JPH0255645A - Cooling roll for producing rapid-cooled strip - Google Patents
Cooling roll for producing rapid-cooled stripInfo
- Publication number
- JPH0255645A JPH0255645A JP20392188A JP20392188A JPH0255645A JP H0255645 A JPH0255645 A JP H0255645A JP 20392188 A JP20392188 A JP 20392188A JP 20392188 A JP20392188 A JP 20392188A JP H0255645 A JPH0255645 A JP H0255645A
- Authority
- JP
- Japan
- Prior art keywords
- roll
- cooling
- rapid
- cooling roll
- strip
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000001816 cooling Methods 0.000 title claims abstract description 42
- 239000002184 metal Substances 0.000 claims abstract description 14
- 229910052751 metal Inorganic materials 0.000 claims abstract description 14
- 239000000463 material Substances 0.000 abstract description 14
- 238000000034 method Methods 0.000 abstract description 8
- 230000004927 fusion Effects 0.000 abstract 1
- 238000005096 rolling process Methods 0.000 description 15
- 230000035882 stress Effects 0.000 description 15
- 238000004519 manufacturing process Methods 0.000 description 11
- 229910052802 copper Inorganic materials 0.000 description 9
- 239000010949 copper Substances 0.000 description 9
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 7
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 6
- 229910000881 Cu alloy Inorganic materials 0.000 description 6
- 229910045601 alloy Inorganic materials 0.000 description 5
- 239000000956 alloy Substances 0.000 description 5
- 230000003746 surface roughness Effects 0.000 description 5
- 229910052742 iron Inorganic materials 0.000 description 4
- 238000004804 winding Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 229910017813 Cu—Cr Inorganic materials 0.000 description 2
- 229910017985 Cu—Zr Inorganic materials 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 238000004881 precipitation hardening Methods 0.000 description 2
- 230000008646 thermal stress Effects 0.000 description 2
- 229910001316 Ag alloy Inorganic materials 0.000 description 1
- 229910000976 Electrical steel Inorganic materials 0.000 description 1
- 229910000997 High-speed steel Inorganic materials 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 229910011212 Ti—Fe Inorganic materials 0.000 description 1
- 229910001093 Zr alloy Inorganic materials 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 229910000808 amorphous metal alloy Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 238000007712 rapid solidification Methods 0.000 description 1
- 238000010079 rubber tapping Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000002436 steel type Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/06—Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
- B22D11/0637—Accessories therefor
- B22D11/0648—Casting surfaces
- B22D11/0651—Casting wheels
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Continuous Casting (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
この発明は、双ロール法や単ロール法などロールを使用
して溶融金属から直接金属薄帯を製造するプロセスに用
いて好適な冷却ロールに関するものである。Detailed Description of the Invention (Industrial Application Field) The present invention relates to a cooling roll suitable for use in a process of directly manufacturing a metal ribbon from molten metal using rolls such as a twin-roll method or a single-roll method. It is something.
(従来の技術)
溶融金属(以下溶湯という)から直接金属薄帯を製造す
る方法としては、高速回転する冷却ロールの周面に溶湯
をノズルから流下させて周面上で急冷凝固させる方法が
よく知られている。この冷却ロールを用いる方法には単
ロール法と双ロー、ル法とがあり、例えばアモルファス
合金薄帯、高珪素鋼薄帯およびステンレス鋼薄帯などの
板厚1mm以下の広幅薄板を製造する場合は板の表面性
状、形状の点から双ロール法が有利とされ、その工業化
が進められている。(Prior art) A popular method for directly producing metal ribbon from molten metal (hereinafter referred to as molten metal) is to flow the molten metal from a nozzle onto the circumferential surface of a cooling roll that rotates at high speed and rapidly solidify it on the circumferential surface. Are known. Methods using this cooling roll include the single roll method and the twin roll method. For example, when manufacturing wide thin sheets with a thickness of 1 mm or less such as amorphous alloy ribbon, high silicon steel ribbon, and stainless steel ribbon. The twin roll method is considered to be advantageous in terms of the surface properties and shape of the plate, and its industrialization is progressing.
