フィラメント系の場合。
In order to avoid such inconveniences, the thickness of the fiber material used in the present invention (if the fiber material is a bundle, the thickness of the fiber material in the present invention means the thickness of the bundle) is a multifilament. In case of system.

100〜2000デニール、モノフィラメント、テープ
ヤーン系では、50〜1000デニールの範囲とするこ
とが好適である。繊維を混合して。
For monofilament and tape yarn systems, the range is preferably from 50 to 1000 deniers. Mix the fibers.

土砂を補強するに際して、繊維の混合比率(wt%)が
同一の場合は、太さが細いほど繊維の表面積が増大し、
それにともなって、繊維と土砂の摩擦力も大になシ、補
強効果は増大する傾向にあるが。
When reinforcing soil and sand, if the fiber mixing ratio (wt%) is the same, the thinner the fiber, the greater the surface area of the fiber.
Along with this, the frictional force between the fibers and the earth and sand also decreases, and the reinforcing effect tends to increase.

上記の範囲以下の太さでは繊維材料同志のからみなどに
より土砂との均一分散・混合効果が低下し、また、上記
の範囲以上では、繊維材料が硬くなシ直線的な状態で分
散・混合されるので補強効果が低下するという問題点を
発生し、これを補うためには繊維の混合比率を増加させ
る必要があシネ経済となる。
If the thickness is below the above range, the fibrous materials will become entangled with each other, reducing the effect of uniformly dispersing and mixing with soil.If the thickness is above the above range, the fibrous materials will not be hard and will not be dispersed and mixed in a straight line. This creates the problem that the reinforcing effect decreases, and in order to compensate for this, it is necessary to increase the blending ratio of fibers.

本発明において使用する繊維材料として肱、前記の長さ
および太さを有するモノフィラメント、マルチフィラメ
ント、テープヤーン、紡績糸が使用される。これらは、
合成繊維、再生繊維、半合成繊維、無機繊維および金属
繊維などからなる物があげられるが、再生繊維や半合成
繊維は、土砂中のバクテリア等により分解劣化されやす
く、ガラス繊維などの無機繊維は土砂に混合時、損傷を
受けやすく、また、金m繊維は土砂中での腐蝕、さらK
は、高価等の問題点がある。ビニロン、ポリエステル、
ナイロン、ポリオレフィン、ポリアクリル繊維等の汎用
的な合成愼維は再生繊維、半合成繊維、無機繊維および
金属繊維にみられる欠点がなく、最も好ましい。
The fiber materials used in the present invention include monofilaments, multifilaments, tape yarns, and spun yarns having the above lengths and thicknesses. these are,
Examples include synthetic fibers, recycled fibers, semi-synthetic fibers, inorganic fibers, and metal fibers. However, recycled fibers and semi-synthetic fibers are easily degraded and degraded by bacteria in soil and sand, while inorganic fibers such as glass fibers are Gold fibers are easily damaged when mixed with soil and sand, and gold fibers are susceptible to corrosion and corrosion in soil.
However, there are problems such as high cost. vinylon, polyester,
General-purpose synthetic fibers such as nylon, polyolefin, and polyacrylic fibers are most preferred because they do not have the drawbacks found in recycled fibers, semi-synthetic fibers, inorganic fibers, and metal fibers.

マルチフィラメントからなる繊維材料は、トータルデニ
ールとしては太いが個々のフィラメントは細く、柔らか
すぎたり、個々のフィラメントがバラけてからまシフア
イバーボールとなったシ分散しK〈い丸め、糊剤付着、
撚シあるいは絡合(インターレース)等により部分的に
集束されているものが良い。特に1通常の方法によるポ
リビニルアルコール、アクリル、デンプン等の糊剤によ
る集束は安価かつ簡単であるので推奨しうる。繊維材料
に対する糊剤の固形分付着量は0.1〜10wtチの範
囲内にあるのがよい。0,1チ未満では、上記のような
問題点が発生する傾向が見られ、10チを超えると繊維
材料が硬直化し、分散・混合は可能であるが補強効果が
低下する。さらに好適な糊剤付着量の範囲は、1〜6 
Wt %であシ、これにより土砂と繊維材料は均一混合
が可能となシ、しかも混合後局部的に繊維がバラけてさ
らに微細に土砂中に入り込み補強効果が増大する。
Fiber materials made of multifilaments may have a thick total denier, but the individual filaments may be thin and too soft, or the individual filaments may fall apart and become tangled fiber balls. ,
It is preferable to use a material that is partially focused by twisting or interlacing. In particular, it is recommended to use a conventional method of binding using a glue such as polyvinyl alcohol, acrylic, or starch because it is inexpensive and simple. The amount of solid content of the sizing agent applied to the fiber material is preferably within the range of 0.1 to 10 wt. If it is less than 0.1 inch, the above-mentioned problems tend to occur, and if it exceeds 10 inch, the fiber material becomes rigid, and although dispersion and mixing are possible, the reinforcing effect decreases. A more preferable range of glue adhesion is 1 to 6.
Wt %, which allows the earth and sand to be mixed uniformly with the fiber material, and furthermore, after mixing, the fibers locally break up and penetrate into the earth and sand more finely, increasing the reinforcing effect.

