JPH0255738A - Method for further enhancing conductivity of conductive plastics - Google Patents

Method for further enhancing conductivity of conductive plastics

Info

Publication number
JPH0255738A
JPH0255738A JP20689288A JP20689288A JPH0255738A JP H0255738 A JPH0255738 A JP H0255738A JP 20689288 A JP20689288 A JP 20689288A JP 20689288 A JP20689288 A JP 20689288A JP H0255738 A JPH0255738 A JP H0255738A
Authority
JP
Japan
Prior art keywords
carbon black
surface resistance
molding
decreased
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20689288A
Other languages
Japanese (ja)
Inventor
Akira Nishizawa
昭 西沢
Kazunori Ishii
和慶 石井
Toshiaki Hamaguchi
濱口 敏明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Original Assignee
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd filed Critical Victor Company of Japan Ltd
Priority to JP20689288A priority Critical patent/JPH0255738A/en
Publication of JPH0255738A publication Critical patent/JPH0255738A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/16Surface shaping of articles, e.g. embossing; Apparatus therefor by wave energy or particle radiation, e.g. infrared heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • B29C2035/0827Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using UV radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2707/00Use of elements other than metals for preformed parts, e.g. for inserts
    • B29K2707/04Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0003Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular electrical or magnetic properties, e.g. piezoelectric
    • B29K2995/0005Conductive

Landscapes

  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Conductive Materials (AREA)

Abstract

PURPOSE:To make it possible to decrease the surface resistance of a conductive plastics to thereby further enhance its conductivity with a simple treatment without increasing the amount of dispersed carbon black by irradiating the plastics with UV rays of a specified wavelength or by heating it. CONSTITUTION:A conductive plastics obtd. by molding a mixture of a thermoplastics with carbon black is irradiated with UV rays of a wavelength of 300-400 nm or is heated. Since the product has been thus heat treated, the molding strain of the surface layer is removed and the surface resistance can be decreased. Since the amt. of the carbon black added in order to decrease the surface resistance can be decreased and the tackiness is also decreased, molding can be easily performed. In addition, the production cost can be reduced and the surface resistance of the molded item can be readily made uniform, because the amt. of loading of an expensive carbon black is decreased and molding can be easily performed.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、導電性プラスチックの表面導電性をを高める
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for increasing the surface conductivity of conductive plastics.

(従来の技術) 従来より、PVC,EVA等の可塑性プラスチックに1
0〜30重最%のカーボンブラックを分散することによ
り得られる導電性プラスチックは、高圧送電ケーブル、
導電マット、ICトレイ等の他、静電容量方式ビデオデ
ィスクにも用いられている。
(Conventional technology) Conventionally, plastics such as PVC and EVA
Conductive plastics obtained by dispersing carbon black of 0 to 30% by weight can be used for high-voltage power transmission cables,
In addition to conductive mats, IC trays, etc., it is also used in capacitive video discs.

高圧送電ケーブルの一例の断面図を第5図に示す。FIG. 5 shows a cross-sectional view of an example of a high-voltage power transmission cable.

この高圧送電ケーブル7は、電気を送電する導体8の周
囲を絶縁体9で覆われている。
This high-voltage power transmission cable 7 includes a conductor 8 that transmits electricity, and an insulator 9 covering the periphery of the conductor 8 .

そして、高圧送電のために起こるコロナ放電による高圧
送電ケーブル7の破損を防ぐために、EVAなどの熱可
塑性プラスチックに5〜30重量%のカーボンブラック
を分散させた導電性プラスチック1で絶縁体9の周囲を
被覆しており、この導電性プラスチック1は、低抵抗で
カーボンブラックが均一に分散されている方が、電界の
歪みによる電力損失が少ない。
In order to prevent damage to the high-voltage power transmission cable 7 due to corona discharge that occurs due to high-voltage power transmission, a conductive plastic 1 made of a thermoplastic such as EVA with 5 to 30% by weight of carbon black dispersed is placed around the insulator 9. The conductive plastic 1 has a low resistance and carbon black is uniformly dispersed, so that less power is lost due to distortion of the electric field.