双ロール法は第1図に示すように、1対の冷却ロールl
a、 lbが圧下接触するロールキス部に注湯ノズル2
から溶湯3を注入し、ロール間にかみ込ませて冷却と同
時に圧延を行うことから、使用する冷却ロールに対して
はロールの面精度を高めるため、強度、じん性および硬
さなどが高いことが要望される。The twin roll method uses a pair of cooling rolls l as shown in Figure 1.
a, the pouring nozzle 2 is placed in the roll kiss area where lb contacts with pressure
Since the molten metal 3 is injected and squeezed between the rolls and rolled at the same time as cooling, the cooling rolls used must have high strength, toughness, and hardness to improve the surface accuracy of the rolls. is requested.
かような冷却ロールの材質としては例えば特開昭56−
119650号公報に開示されているような、高速度鋼
、超硬合金などを用いることができるが、熱伝導が小さ
く抜熱が不十分になるばかりか、冷却ロールへの薄帯の
巻付きが発生し、さらにはりラックが発生するため、急
冷薄帯の製造には不向きである。For example, the material of such a cooling roll is disclosed in Japanese Patent Application Laid-Open No. 1986-
High-speed steel, cemented carbide, etc., such as those disclosed in Japanese Patent No. 119650, can be used, but not only do they have low heat conductivity, resulting in insufficient heat removal, but also the wrapping of the ribbon around the cooling roll is difficult. It is unsuitable for manufacturing quenched ribbons because it generates cracks and also generates beam racks.
そこで通常は銅ロールが主に使用され、例えば特開昭5
7−77918号公報に開示されている、熱伝導が良好
でかつ強度も大きいCu−Cr、 Cu−ZrおよびC
u−Beなどの銅合金が急冷凝固用ロールとして広く使
用されている。かかる銅合金ロールは実験室規模あるい
はヒートサイズ500 kg以下の小規模なプロセスで
は有効であるが、ロール表面の微細な割れ(以下へアー
クラックと称す)が発生し、長時間にわたって操業を行
うとこのへアークラックに溶鋼が差し込んで薄帯がロー
ルに巻付き、結局はブレークアウト等により操業の中断
を余儀なくされることがあった。Therefore, copper rolls are usually mainly used, for example,
Cu-Cr, Cu-Zr and C which have good thermal conductivity and high strength are disclosed in Japanese Patent No. 7-77918.
Copper alloys such as u-Be are widely used as rapid solidification rolls. Such copper alloy rolls are effective in laboratory scale or small-scale processes with a heat size of 500 kg or less, but microscopic cracks (hereinafter referred to as arc cracks) occur on the roll surface, and if the roll is operated for a long time, it becomes difficult to use. Molten steel was inserted into this hair arc crack and the ribbon was wound around the rolls, eventually resulting in breakouts and the like, which sometimes forced the interruption of operations.
(発明が解決しようとする課題)
ここに従来の調合金製の冷却ロールの問題点をまとめる
と次の通りである。(Problems to be Solved by the Invention) Problems with conventional cooling rolls made of prepared alloys are summarized as follows.
(1)冷却ロール表面の焼付き、薄帯の巻付き・・・特
に厚さl mm以下の薄帯を製造する場合は冷却ロール
の周速が速くなり冷却ロールの熱伝導率が小さいと焼付
き等の問題が生じる。(1) Seizure on the surface of the cooling roll, winding of the ribbon...Especially when manufacturing a ribbon with a thickness of 1 mm or less, the circumferential speed of the cooling roll is high and the thermal conductivity of the cooling roll is low. Problems such as attachment may occur.