このような、混合後の繊維材料の一部の単繊維のバラけ
Kよる補強効果の増大は、撚り、絡合を付与したマルチ
フィラメント、紡績糸によっても期待される場合がある
Such an increase in the reinforcing effect due to the dispersion of some of the single fibers of the fiber material after mixing may also be expected by using twisted or entangled multifilaments or spun yarns.

また、テープヤーンとしては、フィルム、布帛等をスリ
ットしたものも使用可能である。
Further, as the tape yarn, it is also possible to use slit films, fabrics, etc.

さらに、繊維材料の土砂への混合比率は、0.05〜2
wt%の範囲内にあるのがよい。0.05wt%未満で
は補強効果が小さく、また、2Wtチを超えると、補強
効果は十分得られるが、繊維材料が嵩高となり、均等な
分散・混合が困難となるばかりでなく、さらに、経済的
に不利となる。好ましくは0.05〜1wt%である。
Furthermore, the mixing ratio of the fiber material to the soil is 0.05 to 2.
It is preferable that the content be within the range of wt%. If it is less than 0.05wt%, the reinforcing effect is small, and if it exceeds 2wt%, a sufficient reinforcing effect can be obtained, but the fiber material becomes bulky, which not only makes uniform dispersion and mixing difficult, but also makes economical be disadvantageous to Preferably it is 0.05 to 1 wt%.

本発明に利用できる土砂は特に制限がなく砂質土でも良
い。これらの土砂に含まれる水分率は土砂と繊維との混
合性に影響を及ぼすので、本発明の効果を得る上で重要
なファクターであるが、その好適な範囲は土砂の種類に
より著しく変化するので一律に規定することはできない
。たとえば、山砂の場合、水分率が2wt%程度以下で
は繊維材料と土砂に適切なる三次元流動状態を付与でき
ず、混合性が低下する。
The soil that can be used in the present invention is not particularly limited and may be sandy soil. The moisture content contained in these soils and sands affects the mixability of the soils and fibers, so it is an important factor in obtaining the effects of the present invention, but the preferred range varies significantly depending on the type of soils. It cannot be specified uniformly. For example, in the case of mountain sand, if the moisture content is less than about 2 wt%, an appropriate three-dimensional flow state cannot be imparted to the fiber material and the earth and sand, resulting in poor mixability.

又、土砂の種類にもよるが40wt%程度以上の含水率
になると繊維材料の回転羽根への絡み付きが多くなると
ともに1土砂の解砕状態が悪くなることにより、均等な
分散・混合が妨げられ、さらに、混合機の消費電力が著
しく大きくなるなどの問題点が生ずる。
Also, depending on the type of soil, if the water content exceeds about 40 wt%, the fibrous material will become more entangled with the rotating blades, and the state of crushing the soil will deteriorate, preventing uniform dispersion and mixing. Furthermore, problems arise such as the power consumption of the mixer becomes significantly large.

混合機の種類はバッチ式でも連続式でもよい。The type of mixer may be a batch type or a continuous type.

連続式混合機の場合は土砂の投入部の上部にベルトフィ
ーダーを設け、ロングカット長の繊維を所定の混率にな
るように連続的に供給する。
In the case of a continuous mixer, a belt feeder is installed above the earth and sand input section to continuously feed long-cut fibers to a predetermined mixing ratio.

本発明における繊維材料と土砂の混合操作は施工現場あ
るいは施工現場から離れた場所でよく、要は、施工ある
いは運搬上の便利さまたは経済性から決定すればよい。
The mixing operation of the fibrous material and earth and sand in the present invention may be performed at the construction site or at a location away from the construction site, and may be determined based on convenience or economy in construction or transportation.