また、静電容量方式ビデオディスクでも、特公昭Go−
51166号に示されているように、熱可塑性プラスチ
ックに多聞のカーボンブラックを分散させて製造してい
る。
In addition, even with capacitive video discs, Tokko Sho Go-
No. 51166, it is manufactured by dispersing a large amount of carbon black in a thermoplastic.

そして、この静電容量方式ビデオディスクは、分散させ
るカーボンブラックの頂が多いほど、体積固有抵抗値が
低下し、再生時の検波出力が増加する。
In this capacitive video disc, the more carbon black peaks are dispersed, the lower the volume resistivity value is, and the more the detection output during playback increases.

したがって、再生時の検波出力だけを考えると、カーボ
ンブラックの量は多いほうが良いのであるが、あまり多
過ぎると粘着性が増し、ディスクの成形が困難になって
しまう。
Therefore, considering only the detection output during reproduction, it is better to have a large amount of carbon black, but if it is too large, the stickiness increases and it becomes difficult to mold the disk.

また、カーボンブラックを改良してもカーボンブラック
がより高価になるため、コストアップとなってしまう。
Further, even if carbon black is improved, the carbon black becomes more expensive, resulting in an increase in cost.

そこで、特開昭59−19257@や特開昭59−19
258号に開示されているように、低分子量の樹脂をデ
ィスク成形中に重合して必要な硬度を得ようとするもの
があるが、この低分子量の樹脂をディスク成形中に重合
する工程は、1枚のディスクを成形するのに5〜10分
もかかるため生産性が悪く、この場合もコストアップの
原因どなっていた。
Therefore, JP-A-59-19257@ and JP-A-59-19
As disclosed in No. 258, there are attempts to obtain the necessary hardness by polymerizing a low molecular weight resin during disk molding, but the process of polymerizing this low molecular weight resin during disk molding is It takes 5 to 10 minutes to mold one disk, resulting in poor productivity and, in this case, an increase in costs.

(発明が解決しようとする課題) 従来より、高圧送電ケーブル、導電マット、ICトレイ
等に使用される導電性プラスチックは、表面抵抗値が小
さく、均一化されているのが望ましい。
(Problems to be Solved by the Invention) Conventionally, conductive plastics used for high-voltage power transmission cables, conductive mats, IC trays, etc., desirably have a low and uniform surface resistance value.

そして、導電性プラスチックの製造工程において、表面
抵抗値のばらつきを生じさせないためには、カーボンブ
ラックを均一に分散しなければならないが、カーボンブ
ラックを均一に分散させるためには、分散させるカーボ
ンブラックの吊を減らしたほうが良く、また、プレス成
形する場合は、カーボンブラックの吊が少ないほうが粘
性が少なく、成形しやすい。
In the manufacturing process of conductive plastics, carbon black must be uniformly dispersed in order to prevent variations in surface resistance. It is better to reduce the number of suspensions, and when press molding, the less suspension of carbon black, the less viscosity and easier molding.

ところが、カーボンブラックの伍を減らすと表面抵抗値
が増大し、導電性が悪くなる。
However, when the amount of carbon black is reduced, the surface resistance value increases and the conductivity deteriorates.

特に静電容量方式ビデオディスクの場合は、表面抵抗値
が高い程、再生検波出力が減少してしまい、再生能力が
減退する。
Particularly in the case of a capacitive video disc, the higher the surface resistance value, the lower the re-biopsy wave output and the lower the playback ability.

したがって、従来より分散させる機械の能力を改善した
り、使用するカーボンブラックを改良することで、導電
性プラスチックの表面抵抗値のばらつきを減少させよう
としていたが、コストに比較して良い結果が得られてい
なかった。
Therefore, attempts have been made to reduce the variation in the surface resistance of conductive plastics by improving the dispersion machine's ability or by improving the carbon black used, but none of these attempts have yielded good results compared to the cost. It wasn't.

そこで、本発明は、簡単な処理をするだけで、カーボン
ブラックの分散量を増加させずに表面抵抗値を減少させ
ることを目的とする。
Therefore, an object of the present invention is to reduce the surface resistance value without increasing the amount of carbon black dispersed by simply performing a simple treatment.

