JPH0255586A - Ultrasonic motor - Google Patents

Ultrasonic motor

Info

Publication number
JPH0255586A
JPH0255586A JP63207023A JP20702388A JPH0255586A JP H0255586 A JPH0255586 A JP H0255586A JP 63207023 A JP63207023 A JP 63207023A JP 20702388 A JP20702388 A JP 20702388A JP H0255586 A JPH0255586 A JP H0255586A
Authority
JP
Japan
Prior art keywords
fiber
moving body
vibrating body
ultrasonic motor
friction material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63207023A
Other languages
Japanese (ja)
Inventor
Masanori Sumihara
正則 住原
Yoshinobu Imasaka
喜信 今坂
Hiroshi Komeno
米野 寛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63207023A priority Critical patent/JPH0255586A/en
Publication of JPH0255586A publication Critical patent/JPH0255586A/en
Pending legal-status Critical Current

Links

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

PURPOSE:To lengthen the service life and to eliminate noise by placing a multi- layer fiber reinforced plastic in which the content of fiber is highest at the surface layer and decreases toward the inner layer between a vibrator and a moving body. CONSTITUTION:An ultrasonic motor comprises vibrators 1, 6, a piezoelectric body adhered to the underface thereof, moving bodies 2, 5, and the like. A multi-layer fiber reinforced plastic structure 3 in which the content of fiber is highest at the surface layer and decreases toward the inner layer is placed between the moving body 2 and the vibrator 1. Since the vibrator 1 and the moving body 2 can be contacted with uniform pressure, a uniform friction contacting state can be realized.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、圧電体による超音波振動を利用して駆動する
超音波モータに関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an ultrasonic motor that is driven using ultrasonic vibrations produced by a piezoelectric body.

従来の技術 超音波モータの一例として、圧電体により進行波を発生
ずる振動体と動体とを加圧接触した構成のものがあり、
加圧接触状態での振動体と動体との摩擦力を介して、動
体が駆動される。従って、振動体と動悸間の摩擦接触状
態が、そのような構成の超音波モータの出力、効率、〕
f命なとの諸性性を決定ずける極めて重要な要因の一つ
となる。、従来の超音波モータは、振動体と動体との間
にスライダーと呼ばれる摩擦係数の大きな摩擦材を介在
させているが、そのスライダーの具体的構成あるいはそ
の効果は、はとんと知られておらず、従って、均一な圧
力で振動体と動体とを加圧接触させることにより、振動
体と動体との間の摩擦接触状態を均一・に保ち、安定し
た長寿命の超音波モタは存在していないのが現状である
Conventional technology An example of an ultrasonic motor is one in which a moving body is brought into pressure contact with a vibrating body that generates traveling waves using a piezoelectric body.
The moving body is driven through the frictional force between the vibrating body and the moving body in a pressurized contact state. Therefore, the state of frictional contact between the vibrating body and the palpitation increases the output, efficiency, and
It is one of the extremely important factors that determines the characteristics of life. , Conventional ultrasonic motors have a friction material with a large friction coefficient called a slider interposed between the vibrating body and the moving body, but the specific structure of the slider and its effects are not well known. Therefore, there is no ultrasonic motor that maintains a uniform frictional contact state between the vibrating body and the moving body and has a stable and long life by bringing the vibrating body and the moving body into pressurized contact with uniform pressure. is the current situation.

発明が解決しようとする課題 振動体と動体とが加圧接触した状態での摩擦力を利用し
た超音波モータにおいて、振動体によるミクロンオータ
ーの振幅を効率よく動体表面に伝達するためには、摩擦
材表面はこの振幅を減衰させないように、高弾性率の素
材で構成する必要がある。しかし、摩擦材を高弾性率の
素材で構成Jると、振動体と動体とを均一な圧力で加圧
接触させ、なおかつミクロンオーダーの振幅に追従させ
るためには、振動体表面及び摩擦材表面を超精密加工す
る必要があった。
Problems to be Solved by the Invention In an ultrasonic motor that utilizes frictional force when a vibrating body and a moving body are in pressurized contact, it is necessary to The material surface needs to be made of a material with a high modulus of elasticity so as not to attenuate this amplitude. However, when the friction material is made of a material with a high modulus of elasticity, in order to bring the vibrating body and the moving body into pressure contact with uniform pressure and to follow the amplitude of the micron order, the surface of the vibrating body and the surface of the friction material must be It was necessary to process it with ultra precision.