本発明における繊維材料と土砂の混合物は通常の土砂と
同じ扱いが可能であることから、運搬、敷ならし、締固
めなどKよる盛土、地盤形成は通常の土工工事と全く同
じ方法で行うことができる。
Since the mixture of fiber material and earth and sand in the present invention can be treated in the same way as ordinary earth and sand, the embankment and ground formation by K, such as transportation, leveling, and compaction, can be carried out in exactly the same manner as ordinary earthworks. Can be done.

すなわち、運搬はベルトコンベアーあるいはダンプトラ
ック、ブルドーザ−などの運搬機械によって行い、敷な
らしおよび締固めはバックホーなどのショベル系掘削機
、ブルドーザ−などの運搬機械、ローラ、タンパなどの
締固め機械によって行うことができる。
In other words, transportation is performed by belt conveyors, dump trucks, bulldozers, and other transport machines, and leveling and compaction are carried out by backhoes and other shovel-type excavators, bulldozers and other transport machines, and rollers, tampers, and other compaction machines. It can be carried out.

本発明の利用分野としては道路、鉄道、えん堤、宅地造
成などの盛土構造物や地盤の補強等があげられるが、こ
れらは例示であり、これらの分野に必ずしも限定される
ものではない。
Fields of application of the present invention include roads, railways, embankments, embankment structures such as residential land development, and ground reinforcement, but these are merely examples and are not necessarily limited to these fields.

〈発明の効果〉 本発明によれば、前述したように、特定の繊維材料を特
殊な手段により土砂に均等に分散・混合することが可能
となシ、これによって土砂の性質を変化し、著しい補強
効果が得られる。
<Effects of the Invention> According to the present invention, as described above, it is possible to uniformly disperse and mix a specific fiber material into the earth and sand by a special means, thereby changing the properties of the earth and sand and causing significant A reinforcing effect can be obtained.

第−表は各種繊維材料と土砂との分散・混合性および混
合物の3軸圧縮試験結果を示すものである。使用し九混
合機は酉ドイツレーディゲ社のレーデイゲミキサーFM
−130D型である。分散・混合性の測定は、繊維と土
砂を混合後、ふるい分は法で測定した(n=5)。分散
・混合性の判定は繊維の計算添加量に対してバラツキが
±40%以内をOlそれ以外を×とし喪。
Table 1 shows the dispersibility and mixability of various fiber materials and earth and sand, and the triaxial compression test results of the mixtures. The nine mixing machines used are Roedeige mixer FM manufactured by Roedege AG, Germany.
-130D type. Dispersibility and mixability were measured by mixing the fibers and soil, and then measuring the sieve content using the method (n=5). Dispersion/mixability was judged as O if the variation was within ±40% with respect to the calculated addition amount of fiber, and as poor in other cases.

なお、ヒニo ン240d/ 36f、100sc*長
、糊剤3.5%、混率0.3チ、第−表の山砂使用の条
件でソイルミキサーを使用し分散・混合試験を実施した
が、繊維材料は、肉眼的にもほとんど、分散・混合でき
なかった。
In addition, a dispersion/mixing test was conducted using a soil mixer under the conditions of 240d/36f, 100sc* length, 3.5% sizing agent, 0.3cm blending ratio, and using mountain sand as shown in Table 1. The fiber material could hardly be dispersed or mixed visually.

第−表から明らかなようk、少量の繊維材料を山砂に分
散・混合することにより、顕著な補強土効果が得られる
ことがわかる。
As is clear from Table 1, a remarkable soil reinforcement effect can be obtained by dispersing and mixing a small amount of fibrous material into mountain sand.

以下に実施例により、本発明の説明をおこなうが、これ
らは本発明を限定するものではない。
The present invention will be explained below with reference to Examples, but these are not intended to limit the present invention.

〈実施例〉 糊剤を5wt%付着して集束し念ビニロン糸(240デ
ニール/36フイ2メント)を長さ100 w Kカッ
トし、これを第−表のテストで用いた土砂と前記レーデ
イゲミキサーで0,3wt%均等に分散・混合した。こ
の補強土と繊維材料を添加しない土砂のみの場合を斜面
模型実験によプ比較し念。
<Example> A 100 wK length of vinylon thread (240 denier/36 filament 2 ment) was cut with 5 wt % of glue attached and bundled, and this was cut into the earth and sand used in the tests in Table 1 and the above-mentioned ray day. The mixture was evenly dispersed and mixed at 0.3 wt% using a Gemixer. We conducted a slope model experiment to compare this reinforced soil with the case of only earth and sand without the addition of fiber materials.