(課題を解決するための手段) 本発明は、上記目的を達成するために、熱可塑性プラス
チックにカーボンブラックを混合して成形することによ
り得られるl−m性プラスチックに、波長300乃至4
00niの紫外線もしくは熱を照射して表面抵抗値を低
下させることを特徴とする導電性プラスチックの高導電
化方法を提供しようとするものである。
(Means for Solving the Problems) In order to achieve the above-mentioned object, the present invention provides an L-m plastic that is obtained by mixing carbon black with a thermoplastic plastic and molding the mixture.
The present invention aims to provide a method for increasing the conductivity of conductive plastics, which is characterized by reducing the surface resistance value by irradiating ultraviolet rays or heat at 00ni.

(作 用) 導電性プラスチックの表面抵抗値を低下させるために研
究を重ねた結果、この導電性プラスチックに熱を加える
と、極表面層のカーボンブラックが、再配列を起こし、
表面層の表面抵抗を均一に低下させることが判った。
(Function) As a result of repeated research aimed at lowering the surface resistance value of conductive plastics, it was found that when heat is applied to this conductive plastic, the carbon black in the extreme surface layer rearranges.
It was found that the surface resistance of the surface layer was uniformly reduced.

そして、この熱エネルギーは強い程良く、かつ導電性プ
ラスチックが変形しないように極短時間だけ加えるほう
が良い。
The stronger the heat energy, the better, and it is better to apply it only for a very short time so that the conductive plastic does not deform.

また、光を使用する場合は、光エネルギーの強い紫外線
が良く、特に波長300〜400nmの紫外線が有効で
ある。
Moreover, when using light, ultraviolet rays with strong optical energy are preferable, and ultraviolet rays with a wavelength of 300 to 400 nm are particularly effective.

これは、波長が300nm以下では空気の[9を受けた
り、可塑性プラスデックの部分が紫外線を吸収して良い
結果が得られない。
This is because if the wavelength is 300 nm or less, the ultraviolet rays will be absorbed by the [9] of the air, and the plastic plus deck portion will absorb the ultraviolet rays, making it impossible to obtain good results.

また、波長400nm以上の可視光線では、表面抵抗値
は低下せず、赤外線では成形された導電性プラスチック
の内部から発熱し、導電性プラスチックが変形する!ど
けで、可視光線と同じように表面抵抗値は低下しない。
Furthermore, visible light with a wavelength of 400 nm or more does not reduce the surface resistance value, while infrared light generates heat from inside the molded conductive plastic, causing the conductive plastic to deform! When the light is moved away, the surface resistance value does not decrease in the same way as with visible light.

そして、波長300〜400nmの紫外線では表面層の
カーボンブラックのみが紫外線を吸収し再配列するが、
可塑性プラスチックの部分は紫外線を吸収しない。
When exposed to ultraviolet light with a wavelength of 300 to 400 nm, only the carbon black in the surface layer absorbs the ultraviolet light and rearranges it.
Plastic parts do not absorb UV light.

したがって、キセノンランプ、高圧水銀ランプの紫外線
部分を使用したり、よく熱せられた電気オーブン(約2
00℃に加熱可能なもの)等に短時間式れたりして加熱
すると良い。
Therefore, use the ultraviolet part of a xenon lamp, high-pressure mercury lamp, or use a well-heated electric oven (approximately 2
It is best to heat it by heating it for a short time in a container that can be heated to 00°C.

(実施例) [実施例1] 塩化ビニル樹脂100重量部に対して、安定材として錫
系安定材31吊部を加える。
(Example) [Example 1] To 100 parts by weight of vinyl chloride resin, a hanging portion of 31 tin-based stabilizers was added as a stabilizer.

そして、キャボット社の[Black Pearl 1
300Jと呼ばれるカーボンブラックを18重量部もし
くは、20451部加え、充分に混練し、180℃でシ
ートプレスを行ない厚さ111IIllの平坦な板を作
成した。
And Cabot's [Black Pearl 1]
18 parts by weight or 20,451 parts by weight of carbon black called 300J were added, thoroughly kneaded, and sheet pressed at 180° C. to form a flat plate with a thickness of 111 IIll.