(2)冷却ロール表面の肌荒れ、摩耗・・・上記(1)
の条件を満足する高熱伝導性の材質を冷却ロールに適用
してもその種の材料は一般に硬度、特に高温硬度が低い
ため、長時間の操業で肌荒れや摩耗が生じ、これが薄帯
表面に転写され、製品板を汚染する。(2) Roughness and wear on the surface of the cooling roll...(1) above
Even if a highly thermally conductive material that satisfies the above conditions is applied to the cooling roll, such materials generally have low hardness, especially high-temperature hardness, so long-term operation will cause surface roughness and wear, which will be transferred to the surface of the ribbon. and contaminate the product board.
(3) ロールの変形・・・とくに双ロール法ではロ
ール圧下し圧延しているためロールキス部が高温雲囲気
(400℃以上)になると高温強度が劣化して高温変形
し易くなり、ロールの変形により薄帯の板厚変動が顕著
になる。(3) Roll deformation...Especially in the twin-roll method, roll reduction is performed, so if the roll kiss part is exposed to a high-temperature cloud atmosphere (over 400°C), the high-temperature strength deteriorates and high-temperature deformation is likely to occur, resulting in roll deformation. As a result, variations in the thickness of the ribbon become noticeable.
(4) ロール表面へアークラック・・・上記(1)
〜(3)の要求を満足するロール材質として高熱伝導性
を有しかつ、高温強度の高い銅合金が適合するが、これ
ら銅合金ロールを双ロール法に適用した場合、高温高圧
下での熱疲労のため、例えば析出硬化型銅合金(Cu−
Be、 Cu−CrおよびCu −ZrCr等)では粒
界割れ、いわゆるヘアークラックが発生し、長時間の操
業が不可能である。(4) Arc crack on the roll surface...(1) above
Copper alloys with high thermal conductivity and high strength at high temperatures are suitable as roll materials that satisfy requirements (3). However, when these copper alloy rolls are applied to the twin roll method, Due to fatigue, for example, precipitation hardening copper alloys (Cu-
(Be, Cu-Cr, Cu-ZrCr, etc.), grain boundary cracks, so-called hair cracks, occur, making long-term operation impossible.
そこでこの発明は上記した種々の問題を解消し得る冷却
ロールを提供することが目的である。Therefore, it is an object of the present invention to provide a cooling roll that can solve the various problems described above.
(課題を解決するための手段)
発明者らは上記した問題を解決すべく鋭意研究を重ねた
結果、下記の特性を有する材質の冷却ロールを適用する
ことが、所期した目的の達成に極めて有効であるとの知
見を得た。(Means for Solving the Problems) As a result of intensive research by the inventors to solve the above-mentioned problems, we found that applying a cooling roll made of a material having the following characteristics is extremely effective in achieving the intended purpose. We obtained knowledge that it is effective.
すなわちこの発明は、溶融金属の落下流を受け:その急
冷凝固を強いて薄帯化を導く冷却ロールであって、
熱伝導率:0.5 caf/Cm −s ・を以上で、
さらに400℃において、0.2%耐力: 30 kg
f / mm2以上、ビッカース硬さ(Hv 5g)
+ 150以上、引張り強さ: 40kgf / mm
2以上および伸び25%以上を満足する材質になること
を特徴とする急冷薄帯製造用の冷却ロールである。That is, the present invention provides a cooling roll that receives a falling flow of molten metal and forces the molten metal to rapidly solidify to form a thin ribbon, and has a thermal conductivity of 0.5 caf/Cm -s or more,
Furthermore, at 400℃, 0.2% yield strength: 30 kg
f/mm2 or more, Vickers hardness (Hv 5g)
+150 or more, tensile strength: 40kgf/mm
This is a cooling roll for producing a quenched ribbon, characterized by being made of a material that satisfies an elongation of 2 or more and an elongation of 25% or more.
ここでこの発明に従う冷却ロールに好適な材質の具体例
について示すと、下記の通りである。Here, specific examples of materials suitable for the cooling roll according to the present invention are as follows.