本実施例に使用したレーディゲミキサーは、混合機内寸
法にほぼ近い寸法を有するショベル、そして混合機内寸
法の約115の径の単段羽根を有するものであシ、遠心
拡散のためのショベルの周速度としてFi4m/秒、渦
流拡散の念めの羽根の周速度としては60m/秒を用い
た。
The Loedige mixer used in this example had a shovel with dimensions almost close to the internal dimensions of the mixer, and a single-stage blade with a diameter of about 115 times the internal dimensions of the mixer. Fi 4 m/sec was used as the circumferential speed, and 60 m/sec was used as the circumferential speed of the blade for vortex diffusion.

斜面模型は幅2.0m、高さt、om、奥行き0,3m
の鋼製の枠とアクリル板から成る土槽である。載荷は第
1図に示すように鉛直載荷と載荷板を水平より25°傾
斜(斜面にほぼ直角)にさせて行った。
The slope model has a width of 2.0 m, a height of t, om, and a depth of 0.3 m.
It is an earthen tank made of a steel frame and an acrylic plate. As shown in Fig. 1, loading was carried out vertically and with the loading plate inclined at 25° from the horizontal (approximately perpendicular to the slope).

第2図および第3図に荷重と変位の関係を示す。Figures 2 and 3 show the relationship between load and displacement.

鉛直載重では変位的10mで、第3図の斜載荷では変位
約5關で降伏点に達し、その後降伏荷重の70〜90チ
程度で変形が増大するのに対して、補強土の場合は、変
位約5u以上でも荷重が増加し続け、10u以上では直
線的に増加している。
With vertical loading, the yield point is reached at a displacement of 10 m, and with diagonal loading as shown in Figure 3, the yield point is reached at about 5 displacements, and then the deformation increases at about 70 to 90 inches of yield load, whereas in the case of reinforced soil, The load continues to increase even when the displacement is about 5u or more, and increases linearly when the displacement is about 10u or more.

変位20 m (約5−のひずみに相当)での荷重は補
強土では土砂のみに比較して鉛直荷重で約2倍、斜荷重
で約3倍になっている。また、土砂のみでは変位約10
闘ですべり面が発生するが補強土では、実験範囲内では
すベシ面は発生しなかった。
The load at a displacement of 20 m (equivalent to a strain of about 5 -) is approximately twice as high in the vertical load and approximately three times as diagonally in the reinforced soil compared to the earth and sand alone. In addition, with only earth and sand, the displacement is approximately 10
A slip surface occurs in the reinforced soil, but no slip surface occurred within the experimental range in the reinforced soil.

この櫟に、土砂に少量の繊維材料を混合することで大き
な補強効果が得られ、しかも従来の補強土方法より簡単
に、経済的に実施することができる。
A large reinforcing effect can be obtained by mixing a small amount of fibrous material with the earth and sand, and it is easier and more economical to implement than conventional reinforced soil methods.

以下余白Margin below

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例に用いた斜面模型の断面図、第2.3図
は斜面が補強土の場合と土砂のみの場合の荷重と斜面変
位の関係を示す図である。 特許出願人 株式会社 り ラ し 株式会社 大 林 組
FIG. 1 is a sectional view of the slope model used in the example, and FIGS. 2.3 are diagrams showing the relationship between load and slope displacement when the slope is made of reinforced soil and when it is made of only earth and sand. Patent applicant RiRashi Co., Ltd. Obayashi Corporation

Claims (1)