次に、この板を1.5cm x4cmの長方形に切出し
、この表面に1.5cm間隔で原素化成の導電ペイント
[ドータイトD550Jを塗布して電極2とし、この長
方形の導電性プラスチックをサンプル1とした。
Next, this plate was cut into a 1.5 cm x 4 cm rectangle, and Genkasei's conductive paint [Dotite D550J was applied to the surface at 1.5 cm intervals to form electrodes 2. This rectangular conductive plastic was used as sample 1. did.

そして、第1図に示したようにこのサンプル1を250
Hのキセノンランプ4に透過波長300nIll乃至3
80niの紫外線透過フィルタ3を付けたもので照射し
た。
Then, as shown in Fig. 1, this sample 1 was
H xenon lamp 4 with a transmission wavelength of 300nIll to 3
Irradiation was performed using a device equipped with an 80ni ultraviolet transmission filter 3.

そして、照射時間を変えて、照rjA前後における電極
2間の表面抵抗値の変化を測定した。
Then, the irradiation time was changed and the change in surface resistance value between the electrodes 2 before and after irradiation rjA was measured.

[実施例2] [実施例1]と同じサンプル1を電気オーブン5で加熱
し、その加熱温度と加熱時間を変えて、加熱前後におけ
る電極2間の表面抵抗値の変化を測定した。(第2図) [実施例3] 通常に市販されている静電容量方式ビデオディスクの表
面に高圧水銀ランプ(25(E)を30ca+の距離か
ら照射し、照射時間と再生時の検波出力を測定した。
[Example 2] The same sample 1 as in [Example 1] was heated in the electric oven 5, and the heating temperature and heating time were changed to measure the change in surface resistance value between the electrodes 2 before and after heating. (Figure 2) [Example 3] A high-pressure mercury lamp (25(E)) was irradiated from a distance of 30ca+ onto the surface of a capacitance type video disk that was normally commercially available, and the irradiation time and detection output during playback were measured. It was measured.

[実施例4] 通常に市販されている静電容量方式ビデオディスクを2
00℃に保った電気オーブン中に放置し、加熱時間と再
生時の検波出力を測定した。
[Example 4] Two commonly available capacitive video discs were
The sample was left in an electric oven kept at 00°C, and the heating time and detection output during playback were measured.

[結果] [実施例1]の結果を表1に、[実施例2]の結果を表
2に示し、[実施例3]および[実施例4]の結果をそ
れぞれ第3図、第4図のグラフにボす。
[Results] The results of [Example 1] are shown in Table 1, the results of [Example 2] are shown in Table 2, and the results of [Example 3] and [Example 4] are shown in Figures 3 and 4, respectively. Draw on the graph.

なお、表1および表2において、*印の付いているもの
はカーボンブラックを18重機部使用し、付いていない
ものは20重量部使用したものである。
In Tables 1 and 2, those marked with an asterisk (*) used 18 parts by weight of carbon black, and those without marks used 20 parts by weight.

表  1 表  2 [実施例1]のキセノンランプ4の紫外線を照射した場
合は、表1かられかるようにどのサンプル1も表面抵抗
値が低下しており、照射時間が長い程良い結果が得られ
ている。
Table 1 Table 2 When irradiated with ultraviolet rays from xenon lamp 4 in [Example 1], as can be seen from Table 1, the surface resistance value of all samples 1 decreased, and the longer the irradiation time, the better the results. It is being

また、[実施例2]の電気オーブン5を使用した場合は
、表2より表面抵抗値が低下しているのがわかる。
Moreover, when the electric oven 5 of [Example 2] was used, it can be seen from Table 2 that the surface resistance value decreased.

特に、加熱時間を増加させるよりも加熱温度を高くして
、その分加熱時間を短くしたほうが良い結果が得られた
In particular, better results were obtained by increasing the heating temperature and shortening the heating time by that much rather than increasing the heating time.