(1) Zr:O,旧〜0.Iwt%(以下単に%と示
す)Cr:0.3 〜0.5 %
Ni+1.5 〜2.5 %
Ti:1.O〜2.0 %
Fe:0.01〜0.1 %
を含有し、残りがCuと不可避不純物とからなる組成。(1) Zr:O, old ~ 0. Iwt% (hereinafter simply referred to as %) Cr: 0.3 to 0.5% Ni+1.5 to 2.5% Ti: 1. A composition containing O to 2.0% Fe: 0.01 to 0.1%, with the remainder consisting of Cu and inevitable impurities.
(2) Be:0.5〜1.0 % (:o:1.4〜2.5 % 八g:0.9 〜2.0 % を含有し、残りがCuと不可避不純物とからなる組成。(2) Be: 0.5-1.0% (:o:1.4~2.5% 8g: 0.9~2.0% , with the remainder consisting of Cu and unavoidable impurities.
(3) Be:0.2〜0.8 % Ni:1.4〜2.5 % Zr:0.1〜0.9 % を含有し、残りがCuと不可避不純物とからなる組成。(3) Be: 0.2-0.8% Ni: 1.4-2.5% Zr: 0.1-0.9% , with the remainder consisting of Cu and unavoidable impurities.
(作 用)
次にこの発明に従う冷却ロールの材質に関して限定した
理由を説明する。(Function) Next, the reason for limiting the material of the cooling roll according to the present invention will be explained.
熱伝導率:Q、5 cai! /am−s ・℃この発
明で対象とするような板厚1mm以下の薄帯を製造する
場合第2図に示すように、ロールキス部の表面温度(最
高表面温度)はロールの材質とくに熱伝導率の差に起因
した抜熱効果の違いにより異なる。同図に示すように、
例えば鉄系ロール(熱伝導率λ=0.010.05ca
A/cm−s ・t)を用いた場合にはロールキス部の
表面温度は600〜900℃となり、同様に銅系ロール
(λ−0,2〜1、Ocan/am −s ・t)では
300〜400℃となる。Thermal conductivity: Q, 5 cai! /am-s ・℃ When manufacturing a ribbon with a thickness of 1 mm or less, as is the object of this invention, as shown in Figure 2, the surface temperature of the roll kiss portion (maximum surface temperature) depends on the material of the roll, especially the thermal conductivity. It differs due to the difference in heat removal effect caused by the difference in rate. As shown in the figure,
For example, iron roll (thermal conductivity λ=0.010.05ca
When using A/cm-s ・t), the surface temperature of the roll kiss part is 600 to 900℃, and similarly, when using a copper roll (λ-0, 2 to 1, Ocan/am-s ・t), the surface temperature of the roll kissing part is 600 to 900℃. ~400℃.
一方発明者らの実験ではロールキス部の温度が400℃
をこえると巻付きが生じ、900℃近辺ではロール材質
が変化し、界面で反応層が生成され焼付きを生じること
を確認している。従ってロールへの巻付きおよび焼付き
や作製した薄帯の凝固組織への悪影響を回避するには、
鉄系ロールに比し熱伝導率の高い銅系ロールが有利であ
る。On the other hand, in the experiments conducted by the inventors, the temperature of the roll kiss part was 400℃.
It has been confirmed that when the temperature exceeds 900°C, winding occurs, and at around 900°C, the roll material changes and a reaction layer is generated at the interface, causing seizure. Therefore, in order to avoid winding and seizure on the roll and adverse effects on the solidified structure of the fabricated ribbon,
Copper rolls, which have higher thermal conductivity than iron rolls, are advantageous.
そこで発明者らは、銅系ロール(スリーブ厚5〜20m
m、内部水冷)を用いる急冷薄帯の製造における、ロー
ルキス部の温度と熱伝導率との関係を調べた。その結果
を第3図に示すように、ロールキス部の温度を400℃
以下に保つには熱伝導率を0.5cal/cm−s・℃
以上にすればよいことがわかる。Therefore, the inventors developed a copper roll (sleeve thickness 5 to 20 m).