振動体表面及び摩擦材表面の加工精度が悪い場合には、
均一な圧力で加圧接触しないため、モタを駆動させた際
に振動体による振幅を効率よく伝達できないため、モー
タ効率が低下したり、経時的にモータの回転数が変動す
るなど安定したモタ特性が得られないという問題点があ
った。
If the machining accuracy of the vibrating body surface and friction material surface is poor,
Since there is no pressurized contact with uniform pressure, the amplitude of the vibrating body cannot be efficiently transmitted when the motor is driven, resulting in a decrease in motor efficiency and stable motor characteristics such as fluctuations in motor rotation speed over time. There was a problem in that it was not possible to obtain

さらに、振動体表面及び摩擦材表面の加工精度が悪い場
合には、摩擦接触状態が不均一となり、モータを駆動さ
せた際に騒音を発生するという問題点もあった。
Furthermore, if the machining accuracy of the vibrating body surface and the friction material surface is poor, the frictional contact state becomes non-uniform, and there is also the problem that noise is generated when the motor is driven.

本発明は、振動体表面及び摩擦材表面の超精密加工を必
要とせず、均一な加圧接触状態が得られしかも、モータ
特性の劣化がなく、長寿命で無騒音の超音波モータを提
供することを目的とするものである。
The present invention provides an ultrasonic motor that does not require ultra-precision machining of the vibrating body surface and the friction material surface, can obtain a uniform pressurized contact state, does not cause deterioration of motor characteristics, has a long life, and is noiseless. The purpose is to

課題を解決するための手段 圧電体により進行波を発生する振動体と動体との間に、
動体に固定され、表面層の繊維含有率が最も多く、厚み
方向に対して内部層になるほと繊維含有率が少なくなる
多層構造を有する繊維強化プラスチックを介在させる。
Means for solving the problem Between a vibrating body that generates traveling waves using a piezoelectric body and a moving body,
A fiber-reinforced plastic is interposed that is fixed to a moving body and has a multilayer structure in which the surface layer has the highest fiber content and the fiber content decreases toward the inner layer in the thickness direction.

作用 上記の構成により、表面層の繊維強化プラスチツク層表
面又は振動体表面の凹凸やうねりを吸収することができ
、従って、振動体表面及び摩擦材表面の超精密加工を必
要とせず、均一な加圧接触状態をか得ることができる。
Effect The above structure can absorb unevenness and undulations on the surface of the fiber-reinforced plastic layer of the surface layer or on the surface of the vibrating body. Therefore, it is possible to uniformly process the vibrating body surface and the friction material surface without the need for ultra-precision machining. A pressure contact state can be obtained.

また、表面層に繊維含有率の多い繊維強化プラスチツク
層を設けることにより、長時間駆動後も摩擦材の摩耗量
を著しく少な(することができる。
Further, by providing a fiber-reinforced plastic layer with a high fiber content in the surface layer, the amount of wear of the friction material can be significantly reduced even after long-term driving.

さらに、繊維含有率を変化させた多層構造とすることに
より、振動体と動体とを均一な圧力で加圧接触させるこ
とができ、従って均一な摩擦接触状態が得られるため、
モータを駆動させても騒音が発生しない。
Furthermore, by having a multilayer structure with varying fiber content, the vibrating body and the moving body can be brought into pressure contact with uniform pressure, and therefore a uniform frictional contact state can be obtained.
No noise is generated even when the motor is driven.

実施例 以下本発明の一実施例を図面を参照しながら説明する。Example An embodiment of the present invention will be described below with reference to the drawings.

本発明の超音波モータの主要構成部の断面図を図1に示
す。ここで、■は振動体であり、この振動体1の下面に
圧電体く図示省略)が接着固定されている。さらに、2
は動体てあり、本発明が特徴とするごとく、この動体2
と振動体1との間に、表面層の繊維含有率が最も多く、
厚み方向に対して内部層になるほど繊維含有率が少なく
なる多層構造を有する繊維強化プラスチック3を介在さ
せている。
FIG. 1 shows a sectional view of the main components of the ultrasonic motor of the present invention. Here, ■ is a vibrating body, and a piezoelectric body (not shown) is adhesively fixed to the lower surface of this vibrating body 1. Furthermore, 2
is a moving object, and as a feature of the present invention, this moving object 2
and the vibrating body 1, the surface layer has the highest fiber content,
A fiber-reinforced plastic 3 having a multilayer structure in which the fiber content decreases toward the inner layer in the thickness direction is interposed.