そして、[実施例3]の静電容積方式ビデオディスクに
高圧水銀ランプを照射した場合は、第3図に示したグラ
フより照射時間が20分までは、検波出力が増加し、照
射前の2倍以上になるが、それ以降は飽和してほとんど
変化が無くなる。
When the electrostatic volume type video disc of [Example 3] is irradiated with a high-pressure mercury lamp, the graph shown in Figure 3 shows that the detection output increases until the irradiation time reaches 20 minutes, and It more than doubles, but after that it becomes saturated and there is almost no change.

また、[実施例4]の電気オーブンを使用した場合は、
第3図に示したグラフより15秒ぐらいまでは検波出力
が増大し、2倍以上になるが、20秒を過ぎると反りが
発生してしまい、検波出力の測定が不可能となった。
In addition, when using the electric oven of [Example 4],
From the graph shown in FIG. 3, the detection output increases until about 15 seconds, more than doubling, but after 20 seconds, warping occurs and it becomes impossible to measure the detection output.

(発明の効果) 本発明の導電性プラスチックの高導電化方法は、導電性
プラスチックに熱を加えるだので、表面層の成形歪が除
去され、表面抵抗値を低下させることができる。
(Effects of the Invention) Since the method for making conductive plastic highly conductive according to the present invention applies heat to the conductive plastic, molding distortion of the surface layer can be removed and the surface resistance value can be lowered.

したがって、表面抵抗値を低下させるためのカーボンブ
ラックの使用量を低減させることができ、粘着性が少な
くなり、成形が容易となる。
Therefore, the amount of carbon black used for lowering the surface resistance value can be reduced, the tackiness is reduced, and molding is facilitated.

また、高価なカーボンブラックの使用量が減り、成形も
容易になるのでコストダウンにもなる。
In addition, the amount of expensive carbon black used is reduced and molding becomes easier, resulting in cost reduction.

そして、カーボンブラックの使用量が減ると、成形品の
表面抵抗値を容易に均一化できる。
When the amount of carbon black used is reduced, the surface resistance value of the molded product can be easily made uniform.

また、静電容積方式ビデオディスクでは、表面抵抗値が
低下したことにより、検波出力が上昇するという効果が
ある。
Furthermore, in the case of a capacitive volume type video disk, the detection output is increased due to a decrease in the surface resistance value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の導電性ブラ゛スチックの高導電化方法
の第1の実施例を示す構成図、第2図は第2の実施例を
示す構成図、第3図は本発明の第3の実施例の結果を示
すグラフ、第4図は本発明の第4の実施例の結果を示す
グラフ、第5図は従来例を示す所面図である。 1・・・導電性プラスチック、2・・・電極、3・・・
紫外I2透過フィルタ、4・・・キセノンランプ、5・
・・電気オーブン、6・・・抵抗測定器、7・・・高圧
送電ケーブル、8・・・導体、9・・・絶縁体。 口===コ〜3 特 許 出願人 日本ビクター株式会社代表者 垣木 
邦人 第 1 図 第2図
FIG. 1 is a block diagram showing a first embodiment of the method for making conductive plastic highly conductive according to the present invention, FIG. 2 is a block diagram showing a second embodiment, and FIG. FIG. 4 is a graph showing the results of the fourth embodiment of the present invention, and FIG. 5 is a top view showing the conventional example. 1... Conductive plastic, 2... Electrode, 3...
Ultraviolet I2 transmission filter, 4...Xenon lamp, 5.
...Electric oven, 6...Resistance measuring device, 7...High voltage power transmission cable, 8...Conductor, 9...Insulator.口===ko~3 Patent Applicant: Japan Victor Co., Ltd. Representative: Kakiki
Japanese Figure 1 Figure 2

Claims (1)