The relationship between the temperature of the roll kiss part and the thermal conductivity was investigated in the production of rapidly quenched ribbons using quenching method (internal water cooling). As shown in Figure 3, the temperature of the roll kiss area was increased to 400°C.
To keep the thermal conductivity below 0.5 cal/cm-s・℃
It turns out that you can do the above.
400℃における0、2%耐力: 30 kgf /
mm2以上通常冷却ロールはスリーブを軸に焼ばめされ
ている。焼ばめ代は1/l000D〜2/100OD
(D :ロール外径)程度で、引張り応力がロールに負
荷され、また双ロール法では2本のロール間で圧下して
圧延凝固を行うため、その圧下刃にみあう圧縮応力がロ
ール表面に負荷され、さらにロール表面温度の上昇によ
り熱応力(圧縮応力)が発生する。したがって冷却ロー
ルはこれらの応力に対する十分な耐力をそなえることが
肝要になる。0.2% proof stress at 400℃: 30 kgf /
A cooling roll of mm2 or more is usually shrink-fitted around a sleeve. Shrinkage fit is 1/1000D~2/100OD
(D: outside diameter of the roll), tensile stress is applied to the roll, and in the twin roll method, rolling solidification is performed by rolling down between two rolls, so compressive stress corresponding to the rolling edge is applied to the roll surface. The load is applied, and thermal stress (compressive stress) is generated due to the rise in roll surface temperature. Therefore, it is important that the cooling roll has sufficient strength to withstand these stresses.
ここに冷却ロールに働く熱応力、圧下刃および焼ばめ応
力を計算により求めた結果について、第4図に示す。な
お同図はロール外径:550mm、ロール幅:500m
mおよびスリーブ厚:10mmの冷却ロールを2本用い
て圧下刃1tで製造した場合の例で、計算は有限要素法
にて行った。The results of calculations of the thermal stress acting on the cooling roll, the rolling edge stress, and the shrink fit stress are shown in FIG. 4. The figure shows roll outer diameter: 550mm, roll width: 500m.
This is an example of manufacturing using two cooling rolls with m and sleeve thickness of 10 mm and a reduction blade of 1 t, and calculations were performed using the finite element method.
同図において、ロールキス部の最大発生応力は30kg
f/mm2未満である。そこで降伏点応力を30kgf
/mm2程度に抑えれば大きな塑性変形は生じないため
、0.2%耐力を目安としテ30kgf / mm2以
上とした。In the same figure, the maximum stress generated at the roll kiss part is 30 kg.
less than f/mm2. Therefore, the yield point stress is set to 30 kgf.
Since large plastic deformation does not occur if the deformation is suppressed to approximately 30 kgf/mm2, 0.2% proof stress is used as a guideline.
400℃におけるピンカース硬さ(Hv 5g) :
150以上
冷却ロールの表面粗さとビッカース硬さとの関係を第5
図に示すように、ロール表面の肌荒れが著しく巻付きや
焼付きが生じる領域Aおよび肌荒れが生じて板形状に悪
影響を及ぼす領域Bを避けるには、Hv 5gを150
以上にすればよいことがわかる。Pinkers hardness at 400°C (Hv 5g):
The relationship between the surface roughness and Vickers hardness of a cooling roll of 150 or more is
As shown in the figure, in order to avoid area A where the roll surface is extremely rough and causes curling or seizure, and area B where the roll surface is rough and adversely affects the sheet shape, Hv 5g is 150.
It turns out that you can do the above.
400℃における引張り強さ’ 40kgf/ mm2
以上双ロール法においては第6図に示すように、高温で
の加熱、冷却の繰り返しにょる熱疲労が発生し、冷却ロ
ール表面にヘアークラックが発生する。Tensile strength at 400℃' 40kgf/mm2
In the twin roll method described above, as shown in FIG. 6, thermal fatigue occurs due to repeated heating and cooling at high temperatures, and hair cracks occur on the surface of the cooling roll.