次に本発明を具体的実施例によって、更に詳しく説明す
る。なお、本実施例においては、振動体1と動体2の間
に多層構造を有する繊維強化プラスチック製の摩擦材3
を介在させる方法としては、便宜上、動体2の表面に多
層構造を有する繊維強化プラスチック製の摩擦材3を接
着固定したものを、スプリング圧により振動体1に押し
付ける方法を用いたが、この方法に限定されるものでは
ない。また、振動体1としてはステンレス材を用いたが
、これに限定されるものではなく振動体1の材質は、圧
電体の振動を吸収せず摩擦材3との摩擦力が大きな材料
であればよい。
Next, the present invention will be explained in more detail with reference to specific examples. In this embodiment, a friction material 3 made of fiber-reinforced plastic having a multilayer structure is provided between the vibrating body 1 and the moving body 2.
For convenience, we used a method of adhering and fixing a friction material 3 made of fiber-reinforced plastic with a multilayer structure to the surface of the moving body 2 and pressing it against the vibrating body 1 using spring pressure. It is not limited. Further, although stainless steel is used as the vibrating body 1, the material is not limited to this, and the vibrating body 1 can be made of any material that does not absorb the vibrations of the piezoelectric body and has a large frictional force with the friction material 3. good.

実施例1 目付量が95 glrRと200g/イの二種類の炭素
繊維の平織織布(東邦レーヨン社製、ヘスファイト)に
、可とう性付与ビスマレイミド・トリアジン樹脂(三菱
がす化学社製、BT2112)を含浸後、これを半硬化
状態々した。次に、この半硬化状態の平織織布のうち目
付量が200g/イの平織織布1枚の上に目付量が95
g/n?の平織織布3枚を積層した。さらに、この積層
物をスペーサーを介して加熱加圧成形して、表面層と内
部層とで、炭素繊維の繊維含有率の異なる繊維強化プラ
スチックを作製した。
Example 1 Two types of carbon fiber plain woven fabrics (manufactured by Toho Rayon Co., Ltd., Hesphite) with a basis weight of 95 glrR and 200 g/I were coated with a bismaleimide triazine resin (manufactured by Mitsubishi Gas Chemical Co., Ltd., BT2112) that imparted flexibility. ) was impregnated into a semi-cured state. Next, out of this semi-cured plain weave fabric, a fabric weight of 95 g
g/n? Three sheets of plain woven fabric were laminated. Furthermore, this laminate was molded under heat and pressure via a spacer to produce a fiber-reinforced plastic in which the surface layer and the inner layer had different fiber contents of carbon fibers.

上記実施例の超音波モータ用摩擦材の製造方法において
は、炭素繊維の目付量が異なる2種類の平織織布を積層
することにより、表面層と内部層とで炭素繊維の繊維含
有率が異なる二層構造を有する繊維強化プラスチックを
作製したが、繊維帯度の異なる繊維素材に繊維結合材を
含浸したN浸物を、繊維密度の大きなものから順に順次
積層していくこみによっで、表面層の繊維含有率が最も
多く、厚み方向に対して内部層になるほと繊維含有率が
少なくなる多層構造を有する繊維強化ブゴ7スヂック製
の摩擦材を製造する、−とができろ。
In the method for manufacturing a friction material for an ultrasonic motor according to the above embodiment, two types of plain woven fabrics having different basis weights of carbon fibers are laminated, so that the fiber content of carbon fibers is different between the surface layer and the inner layer. A fiber-reinforced plastic with a two-layer structure was created, and the surface was It is possible to manufacture a friction material made of fiber-reinforced Bugo 7 Sudik having a multilayer structure in which the fiber content of each layer is highest and the fiber content decreases toward the inner layer in the thickness direction.

なお、上記実施例においては、炭素繊維として織布を用
いたが、本発明の製造方法においては、繊維素材の形態
として、織布に限るものではな(、)1.ルトあるいは
短繊維なとも用いることができ、また、十、記の形態の
繊維を−・緒に用いたり、任意に組め合わせることもで
きる。
Although woven fabric was used as the carbon fiber in the above examples, the form of the fiber material in the manufacturing method of the present invention is not limited to woven fabric. It can be used as long fiber or short fiber, and fibers of the following types can be used together or in any combination.

さらに、手記実施例においでは、炭素繊維の繊維結合材
として、可とう性付り、ヒスマレイミド・I・すrジン
樹脂を用いたが、この繊維結合材としては、多層構造中
、同一の樹脂を用いるものとは限らず、各層において用
いる樹脂を変えるなとして、複数個の繊維結合材を任意
に組み合わせることもできる。
Furthermore, in the handbook example, a flexible hismaleimide-I-sulfur resin was used as the fiber binding material for the carbon fibers, but as this fiber binding material, the same resin was However, it is also possible to arbitrarily combine a plurality of fiber binding materials without changing the resin used in each layer.

次に、上記実施例により得られた繊維強化プラスチック
を超音波モータ用摩擦材として使用する際には2表面部
を円筒研削盤にて表面研摩し、この表面層古内部層とで
、炭素繊維の繊維含有率が異なることにより二層構造を
有する摩擦材4を、第2図に示すように、スプリング(
図示省゛略)を用いて、下面に圧電体7を接着した振動
体0と動体5の間に圧着して、直径40mmの円板型超
音波モータを作製した。
Next, when using the fiber-reinforced plastic obtained in the above example as a friction material for an ultrasonic motor, the two surface parts are surface-polished using a cylindrical grinder, and the carbon fiber As shown in FIG. 2, a friction material 4 having a two-layer structure due to different fiber contents of
A disk-type ultrasonic motor with a diameter of 40 mm was produced by crimping between the vibrating body 0 and the moving body 5, each of which had a piezoelectric body 7 adhered to its bottom surface, using a vibrating body 0 (not shown).

この円板型超音波モータを駆動させたところ、騒音の発
生はな(,1100gf−cmの大きな起動トルクと5
00rpmの無負荷回転数が得られたと同時に、45%
のモータ効率が得られた。
When this disk-type ultrasonic motor was driven, no noise was generated (1100gf-cm large starting torque and 500gf-cm).
At the same time, a no-load rotation speed of 00 rpm was obtained, and at the same time, 45%
motor efficiency was obtained.

また、回転方向とは逆方向に400gf−cmの負荷を
かけ300 r p mの回転速度で回転させたところ
、経時的な回転数の低下も認められず500万回転後も
安定したモータ性能を示した。
In addition, when a load of 400 gf-cm was applied in the opposite direction to the rotation direction and the motor was rotated at a rotation speed of 300 rpm, no decrease in rotation speed was observed over time, and the motor maintained stable performance even after 5 million rotations. Indicated.

さらに、500万回転後の摩擦材の摩耗減少厚さを測定
したところ、35μrT1と非常に少なく、500万回
転後も起動トルク、無負荷回転数共に初期とほとんど変
化がな(、安定したモータ性能を維持していた。
Furthermore, when we measured the wear reduction thickness of the friction material after 5 million revolutions, it was very small at 35μrT1, and even after 5 million revolutions, there was almost no change from the initial state in both starting torque and no-load rotation speed (stable motor performance. was maintained.

比較のため、目(i量が200g/−の炭素繊維の平織
織布3枚を積層し、実施例1と同様にして繊維強化プラ
スチックを作製し、これを摩擦材として使用し、実施例
1と同様にして摩擦材を研摩後、円板型超音波モータを
作製し、駆動させたところ、初期に騒音が発生し、起動
トルク、無負荷回転数共に実施例1と比較して小さな値
を示したと同時に、35%のモ〜り効率しか得られなか
った。さらに、長時間駆動させた際には、起動トルク、
無負荷回転数共に初期との変化幅が、実施例1に比べて
大きかった。
For comparison, three sheets of carbon fiber plain woven fabric with an i content of 200 g/- were laminated to produce fiber reinforced plastic in the same manner as in Example 1, and this was used as a friction material. After polishing the friction material in the same manner as in Embodiment 1, a disk-type ultrasonic motor was manufactured and driven. Noise was generated at the beginning, and both the starting torque and the no-load rotation speed were smaller than those in Example 1. At the same time, a motor efficiency of only 35% was obtained.Furthermore, when operated for a long time, the starting torque,
The range of change from the initial state in both the no-load rotational speed was larger than in Example 1.

実施例2 ポリテトラフルオロエチレン粉末(ダイキン工業社製、
ポリフロン)とミルドファイバー形態の炭素繊維(三菱
レイヨン社製、パイロフィル)を均一混合し、炭素繊維
の繊維含有率が重量含有率にて25%と10%である2
種類の混合粉末を作製した。次に、炭素繊維の繊維含有
率が25%の混合粉末20重量%と炭素繊維の繊維含有
率が10%の混合粉末40重量%とポリテトラフルオロ
エチレン粉末40重量%とを、この順で順次金型内に充
填した後、500 k g / co?の加圧力で加圧
成形した。さらに、この成形物を380℃にて焼成する
ことにより、厚み方向に対して炭素繊維含有率の異なる
繊維強化プラスチックを作製した。
Example 2 Polytetrafluoroethylene powder (manufactured by Daikin Industries, Ltd.,
Polyflon) and milled carbon fiber (manufactured by Mitsubishi Rayon Co., Ltd., Pyrofil) are uniformly mixed, and the fiber content of the carbon fiber is 25% and 10% by weight2.
Various mixed powders were prepared. Next, 20% by weight of a mixed powder with a carbon fiber content of 25%, 40% by weight of a mixed powder with a carbon fiber content of 10%, and 40% by weight of a polytetrafluoroethylene powder were sequentially added in this order. After filling into the mold, 500 kg/co? Pressure molding was performed at a pressure of . Furthermore, by firing this molded product at 380° C., fiber reinforced plastics having different carbon fiber contents in the thickness direction were produced.

」二足実施例の超音波モータ用摩擦材の製造方法におい
ては、炭素繊維の繊維含有率が異なるポリテトラフルオ
ロエチレン粉末混合物を、炭素繊維の繊維含有率が多い
ものから順に順次充填後、加圧成形することにより、厚
み方向に対して炭素繊維の繊維含有率が異なる繊維強化
プラスチックを作製したが、繊維含有率の異なる、強化
繊維と繊維結合材との均一混合物を、繊維含有率の多い
ものから順に順次充填後、加圧成形することによって、
表面層の繊維含有率が最も多く、厚み方向に対して内部
層になるほど繊維含有率が少なくなる多層構造を有する
繊維強化プラスチック製の摩擦材を製造することができ
る。
In the method for manufacturing a friction material for an ultrasonic motor according to the two-leg example, polytetrafluoroethylene powder mixtures having different carbon fiber fiber contents are sequentially filled in descending order of carbon fiber fiber content, and then processed. By compression molding, fiber-reinforced plastics with different fiber contents of carbon fibers in the thickness direction were produced. By filling the products one by one and then press-molding them,
It is possible to produce a friction material made of fiber-reinforced plastic that has a multilayer structure in which the surface layer has the highest fiber content and the fiber content decreases toward the inner layer in the thickness direction.

なお、上記実施例においては、炭素繊維としてミルドフ
ァイバーを用いたが、本発明の製造方法においては、繊
維素材の形態として、ミルドファイバーに限るものでは
な(、パルプあるいは短繊維なども用いることができ、
また、上記の形態の繊維を一緒に用いたり、任意に組み
合わせることもできる。
In the above examples, milled fibers were used as carbon fibers, but in the manufacturing method of the present invention, the form of the fiber material is not limited to milled fibers (pulp or short fibers can also be used). I can do it,
Moreover, the above-mentioned types of fibers can be used together or in any combination.

次に、上記実施例により得られた繊維強化プラスチック
を超音波モータ用摩擦材として使用する際には、表面部
を円筒研削盤にて表面研摩し、この厚み方向に対して炭
素繊維含有率の異なることにより、三層構造を有する摩
擦材4を、第2図に示すように、スプリング(図示省略
)を用いて、下面に圧電体7を接着した振動体6と動体
5の間に圧着して、直径40mmの円板型超音波モータ
を作製した。
Next, when using the fiber-reinforced plastic obtained in the above example as a friction material for an ultrasonic motor, the surface part is ground with a cylindrical grinder, and the carbon fiber content is reduced in the thickness direction. As shown in FIG. 2, a friction material 4 having a three-layer structure is crimped between a vibrating body 6 and a moving body 5 on which a piezoelectric body 7 is bonded on the bottom surface using a spring (not shown). A disc-type ultrasonic motor with a diameter of 40 mm was manufactured.

この円板型超音波モータを駆動させたところ、騒音の発
生はなく、1000g100Oの大きな起動トルクと4
5Orpmの無負荷回転数が得られたと同時に、43%
のモータ効率が得られた。
When this disk-type ultrasonic motor was driven, there was no noise and a large starting torque of 1000g100O was achieved.
At the same time, a no-load rotation speed of 5 Orpm was obtained, and at the same time, 43%
motor efficiency was obtained.

また、回転方向とは逆方向に400gf−Cmの負荷を
かけ300rpmの回転速度で回転させたところ、経時
的な回転数の低下も認められず500万回転後も安定し
たモータ性能を示した。
Furthermore, when a load of 400 gf-Cm was applied in the opposite direction to the rotational direction and the motor was rotated at a rotation speed of 300 rpm, no decrease in rotational speed was observed over time, and stable motor performance was exhibited even after 5 million rotations.

さらに、500万回転後の摩擦材の摩耗減少厚さを測定
したところ、15μmと非常に少なく、500万回転後
も起動トルク、無負荷回転数共に初期とほとんど変化が
なく、安定したモータ性能を維持していた。
Furthermore, when we measured the wear reduction thickness of the friction material after 5 million rotations, it was extremely small at 15 μm.Even after 5 million rotations, there was almost no change in starting torque and no-load rotation speed from the initial stage, indicating stable motor performance. was maintained.

比較のため、炭素繊維の繊維含有率が25%の混合粉末
を加圧成形した後、実施例2と同様にして繊維強化プラ
スチックを作製し、これを摩擦材として使用し、実施例
1と同様にして摩擦材を研摩後、円板型超音波モータを
作製し、駆動さぜたところ、初期に騒音が発生し、起動
トルク、無負荷回転数共に実施例1と比較して小さな値
を示したと同時に、33%のモータ効率しか得られなか
った。さらに、長時間駆動させた際には、起動トルク、
無負荷回転数共に初期との変化幅が、実施例1に比べて
大きかった。
For comparison, a mixed powder with a carbon fiber content of 25% was pressure-molded, and then a fiber-reinforced plastic was produced in the same manner as in Example 2, and this was used as a friction material. After polishing the friction material, a disk-type ultrasonic motor was manufactured and when it was driven, noise was generated at the beginning, and both the starting torque and the no-load rotation speed were small compared to Example 1. At the same time, only 33% motor efficiency was obtained. Furthermore, when operating for a long time, the starting torque,
The range of change from the initial state in both the no-load rotational speed was larger than in Example 1.

なお、上記二つの実施例においては、繊維強化プラスチ
ツク中の強化繊維として、炭素繊維を用いたが、これに
限るものではな(、ガラス繊維などの無機繊維あるいは
芳香族ポリアミド繊維などの耐熱性を有する有機繊維を
用いることができる。また、無機繊維と耐熱性有機繊維
を一緒に用いたものであってもよいことはいうまでもな
く、無機繊維と耐熱性有機繊維とを組み合わせることも
任意である。
In the above two examples, carbon fibers were used as the reinforcing fibers in the fiber-reinforced plastics, but the invention is not limited to this. In addition, it goes without saying that inorganic fibers and heat-resistant organic fibers may be used together, and it is also optional to combine inorganic fibers and heat-resistant organic fibers. be.

さらに、上記二つの実施例においては、繊維強化プラス
チツク中の繊維結合材として、可とう性付与ビスマレイ
ミド・トリアジン樹脂とポリテトラフルオロエチレン樹
脂を用いたが、これに限るものではな(、たとえばポリ
イミド樹脂、ポリアミドイミド樹脂、ビスマレイミド・
トリアジン樹脂、フェノール樹脂、エポキシ樹脂などの
耐熱性の高い樹脂を単独、または組み合わせて使用でき
る。
Furthermore, in the above two examples, the flexibility-imparting bismaleimide triazine resin and the polytetrafluoroethylene resin were used as the fiber binding material in the fiber-reinforced plastic, but they are not limited to these (for example, polyimide Resin, polyamideimide resin, bismaleimide
Resins with high heat resistance such as triazine resin, phenol resin, and epoxy resin can be used alone or in combination.

発明の効果 本発明によれば、繊維含有率の多い表面層の繊維強化プ
ラスラック表面又は振動体表面の凹凸やうねりを吸収す
ることができ、しかも振動体と動体との均一な摩擦接触
状態が得られると同時に、長時間駆動させても摩擦材の
摩耗量は著しく少ないため、振動体表面及び摩擦材表面
の超精密加工を必要とせず、均一な加圧接触状態が得ら
れ、しかも、モータ特性の劣化がな(、長寿命で無騒音
の超音波モータを得ることができる。
Effects of the Invention According to the present invention, it is possible to absorb the unevenness and undulations on the fiber-reinforced plus rack surface of the surface layer with a high fiber content or on the surface of the vibrating body, and to maintain a uniform frictional contact state between the vibrating body and the moving body. At the same time, the wear amount of the friction material is extremely small even after long-term operation, so there is no need for ultra-precision machining of the vibrating body surface and the friction material surface, and a uniform pressurized contact state can be obtained. It is possible to obtain a noiseless ultrasonic motor with a long life and no deterioration of characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例における超音波モータの主
要構成部の断面図、第2図は、同実施例における円板型
超音波モータの主要構成部を一部断面で示した分解斜視
図である。 1.6・・・・・・振動体、 2,5・・・・・・動体
3・・・・・・多層構造維強化プラスチック摩擦材、4
・・・・・・摩擦材、 7・・・・・・圧電体。
FIG. 1 is a cross-sectional view of the main components of an ultrasonic motor according to an embodiment of the present invention, and FIG. 2 is an exploded partial cross-sectional view of the main components of a disc-type ultrasonic motor according to the same embodiment. FIG. 1.6... Vibrating body, 2,5... Moving body 3... Multilayer fiber reinforced plastic friction material, 4
...Friction material, 7...Piezoelectric material.

Claims (1)

【特許請求の範囲】[Claims]  圧電体により進行波を発生する振動体と動体とが加圧
接触し、振動体と動体との間に働く摩擦力を介して、前
記進行波により動体を駆動する超音波モータにおいて、
前記振動体と動体との間に、前記動体に固定され、表面
層の繊維含有率が最も多く、厚み方向に対して内部層に
なるほど繊維含有率が少なくなる多層構造を有する繊維
強化プラスチックを介在させたことを特徴とする超音波
モータ。
In an ultrasonic motor, a vibrating body that generates a traveling wave by a piezoelectric body and a moving body are brought into pressurized contact, and the moving body is driven by the traveling wave through a frictional force acting between the vibrating body and the moving body,
A fiber-reinforced plastic is interposed between the vibrating body and the moving body and has a multilayer structure in which the surface layer has the highest fiber content and the inner layer in the thickness direction has a lower fiber content. An ultrasonic motor characterized by:
JP63207023A 1988-08-19 1988-08-19 Ultrasonic motor Pending JPH0255586A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63207023A JPH0255586A (en) 1988-08-19 1988-08-19 Ultrasonic motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63207023A JPH0255586A (en) 1988-08-19 1988-08-19 Ultrasonic motor

Publications (1)

Publication Number Publication Date
JPH0255586A true JPH0255586A (en) 1990-02-23

Family

ID=16532925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63207023A Pending JPH0255586A (en) 1988-08-19 1988-08-19 Ultrasonic motor

Country Status (1)

Country Link
JP (1) JPH0255586A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000081081A (en) * 1998-06-26 2000-03-21 Bridgestone Corp Slider

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000081081A (en) * 1998-06-26 2000-03-21 Bridgestone Corp Slider

Similar Documents

Publication Publication Date Title
US5013956A (en) Lining material and ultrasonic wave driven motor using lining material
US5150000A (en) Ultrasonic motor
US5245243A (en) Ultrasonic motor with a friction component
JPH0255586A (en) Ultrasonic motor
EP0317976A2 (en) Ultrasonic motor
JPS6223379A (en) Ultrasonic motor
JPS62147979A (en) Ultrasonic wave motor
JP2575028B2 (en) Ultrasonic motor
JPH03198674A (en) Ultrasonic motor
JPH01206880A (en) Ultrasonic motor
JPH0332375A (en) Ultrasonic motor
JPH0442787A (en) Oscillatory wave motor
JPH09327185A (en) Oscillating actuator
JPH05184168A (en) Ultrasonic motor
JPH01248975A (en) Ultrasonic-wave motor
JPS63103674A (en) Ultrasonic wave motor
JPH01110067A (en) Supersonic motor
JPH0449872A (en) Ultrasonic wave motor
JPH01138978A (en) Ultrasonic wave motor
JPS63305767A (en) Ultrasonic motor
JPS63299786A (en) Ultrasonic motor
US20050134145A1 (en) Ultrasonic motor
JPH01234070A (en) Ultrasonic motor
JPS62193567A (en) Ultrasonic motor
JPH0632572B2 (en) Ultrasonic motor