【特許請求の範囲】  熱可塑性プラスチックにカーボンブラックを混合して
成形することにより得られる導電性プラスチックに、 波長300乃至400nmの紫外線もしくは熱を照射し
て表面抵抗値を低下させることを特徴とする導電性プラ
スチックの高導電化方法。
[Claims] A conductive plastic obtained by mixing carbon black with a thermoplastic plastic and molding the mixture is irradiated with ultraviolet rays with a wavelength of 300 to 400 nm or heat to lower the surface resistance value. Method for making conductive plastic highly conductive.
JP20689288A 1988-08-19 1988-08-19 Method for further enhancing conductivity of conductive plastics Pending JPH0255738A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20689288A JPH0255738A (en) 1988-08-19 1988-08-19 Method for further enhancing conductivity of conductive plastics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20689288A JPH0255738A (en) 1988-08-19 1988-08-19 Method for further enhancing conductivity of conductive plastics

Publications (1)

Publication Number Publication Date
JPH0255738A true JPH0255738A (en) 1990-02-26

Family

ID=16530784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20689288A Pending JPH0255738A (en) 1988-08-19 1988-08-19 Method for further enhancing conductivity of conductive plastics

Country Status (1)

Country Link
JP (1) JPH0255738A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5266244A (en) * 1990-03-12 1993-11-30 Ebara Corporation Method of forming a thin electroconductive film
EP0841146A1 (en) * 1996-10-31 1998-05-13 Accumulatorenwerke Hoppecke Carl Zoellner & Sohn GmbH & Co. KG Method for the production of conductive regions on insulating plastics materials
US6910369B2 (en) 2002-06-25 2005-06-28 Daifuku Co., Ltd Apparatus for detecting compression top dead center of an engine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5266244A (en) * 1990-03-12 1993-11-30 Ebara Corporation Method of forming a thin electroconductive film
EP0841146A1 (en) * 1996-10-31 1998-05-13 Accumulatorenwerke Hoppecke Carl Zoellner & Sohn GmbH & Co. KG Method for the production of conductive regions on insulating plastics materials
US6910369B2 (en) 2002-06-25 2005-06-28 Daifuku Co., Ltd Apparatus for detecting compression top dead center of an engine

Similar Documents

Publication Publication Date Title
Mather et al. Carbon black/high density polyethylene conducting composite materials: Part I Structural modification of a carbon black by gasification in carbon dioxide and the effect on the electrical and mechanical properties of the composite
US4955267A (en) Method of making a PTC conductive polymer electrical device
JPS6250505B2 (en)
DE3242229A1 (en) METHOD FOR IMPROVING THE ANTISTATIC CHARACTERISTICS OF PLASTIC MOLDED PARTS
JPH0315664B2 (en)
DE3135157A1 (en) METHOD FOR MODIFYING THE SURFACE PROPERTIES OF PLASTIC MOLDINGS
JPH0255738A (en) Method for further enhancing conductivity of conductive plastics
JP2572429B2 (en) Heat-recoverable articles
US3083175A (en) Curable composition comprising cured filler, polymerized butadiene and di-alpha-cumyl peroxide and cured products thereof
Tikku et al. Electron beam initiated grafting of trimethylol propane trimethacrylate onto polyethylene—structure and properties
Hou et al. Improvement of conductive network quality in carbon black‐filled polymer blends
TW557310B (en) Resin molded article
KR100627247B1 (en) Conductive hybrid film and fabrication method thereof
US4764664A (en) Electrical devices comprising conductive polymer compositions
JP3750326B2 (en) Insulated wires and hoses
US4866253A (en) Electrical devices comprising conductive polymer compositions
CN1528817A (en) Polyolefin/carbon black PTC conductive composite material and preparing method thereof
Lawandy et al. Adhesion properties of butyl rubber-coated polyester fabric
JPH05200743A (en) Production of molded object composed of conductive resin composition
KR950005280B1 (en) Seat heater and method to manufacture with copolymer carbon block
TWI431643B (en) Method for making positive temperature coefficient device
JPH0422009A (en) Rubber-plastics insulated power cable
CN100519633C (en) Radiation crossliaking method of high polymer PTC material
Ikeda et al. Effects of Water on Thermally-Stimulated Currents of Nylon 6
Nouh et al. Investigation of the effect of gamma rays on electrical properties of chlorinated poly (vinyl chloride)