一方策4図に示したように、ロールキス部での最大応力
はおよそ30kgf/mm2で、この応力が第6図の繰
返し熱疲労パターンで増幅される。これらの背景と種々
の実験から400 t:での引張り強さが40kgf/
mm2以上であればロールにかがる応力に十分に耐える
ことができる。As shown in Figure 4, the maximum stress at the roll kiss portion is approximately 30 kgf/mm2, and this stress is amplified by the cyclic thermal fatigue pattern shown in Figure 6. Based on these backgrounds and various experiments, the tensile strength at 400 t: is 40 kgf/
If it is at least mm2, it can sufficiently withstand the stress applied to the roll.
400℃における伸び=5%以上
冷却ロールの延性もヘアークラックの発生に影響を及ぼ
すと考えられ、ここに銅系ロールにおける熱変形の目安
として次式
%式%)
ただしα:線膨張係数(=16.5xlO−1l′/l
)を参照すると、400℃での熱変形は1%未満である
が、局部集中変形や圧下刃の影響を考慮すると4%程度
の変形伸びをみておく必要があり、したがって400℃
における伸びは5%以上にする。Elongation at 400°C = 5% or more It is believed that the ductility of the cooling roll also affects the occurrence of hair cracks, and the following formula (%) is used as a guideline for thermal deformation in copper rolls. However, α: Coefficient of linear expansion (= 16.5xlO-1l'/l
), the thermal deformation at 400℃ is less than 1%, but if we take into account localized concentrated deformation and the influence of the rolling blade, it is necessary to consider the deformation elongation at 400℃.
The elongation at is 5% or more.
更に上記のすぐれた機械的性質は、前記課題解決のため
の手段で述べた本発明冷却ロールに好適な材質によって
得られ、(1)Cu−Zr−Cr−Ni−Ti−Fe合
金(2)Cu −B e −Co −A g合金(3)
Cu−Be−N 1−Zr合金といった析出硬化型合金
が主たるものである。Furthermore, the above-mentioned excellent mechanical properties can be obtained by the materials suitable for the cooling roll of the present invention described in the above-mentioned means for solving the problems, including (1) Cu-Zr-Cr-Ni-Ti-Fe alloy (2) Cu-Be-Co-Ag alloy (3)
Precipitation hardening alloys such as Cu-Be-N 1-Zr alloys are the main ones.
本合金ではいずれも金属間化合物例えば(1)では(F
e、 N+、 Co) xTIy相の粒子微細化と<l
r、 Cr) xCuy相共存、(2)ではCU+t−
(Be、 (:o、 Ag) y相、(3)ではCu−
(Be、Ni)、 Cu−Zr相の微細粒子が粒界に析
出し、高強度、高延性の合金を構成している。In this alloy, all intermetallic compounds such as (1) (F
e, N+, Co) xTIy phase grain refinement and <l
r, Cr) xCuy phase coexistence, in (2) CU+t-
(Be, (:o, Ag) y phase, Cu-
(Be, Ni), Cu-Zr phase fine particles precipitate at the grain boundaries, forming an alloy with high strength and high ductility.
(実施例)
表1に示す素材になる種々のスリーブにて作製した冷却
ロールを用いて双ロール法により以下の条件で板厚0.
5〜0.6+nm、板幅500 mmの急冷薄帯を製造
した。(Example) Using cooling rolls made from various sleeves made of the materials shown in Table 1, a plate thickness of 0.
A quenched ribbon having a thickness of 5 to 0.6+ nm and a plate width of 500 mm was produced.