【特許請求の範囲】 1)太さ50〜2000デニール、長さ50〜200m
mの繊維材料と土砂とを、遠心・渦流拡散作用により混
合することを特徴とする土砂と繊維材料との混合方法。 2)繊維材料が、モノフィラメント、マルチフィラメン
ト、テープヤーン、紡績糸からなる特許請求の範囲第1
項に記載の土砂と繊維材料との混合方法。 3)繊維材料が、糊剤、撚糸あるいは繊維間絡合により
少なくとも部分的に集束されたマルチフィラメントから
なる特許請求の範囲第1項または第2項に記載の繊維材
料と土砂との混合方法。 4)繊維材料を土砂に対して0.05〜2重量%混合す
る特許請求の範囲第1項、第2項または第3項に記載の
繊維材料と土砂との混合方法。 5)太さ50〜2000デニール、長さ50〜200m
mの繊維材料と土砂とを、遠心・渦流拡散作用により混
合することを特徴とする土質の改良方法。 6)繊維材料が、モノフィラメント、マルチフィラメン
ト、テープヤーン、紡績糸からなる特許請求の範囲第5
項に記載の土質の改良方法。 7)繊維材料が、糊剤、撚糸あるいは繊維間絡合により
少なくとも部分的に集束されたマルチフィラメントから
なる特許請求の範囲第5項または第6項に記載の土質の
改良方法。8)繊維材料を土砂に対して0.05〜2重
量%混合する特許請求の範囲第5項、第6項または第7
項に記載の土質の改良方法。 9)太さ50〜2000デニール、長さ50〜200m
mの繊維材料と土砂とを遠心・渦流拡散作用により混合
した材料を用いることを特徴とする盛土、地盤形成方法
。 10)繊維材料が、モノフィラメント、マルチフィラメ
ント、テープヤーン、紡績糸からなる特許請求の範囲第
9項に記載の盛土、地盤形成方法。 11)繊維材料が糊剤、撚糸あるいは繊維間絡合により
少なくとも部分的に集束されたマルチフィラメントから
なる特許請求の範囲第9項または第10項に記載の盛土
、地盤形成方法。 12)繊維材料を土砂に対して0.05〜2重量%混合
する特許請求の範囲第9項、第10項または第11項に
記載の盛土、地盤形成方法。 13)太さ50〜2000デニール、長さ50〜200
mmの、合成繊維モノフィラメント、テープヤーン、紡
績糸からなる土砂混入用繊維材料。 14)太さ100〜2000デニール、長さ50〜15
0mmの合成繊維マルチフィラメントからなり、糊剤、
撚糸あるいは繊維間絡合によつて少なくとも部分的に集
束している土砂混入用繊維材料。
[Claims] 1) Thickness: 50 to 2000 denier, length: 50 to 200 m
A method for mixing earth and sand and fibrous material, characterized by mixing the fibrous material of m and earth and sand by centrifugal/vortex diffusion action. 2) Claim 1 in which the fiber material is composed of monofilament, multifilament, tape yarn, or spun yarn.
Method of mixing earth and sand with fiber materials as described in Section 1. 3) The method of mixing a fibrous material and earth and sand according to claim 1 or 2, wherein the fibrous material is a multifilament at least partially bundled by a glue, twist, or inter-fiber entanglement. 4) A method for mixing a fibrous material and earth and sand according to claim 1, 2, or 3, wherein the fibrous material is mixed in an amount of 0.05 to 2% by weight based on the earth and sand. 5) Thickness 50-2000 denier, length 50-200m
A method for improving soil quality characterized by mixing fibrous material of m and soil by centrifugal/vortex diffusion action. 6) Claim 5 in which the fiber material is composed of monofilament, multifilament, tape yarn, or spun yarn.
Soil improvement method described in section. 7) The method for improving soil quality according to claim 5 or 6, wherein the fibrous material is a multifilament at least partially bundled by glue, twist, or inter-fiber entanglement. 8) Claim 5, 6 or 7, in which the fiber material is mixed in an amount of 0.05 to 2% by weight based on the soil and sand.
Soil improvement method described in section. 9) Thickness 50-2000 denier, length 50-200m
An embankment and ground formation method characterized by using a material obtained by mixing a fiber material of m and earth and sand by centrifugal and eddy diffusion action. 10) The embankment and ground forming method according to claim 9, wherein the fiber material comprises monofilament, multifilament, tape yarn, or spun yarn. 11) The embankment and ground forming method according to claim 9 or 10, wherein the fibrous material is a multifilament at least partially bundled by glue, twisted yarn, or fiber entanglement. 12) The embankment and ground forming method according to claim 9, 10 or 11, wherein 0.05 to 2% by weight of the fiber material is mixed with the earth and sand. 13) Thickness 50-2000 denier, length 50-200
Fiber material for soil mixing consisting of synthetic fiber monofilament, tape yarn, and spun yarn. 14) Thickness 100-2000 denier, length 50-15
Made of 0mm synthetic fiber multifilament, glue,
A fibrous material for soil incorporation that is at least partially bound by twisting or inter-fiber entanglement.
JP63207154A 1988-08-19 1988-08-19 Method for mixing soil and fiber material, method for improving soil quality, and fiber material used for these Expired - Fee Related JP2768954B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63207154A JP2768954B2 (en) 1988-08-19 1988-08-19 Method for mixing soil and fiber material, method for improving soil quality, and fiber material used for these