製造条件
鋼種:4.5%Si −Fe
冷却ロール二 ロール径 550mm (外径)ロール
幅 500mm
スリーブ厚:IO市
ロール周速: 5m/s
出鋼温度: 1600℃
ヒートサイズ:3を
薄帯製造時の薄帯のロールへの巻付き及び製造後のロー
ル表面を観察するとともに冷却ロールの表面粗さを測定
した結果を、表1に併記する。Manufacturing conditions Steel type: 4.5%Si -Fe Cooling roll 2 Roll diameter 550mm (outer diameter) Roll width 500mm Sleeve thickness: IO city Roll circumferential speed: 5m/s Tapping temperature: 1600℃ Heat size: 3 to ribbon production Table 1 also shows the results of observing the winding of the ribbon around the roll and the surface of the roll after manufacture, as well as measuring the surface roughness of the cooling roll.
同表より明らかなように、この発明に従う冷却ロール(
No、1〜5)を用いた場合はロールの損耗は軽微であ
り、巻付きや焼付きは勿論のことクラックの発生も全く
なかったのに対し、熱伝導率と高温での硬さ、引張強さ
、0.2%耐力および伸びとが発明範囲からはずれた比
較例(No、6〜15)では何かしらの弊害が生じてい
た。As is clear from the table, the cooling roll according to the present invention (
When Nos. 1 to 5) were used, the roll wear was slight, and there was no wrapping, seizure, or cracking at all, but thermal conductivity, hardness at high temperatures, and tensile strength were Comparative examples (Nos. 6 to 15) in which the strength, 0.2% proof stress, and elongation were out of the invention range had some disadvantages.
(発明の効果)
かくしてこの発明に従う冷却ロールによれば、急冷薄帯
製造中、ロール変形やロール表面への焼付き、巻付きが
生じることがなく、またロール表面の肌荒れ、摩耗も軽
微で表面クラックが発生することもないため、表面性状
に優れた急冷薄帯を長時間にわたり安定して製造するこ
とができる。(Effects of the Invention) Thus, according to the cooling roll according to the present invention, no roll deformation, no burning, no wrapping occurs on the roll surface during the production of the quenched ribbon, and the surface roughness and abrasion of the roll surface are slight and the surface is smooth. Since no cracks occur, a quenched ribbon with excellent surface properties can be stably produced over a long period of time.
第1図は双ロールによる急冷金属薄帯の製造要領の説明
図、
第2図は冷却ロールとして鉄系ロールと銅系ロールを用
いた場合におけるロールキス部表面温度の経時変化を示
したグラフ、
第3図はロールキス部温度と熱伝導率との関係を示した
グラフ、
第4図は銅合金ロールを用いた場合のスリーブ表面の円
周方向応力の分布を示すグラフ、第5図はビッカース硬
さとロール表面粗さとの関係を示すグラフ、
第6図は熱疲労サイクルパターンを示すグラフ、である
。
la、 lb・・・冷却ロール 2・・・注湯ノズル
3・・・溶湯Figure 1 is an explanatory diagram of the procedure for producing rapidly cooled metal ribbon using twin rolls. Figure 2 is a graph showing the change in surface temperature of the roll kiss area over time when an iron roll and a copper roll are used as cooling rolls. Figure 3 is a graph showing the relationship between roll kiss temperature and thermal conductivity, Figure 4 is a graph showing the distribution of stress in the circumferential direction on the sleeve surface when a copper alloy roll is used, and Figure 5 is a graph showing the relationship between Vickers hardness and thermal conductivity. Figure 6 is a graph showing the relationship between roll surface roughness and thermal fatigue cycle pattern. la, lb...cooling roll 2...pouring nozzle 3...molten metal
Claims (1)
帯化を導く冷却ロールであって、熱伝導率:0.5ca
l/cm・s・℃以上で、さらに400℃において、0
.2%耐力:30kgf/mm^2以上、ビッカース硬
さ(Hv5g):150以上、引張り強さ:40kgf
/mm^2以上および伸び:5%以上を満足する材質に
なることを特徴とする急冷薄帯製造用の冷却ロール。1. A cooling roll that receives the falling flow of molten metal and forces it to rapidly solidify to form a thin ribbon, and has a thermal conductivity of 0.5ca.
l/cm・s・℃ or more, and further at 400℃, 0
.. 2% proof stress: 30kgf/mm^2 or more, Vickers hardness (Hv5g): 150 or more, tensile strength: 40kgf
/mm^2 or more and elongation: 5% or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20392188A JPH0255645A (en) | 1988-08-18 | 1988-08-18 | Cooling roll for producing rapid-cooled strip |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20392188A JPH0255645A (en) | 1988-08-18 | 1988-08-18 | Cooling roll for producing rapid-cooled strip |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0255645A true JPH0255645A (en) | 1990-02-26 |
Family
ID=16481899
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20392188A Pending JPH0255645A (en) | 1988-08-18 | 1988-08-18 | Cooling roll for producing rapid-cooled strip |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0255645A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05154616A (en) * | 1991-12-03 | 1993-06-22 | Nippon Stainless Steel Co Ltd | Roll for continuously casting sheet metal |
EP1005934A2 (en) * | 1998-12-04 | 2000-06-07 | Nippon Steel Corporation | Cooling drum for twin-drum continuous casting machine |
-
1988
- 1988-08-18 JP JP20392188A patent/JPH0255645A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05154616A (en) * | 1991-12-03 | 1993-06-22 | Nippon Stainless Steel Co Ltd | Roll for continuously casting sheet metal |
EP1005934A2 (en) * | 1998-12-04 | 2000-06-07 | Nippon Steel Corporation | Cooling drum for twin-drum continuous casting machine |
EP1005934A3 (en) * | 1998-12-04 | 2001-04-11 | Nippon Steel Corporation | Cooling drum for twin-drum continuous casting machine |
US6371900B1 (en) | 1998-12-04 | 2002-04-16 | Nippon Steel Corporation | Cooling drum for twin-drum continuous casting machine |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4865664A (en) | Amorphous alloy strips having a large thickness and method for producing the same | |
US4274471A (en) | Process for continuous casting of metals and an apparatus therefor | |
JPH01254357A (en) | Cooling roll for producing rapid cooled strip | |
JP5509222B2 (en) | Hot rolled thin cast strip product and manufacturing method thereof | |
KR20060130745A (en) | High copper low alloy steel sheet | |
JPH02160145A (en) | Cooling roll for producing rapidly cooled strip and production thereof | |
JPH0255645A (en) | Cooling roll for producing rapid-cooled strip | |
US4830086A (en) | Mold member and rapidly solidifying water cooled rotary roll member | |
JP3145766B2 (en) | Continuous casting of duplex stainless steel sheet | |
JPS61159247A (en) | Quick cooling roll for producing high-silicon thin steel strip | |
JPS61103651A (en) | Production of quickly cooled thin strip by twin roll method | |
JPS6053096B2 (en) | Copper alloy for molten metal quenching roll | |
JPH0139861B2 (en) | ||
JP3095679B2 (en) | Cooling drum for continuous casting of thin cast slab and method of manufacturing the same | |
JPS61108454A (en) | Cooling roll | |
JPH05269554A (en) | Manufacture of mn-ni alloy plate | |
JP2851252B2 (en) | Method of manufacturing austenitic stainless steel ribbon slab | |
JP2756490B2 (en) | Method for producing thin sheet of Ni-based alloy | |
JPS6234819B2 (en) | ||
JPH0751809A (en) | Production of corrosion resistant and heat resistant super alloy thin sheet | |
JP3380425B2 (en) | Twin drum type continuous casting drum | |
JPH05261491A (en) | Production of ni-base alloy plate | |
JPS61212454A (en) | Belt for continuous casting | |
JPS6245454A (en) | Cooling body for molten metal quick cooler | |
JPH06304701A (en) | Continuous casting water cooled mold for nickel or nickel-copper alloy |