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63207154A JP2768954B2 (en) 1988-08-19 1988-08-19 Method for mixing soil and fiber material, method for improving soil quality, and fiber material used for these

Publications (2)

Publication Number Publication Date
JPH0255786A true JPH0255786A (en) 1990-02-26
JP2768954B2 JP2768954B2 (en) 1998-06-25

Family

ID=16535118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63207154A Expired - Fee Related JP2768954B2 (en) 1988-08-19 1988-08-19 Method for mixing soil and fiber material, method for improving soil quality, and fiber material used for these

Country Status (1)

Country Link
JP (1) JP2768954B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0882558A1 (en) * 1997-06-06 1998-12-09 Kureha Chemical Industry Co., Ltd. Carbon fiber ball and process for manufacturing the same
JP2010022945A (en) * 2008-07-22 2010-02-04 Jdc Corp Method for manufacturing fiber-containing soil material, method for refining fiber-containing soil material, and fiber-containing soil material

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51145737A (en) * 1975-06-05 1976-12-14 Sakai Textile Mfg Co Ltd Admixture agent to soil

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51145737A (en) * 1975-06-05 1976-12-14 Sakai Textile Mfg Co Ltd Admixture agent to soil

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0882558A1 (en) * 1997-06-06 1998-12-09 Kureha Chemical Industry Co., Ltd. Carbon fiber ball and process for manufacturing the same
US6194071B1 (en) 1997-06-06 2001-02-27 Kureha Chemical Industries Co., Ltd. Carbon fiber ball and a process for manufacturing the same
JP2010022945A (en) * 2008-07-22 2010-02-04 Jdc Corp Method for manufacturing fiber-containing soil material, method for refining fiber-containing soil material, and fiber-containing soil material

Also Published As

Publication number Publication date
JP2768954B2 (en) 1998-06-25

Similar Documents

Publication Publication Date Title
Al-Refeai Behavior of granular soils reinforced with discrete randomly oriented inclusions
AU586766B2 (en) Reinforced soil and method
US4867614A (en) Reinforced soil and method
DE2232665B2 (en) PROCESS FOR PRODUCING A TWO-PHASE MATERIAL WITH A PRESET BENDING STRENGTH FROM A MIXTURE OF CONCRETE AND FIBERS
KR920004621B1 (en) Strengthening a matrix
EP0017548B1 (en) Construction material, its application as a filler,a coating or a foundation mass to loose soil; process and apparatus for manufacturing this material
US4645381A (en) Building material, its application for embankment, surfacing, or as foundation mass over a loose ground, and method and installation for the production of said material
JPH0255786A (en) Method of mixing earth and sand with fibrous material, soil conditioning method, and fiber used therein
KR100971114B1 (en) Reinforce fiber of concrete
EP0390755A2 (en) Composite layered geotextile having low deformability and high filtering and drainage capability
JP3402434B2 (en) Sludge dewatering method and bag for dewatering
JP5583895B2 (en) Method for producing fiber-containing soil material and method for refining fiber-containing soil material
JPH05112941A (en) Mixing method of earth and fiber material, device thereof and method of reinforcing earthwork using it
JP3031201B2 (en) Manufacturing method of fiber mixed soil
JPH08143864A (en) Modified cross-section staple fiber for reinforcing soil, reinforced soil using the same staple fiber and execution of reinforced soil
KR100542387B1 (en) Very durable geotextile after construction and method for preparing the same
JPH0819330A (en) Reinforced soil and vegetation construction using soil fiber, soil-reinforcing material and vegetation base material consisting of soil fiber
JP3838719B2 (en) Earth structure reinforced drainage material
JP3061475B2 (en) Ground reinforcement
CN209666478U (en) Polypropylene filament spunbond reinforcement composite anti-corrosive waterproof geotextiles
JP3229972B2 (en) Method and apparatus for forming short fiber mixed earth and sand
JP2003206534A (en) Short fiber for reinforced earth and short fiber reinforced earth
Falorca et al. Sand reinforced with short length synthetic fibers randomly oriented
JP2914027B2 (en) Manufacturing method of fiber reinforced soil
JPH11350289A (en) Net

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees