JPH0255493B2 - - Google Patents

Info

Publication number
JPH0255493B2
JPH0255493B2 JP15827681A JP15827681A JPH0255493B2 JP H0255493 B2 JPH0255493 B2 JP H0255493B2 JP 15827681 A JP15827681 A JP 15827681A JP 15827681 A JP15827681 A JP 15827681A JP H0255493 B2 JPH0255493 B2 JP H0255493B2
Authority
JP
Japan
Prior art keywords
superalloy
plasma spray
cast
product
gas turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15827681A
Other languages
Japanese (ja)
Other versions
JPS57152459A (en
Inventor
Robaato Jakuson Merubin
Rueru Raiaden Saado Jon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of JPS57152459A publication Critical patent/JPS57152459A/en
Publication of JPH0255493B2 publication Critical patent/JPH0255493B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は金属鋳造技術に関するもので、曎に詳
しく蚀えば、䜎圧・高速プラズマ溶射鋳造法によ
぀お補造された新芏な補品に関する。かかる補品
は特異なミクロ組織を瀺し、そのため埓来の方法
によ぀お補造された同じ合金組成物の補品の物理
的性質より優れた新芏な組合せの物理的性質を有
しおいる。このように優れた物理的性質たずえ
ば高枩匷床、延性および耐熱疲劎性のために特
殊な甚途に圹立぀本発明の補品の実䟋ずしおは、
ニツケル、コバルトたたは鉄を基材ずする超合金
から成るガスタヌビン゚ンゞン甚の矜根および円
板が挙げられる。それ以倖にも、ガスタヌビン゚
ンゞン郚品より䜎い枩床条件䞋で動䜜するが特殊
な物理的性質を芁求する点で問題のあるはずみ車
のごずき補品や幟䜕孊的圢状、材料の組成たたは
それら䞡方の理由から埓来の方法では容易に補造
できない補品が挙げられる。 数十幎前に重芁な発電甚および掚進甚の機械ず
しお各皮圢態のガスタヌビンが登堎しお以来、そ
れの動䜜および性胜は利甚し埗る構造材料によ぀
お制玄されるこずが広く認められおきた。かかる
甚途においおは、比范的倧きい匕匵匷床、宀枩か
らガスタヌビンの燃焌宀動䜜枩床たでの範囲内に
おける良奜に延性、および良奜な耐熱疲劎性の組
合せが極めお望たしい。今日たで続けられおきた
広汎な研究開発努力の結果ずしお、いわゆる「超
合金」が利甚可胜ずな぀た。その䞭でも特に優れ
おいるのはニツケル、コバルト、鉄およびクロム
を基材ずする耐熱性の合金であ぀お、これらはた
ずえばルネ80公称組成C0.17、Cr14、Co9.5
、Mo4.0、W4.0、Ti5.0、Al3.0、
B0.015、Zr0.03、Ni残䜙、ルネ95公称組
成C0.15、Cr14、Co8.0、Mo3.5、W3.5
、Cb3.5、Ti2.5、Al3.5、B0.01、
Zr0.05、Ni残䜙、IN738公称組成C0.17、
Mn0.2䞊限、Si0.3䞊限、Cr16、
Co8.5、Mo1.75、W2.6、Cb0.9、Ti3.4
、Al3.4、B0.01、Zr0.10、Fe0.5䞊
限、Ta1.75、Ni残䜙、ただしFeMn及
びSiに぀いおはできるだけ少量に抑える、
IN617公称組成C0.1、Mn0.5、Si0.5、
Cr22.0、Ni52.0、Co12.5、Mo9.0、
Ti0.3、Al1.2、Fe1.5、Cu0.2、IN671
公称組成C0.05、Cr46.0、Ni53.5、Ti0.4
の商品名で垂販されおいる。 特にガスタヌビン動䜜の䜎枩領域における芁求
匷床の重芁性に基づき、䞊蚘合金䞭の前四者は矜
根および円板補造のために䜿甚されおいるのに察
し、IN671は䞻ずしおそれの耐環境性のゆえに䜿
甚されおいる。このような甚途の堎合、IN671は
鍛錬薄板ずしお䜿甚されるのが通䟋であるが、保
護すべき郚品䞊にプラズマ溶射被膜ずしお盎接に
蚭眮するこずも提唱されおいる。しかるに、他の
皮の合金を矜根やその他のガスタヌビン高枩域
甚郚品ずしお䜿甚するためには、それらを融解し
おから所定の圢状および寞法に鋳造したり、ある
いは鋳造品や焌結品を機械的に倉圢させたりする
のが普通である。ずは蚀぀おも、加工方法にかか
わりなく、これらの合金から成る郚品には防食察
策が必芁ずなるこずがある。珟圚では、倚くの堎
合、ある皮のMCrAlY合金から成る溶射被膜が
䜿甚されおいる。 䞊蚘の通り、ガスタヌビン゚ンゞンの特殊な芁
求条件に答えお材料の開発はかなりの進歩を芋せ
たが、それでも重芁な材料性胜にただ欠ける所が
ある。ずころで、これたでのずころ、ガスタヌビ
ン高枩域甚郚品の補造に䜿甚される超合金は䞊蚘
のごずき各皮の物理的性質、動䜜条件および補造
操䜜を考慮に入れた劥協の産物であ぀た。特に、
所定の圢状に盎接鋳造されるような郚品の堎合に
はそれが明らかである。本発明以前においおは、
ガスタヌビン゚ンゞン甚鋳造郚品の補造時におけ
るそのような劥協の必芁性を排陀する新しい超合
金は登堎せず、たたそのような劥協の排陀を可胜
にするその他の代案も提唱されなか぀た。 なお、「ガス噎射溶融金属の溶射鋳造による高
密床鋳塊の補造」ず称する1978幎月日付のク
ラヌクClark等の米囜特蚱第4066117号明现
曞䞭に蚘茉の方法においおは、超合金の鋳塊から
矜根やその他のガスタヌビン゚ンゞン郚品を補造
するために鍛造のごずき機械的倉圢工皋が䞍可欠
である。 このたび本発明者等は、ガスタヌビン゚ンゞン
甚郚品の構造材料ず動䜜条件ずの間における劥協
の必芁性および鍛造や類䌌の加工操䜜の必芁性を
排陀するこずができ、埓぀お回転機械甚の超合金
鋳造郚品においお長らく所望されおいた組合せの
性質が今や実珟し埗るこずを芋出した。本発明者
等はたた、超合金組成の改倉や新しい超合金の創
造なしに、しかも顕著な補造原䟡の増倧なしに䞊
蚘の結果を䞀貫しお達成し埗るこずをも芋出し
た。 これらの結果は、ある新芏な圢態の䞋では、ガ
スタヌビン゚ンゞン甚郚品の鋳造のために叀くか
ら䜿甚されおきた超合金がほが理想的な組合せの
物理的性質を有するずいう驚くべき発芋に基づく
ものである。曎に詳しく述べれば、極めお埮现で
䞀様なミクロ組織から成る圢態の䞋では、かかる
超合金が埓来公知の圢態を瀺す同じ合金組成物ず
は成く異なりか぀それよりも著しく優れた物理的
性質を有するこずが芋出されたのである。このよ
うな新しい圢態は、埓来䜿甚されおきたような融
解鋳造法によ぀お埗るこずは䞍可胜であるが、融
解枩床付近の埮现な超合金粒子からほが理論密床
の郚材を圢成するようにしお実斜されるプラズマ
溶射鋳造法によれば䞀貫しお埗るこずができる。 本発明の特異な組合せの物理的性質を有する超
合金補品を生み出すこずのできない埓来方法の䞭
には、たずえば、メタルズ・゚ンゞニアリング・
クオヌタリヌMetals Engineering Quarterly
の1964幎月号に掲茉された「プラズマ鋳造材料
の構造および性質」ず題するマツシナおよびブラ
りンMash  Brownの論文䞭に蚘茉の方
法をはじめずする埓来のプラズマアヌク溶射法が
含たれる。マツシナおよびブラりンによ぀お補造
された独立郚材の匷床特性は、達成し埗る密床
85〜92および局状構造のために制限を受け
るのである。 本発明の特異な物理的性質を有する超合金補品
の補造のために遞ばれた方法は、「基䜓の高゚ネ
ルギヌ力孊的被芆を行うための方法および装眮」
ず称する1974幎10月日付のミナヌルバヌガヌ
Muehlbergerの米囜特蚱第3839618号明现曞䞭
に詳しく蚘茉されおいる。実際のずころ、本発明
者等が本発明の基瀎を成す重芁な発芋を行぀たの
は、䞊蚘特蚱の䜎圧・高速プラズマ溶射鋳造法を
甚いお超合金被膜を圢成する過皋においおであ぀
た。このようにしおニツケル基超合金を䜿甚する
こずによ぀お埗られた被膜の怜査および評䟡を行
぀たずころ、特異なミクロ組織およびそれに垰因
させ埗る物理的性質が認められた。かかる知識を
応甚しおそのプラズマ溶射鋳造法により詊隓片を
䜜補し、そしお通垞の融解鋳造法により䜜補され
た詊隓片ずの比范詊隓を行぀たずころ、プラズマ
溶射鋳造法によ぀お圢成された超合金被膜の優れ
た物理的性質が塊状䜓すなわち党䜓がプラズマ溶
射鋳造された超合金のみから成る郚材においおも
容易に埗られるずいう新芏な着想が確蚌された。 䞊蚘の発芋に基づけば、超合金党般䞊びにその
他の耐熱性合金やガスタヌビン゚ンゞンの最高動
䜜枩床よりず぀ず䜎い枩床範囲においお倧きい匕
匵匷さを有する合金をこのようにしおプラズマ溶
射鋳造すれば、ガスタヌビン゚ンゞン甚の郚品や
厳しい匕匵荷重および疲劎荷重条件を芁求するそ
の他の回転機械甚の郚品たずえばはずみ車を
埗るこずができるず信じおもよい。兞型的な動䜜
条件を䟋瀺すれば、ガスタヌビン゚ンゞンの回転
円板は538〜649℃1000〜1200〓で12.0×103
Kgcm2170ksiたでの匕匵荷重および399〜649
℃750〜1200〓で8.4×103Kgcm2120ksi
の疲劎荷重を受けるのが普通である。同様に、か
かる゚ンゞンにおける固定矜根やノズルぱンゞ
ン動䜜枩床䞋でクリヌプ荷重を受けるのが普通で
あり、たた環境枩床から゚ンゞン動䜜枩床に至る
倉動枩床条件䞋での熱疲劎亀裂抵抗性をも芁求す
る。 以䞊の党おの蚘茉ずりわけ䞊蚘の発芋を考慮し
぀぀本発明に埓぀お簡単に述べれば、ニツケル基
超合金、コバルト基超合金および鉄基超合金から
成る矀より遞ばれた超合金から成るプラズマ溶射
鋳造補品においお、プラズマ溶射鋳造されたたた
の状態では玄1000ppm未満の酞玠含量、理論倀の
箄97を超える密床、玄0.2〜玄0.5Όの結晶粒床、
およびミクロ偏析を実質的に瀺さない化孊的に均
質なミクロ組織を有するこずを特城ずするプラズ
マ溶射鋳造補品が提䟛される。 熱凊理を受けた堎合、熱凊理䞭に起こる均質化
のため、かかる補品は理論倀の玄98を越える密
床を有しか぀䞀局少ないミクロ偏析を瀺す。熱凊
理埌の補品の結晶粒床は䞀般にプラズマ溶射鋳造
されたたたの補品の結晶粒床より倧きいが、その
皋床は超合金の皮類および熱凊理の時間や枩床に
䟝存する。しかし、皮以䞊の盞の析出によ぀お
匷化される超合金の堎合には、熱凊理埌の結晶粒
床が玄0.5〜玄5.0Όずいう小さな範囲内に制限さ
れるこずもあり埗る。 このような補品は、はずみ車、ガスタヌビン゚
ンゞン甚の矜根、矜根車に矜根を取付けるための
円板、たたはその他の高枩域甚郚品のいずれであ
るにせよ、䜎圧・高速プラズマ溶射鋳造法により
䞭実の郚材ずしお補造するこずもできるし、ある
いは心型䞊に超合金を付着させおからその心型を
遞択的に溶解陀去するこずにより䞭空の郚材ずし
お補造するこずもできる。たた、䞀局耇雑な心型
の䜿甚により、溶解埌には耇数の䞭空領域を有す
る独立か぀自立したプラズマ溶射鋳造郚材を埗る
こずができる。曎にたた、心型をセグメントに分
割するこずも可胜である。すなわち、心型の䞀郚
分䞊に第の超合金をプラズマ溶射鋳造しお最終
補品の第の郚分を圢成し、このような心型の䞀
郚分を心型の残りの郚分ず共に組立お、次いで第
の郚分を含む完党な心型䞊に第の超合金をプ
ラズマ溶射鋳造しお郚材を完成するこずもできる
のである。 以䞋、添付の図面を参照しながら本発明を䞀局
詳しく説明しよう。 第図のガスタヌビン゚ンゞン甚矜根は、
プラズマ溶射鋳造法によ぀お補造し埗る皮類の補
品を䟋瀺するものである。抂しお通垞の寞法およ
び圢状を持぀た矜根は、プラツトホヌム
䞊びに第図および埌蚘実斜䟋の暡擬円板
のごずきガスタヌビン円板に通垞の方法で堅固に
取付けるための基郚を有しおいる。しかる
に、矜根および円板はいずれも埓来の察
応品ずは著しく違぀おいる。すなわち、埓来の察
応品ず同じ合金組成物から成぀おいたずしおも、
矜根および円板は著しく異なる物理的性
質を有し、埓぀お正芏の゚ンゞン動䜜に際しお著
しく異なる性胜特性を瀺すのである。かかる基本
的か぀重芁な盞違は、これらの新芏な郚品の補造
方法が異なるこずに由来する。すなわち、通垞の
融解鋳造法や前述のごずきマツシナおよびブラり
ンのプラズマアヌク溶射鋳造法ではなく、融点よ
り僅かに高い枩床の超合金の埮粒子をプラズマ流
䞭に導入し、そしお䞭性雰囲気の䜎圧宀内に眮か
れた基䜓䞊に高速で投射するこずによ぀お矜根
および円板が補造されるのである。詳しく
述べれば、矜根および円板のごずき郚品
を補造する堎合、粒子の粒床は−400メツシナで
ありすなわち実質的に党おの粒子の盎埄が玄
38Ό未満であり、たた溶射宀の雰囲気は30〜
60Torrのアルゎンである。なお本明现曞で䜿甚
される「ガスタヌビン゚ンゞン」ずいう甚語は、
発電甚のガスタヌビンおよび航空機掚進甚のゞ゚
ツト゚ンゞンを包括するものずする。 䞊蚘ず同様にしお䜎圧・高速プラズマ溶射補造
法を䜿甚すれば、実斜䟋に瀺されるごずく、第
および図の䞭空矜根が補造され、しかも
䞊蚘に芁玄しお述べた通りのミクロ組織および物
理的性質が埗られる。矜根および間にお
ける構造䞊の倧きな違いは、遞択的に溶解可胜な
第図の心型アセンブリを䜿甚するこずにあ
る。それによ぀お壁䜓の圢成に必芁な内郚間
隙が䞎えられる結果、矜根の内郚は冷华材を流す
ための独立した通路およびに分割される
のである。 第図に斜芖図ずしお瀺されたはずみ車も
たた、䞊蚘ず同じ䜎圧・高速プラズマ溶射鋳造法
によ぀お補造される。かかる目的のためには、プ
ラズマ溶射鋳造された堎合、このような甚途にお
ける長期䜿甚に察しお芁求される匕匵荷重および
疲劎荷重条件を満たし埗る任意のニツケル基、コ
バルト基たたは鉄基超合金が適宜に䜿甚できる。
圓業者には自明の通り、かかる鋳造はずみ車は単
䞀のプラズマ溶射鋳造品ずしお補造するこずもで
きるし、あるいは耇数の郚分に分けお補造しおか
ら適圓な手段により互いに固定しお組立おるこず
もできる。 圓業者が本発明を䞀局明確に理解し埗るように
するため、以䞋に本発明の実斜䟋を瀺す。これら
の実斜䟋は、本発明のプラズマ溶射鋳造補品およ
び埓来技術の融解鋳造補品の䞻芁な物理的性質に
関する比范デヌタを埗るために蚈画された詊隓の
過皋で行われたものである。それ故、これらの実
斜䟋は本発明の実斜を䟋蚌するものに過ぎないわ
けで、前蚘特蚱請求の範囲によ぀お定矩される本
発明の範囲に制限を加えるものではない。 以䞋の実斜䟋䞭で埗られたデヌタは、通垞の方
匏に埓぀お蚘茉される。すなわち第および
衚䞭では、UTSは103ポンド平方むンチを単
䜍ずする極限匕匵匷さを衚わし、たたYSは同じ
単䜍の0.2耐力匷床を衚わす。同様に、EMLは最
倧荷重における䌞び、EFAILは砎断点䌞び、たた
R.A.は断面瞮小率であ぀お、これらのパラメヌ
タはいずれも癟分率で衚わされおいる。 実斜䟋  䞊蚘のごずき䜎圧・高速プラズマ溶射鋳造法に
より、ニツケル基超合金IN738から成る長さ玄15
cmむンチ、幅玄6.4cm2.5むンチか぀厚
さ玄0.64cm0.25むンチの板状郚材を補造し
た。基䜓ずしおは、600番炭化ケむ玠研磚玙で予
め研磚した鋌板を䜿甚した。基䜓心型ぞの付
着䞊びにIN738の密床およびミクロ組織の制埡を
達成するため、基䜓を玄1650〓900℃に予熱
した。溶射宀の圧力は30〜60Torr、プラズマガ
ンの電力は68KW、たた溶射時間は分30秒であ
぀た。こうしお被芆された基䜓を溶射宀内におい
お冷华した埌、鋌板の瞁端をハンマでたたくこず
によ぀おIN738補の郚材を分離した。かかる
IN738補の郚材から、党䜓ずしお長さ2.54cm1.0
むンチ、幅1.0cm0.4むンチか぀厚さ0.16cm
0.063むンチの寞法を持぀た詊隓片を機械加工
した。なお、ゲヌゞ郚分の幅は0.08むンチであ぀
お、0.25むンチにわたり䞀様であ぀た。こうしお
埗られた詊隓結果は、通垞の融解鋳造法によ぀お
IN738から圢成された同じ寞法および圢状の詊隓
片に関する兞型的なデヌタず共に第衚䞭に瀺さ
れおいる。 通垞の融解鋳造法によ぀お圢成された詊隓片に
察しおは、商業的に䜿甚されおいる兞型的な熱凊
理を斜した。すなわち、詊隓に先立ち、アルゎン
䞭においお詊隓片を2050〓1120℃で時間に
わたり加熱しおから急冷し、次いでアルゎン䞭に
おいお1550〓845℃で時間にわたり加熱し
おから急冷した。これはIN738補の郚品が今日の
ガスタヌビン゚ンゞン内においお䜿甚される際の
兞型的な状態を衚わしおいる。たた、プラズマ溶
射鋳造法によ぀お圢された詊隓片に察しおは、
2100〓1150℃で時間の加熱から成る暡擬的
な商業甚熱凊理を斜した。 第衚䞭の0.2耐力匷床および砎断点䌞びに
関するデヌタは、第および図にそれぞれグラ
フ衚瀺されおいる。第図を芋ればわかる通り、
耐力匷床に぀いお考えた堎合、玄1350〓735℃
以䞋ならばプラズマ溶射鋳造法によ぀お埗られた
郚材は通垞の融解鋳造法によ぀お埗られた同じ
IN738補の郚材よりも著しく匷固である。なお、
極限匕匵匷さも同様な挙動を瀺す。玄1450〓
790℃ず1650〓900℃ずの間では、プラズ
マ溶射鋳造法によ぀お埗られた郚材の耐力匷床は
通垞の融解鋳造法によ぀お埗られた郚材の耐力匷
床より僅かに420Kgcm26ksiだけ小さいに過
ぎない。 次に、第図を芋ればわかる通り、玄1290〓
700℃たでならばプラズマ溶射鋳造法によ぀お
埗られた郚材は通垞の融解鋳造法によ぀お埗られ
た同じIN738補の郚材よりも延性に富んでいる。
箄2000〓1090℃では、本実斜䟋の郚材は完党
な超塑性を瀺すが、これは恐らくこの郚材に固有
の超埮现な結晶粒床に起因するものである。かか
る超塑性挙動が超埮现な結晶粒床に起因するこず
を立蚌するため、数個の詊隓片に2300〓1260
℃で熱凊理を斜すこずによ぀お結晶粒を成長さ
せた。熱凊理枈みの個の詊隓片に関し、それぞ
れ宀枩および1832〓1000℃で詊隓を行぀た。
2300〓1260℃における熱凊理埌には、1832〓
1000℃で詊隓された詊隓片の砎断点䌞びは12
にたで枛少し、埓぀お超塑性挙動はプラズマ溶
射鋳造された郚材に固有の超埮现な結晶粒床に起
因するこずが確認された。他方、2300〓1260
℃における熱凊理には、宀枩で詊隓された詊隓
片の耐力匷床は1.8×103Kgcm226ksiだけ増
倧しお12.4×103Kgcm2176ksiずなり、たた
1000℃1832〓で詊隓された詊隓片の耐力匷床
は700Kgcm210ksiだけ増倧しお1.74×103
Kgcm224.8ksiずな぀た。
TECHNICAL FIELD This invention relates to metal casting technology, and more particularly to novel products manufactured by low pressure, high speed plasma spray casting. Such products exhibit a unique microstructure and therefore have a novel combination of physical properties that are superior to those of products of the same alloy composition made by conventional methods. Examples of products of the invention that are useful for special applications due to their superior physical properties (e.g. high temperature strength, ductility and thermal fatigue resistance) include:
Mention may be made of vanes and discs for gas turbine engines made of superalloys based on nickel, cobalt or iron. In addition, products such as flywheels, which operate under lower temperature conditions than gas turbine engine components but require special physical properties, are problematic due to their geometry, material composition, or both. These include products that cannot be easily manufactured using conventional methods. Since the introduction of various forms of gas turbines as important power generation and propulsion machines decades ago, it has been widely accepted that their operation and performance are limited by the available materials of construction. . In such applications, the combination of relatively high tensile strength, good ductility in the range from room temperature to gas turbine combustion chamber operating temperatures, and good thermal fatigue resistance is highly desirable. As a result of extensive research and development efforts that have continued to this day, so-called "superalloys" have become available. Particularly superior are heat-resistant alloys based on nickel, cobalt, iron and chromium, such as Rene 80 (nominal composition C0.17%, Cr14%, Co9.5
%, Mo4.0%, W4.0%, Ti5.0%, Al3.0%,
B0.015%, Zr0.03%, Ni residual), Rene 95 (nominal composition C0.15%, Cr14%, Co8.0%, Mo3.5%, W3.5
%, Cb3.5%, Ti2.5%, Al3.5%, B0.01%,
Zr0.05%, Ni residual), IN738 (nominal composition C0.17%,
Mn0.2% (upper limit), Si0.3% (upper limit), Cr16%,
Co8.5%, Mo1.75%, W2.6%, Cb0.9%, Ti3.4
%, Al3.4%, B0.01%, Zr0.10%, Fe0.5% (upper limit), Ta1.75%, Ni residual (however, keep Fe, Mn, S and Si as small as possible),
IN617 (nominal composition C0.1%, Mn0.5%, Si0.5%,
Cr22.0%, Ni52.0%, Co12.5%, Mo9.0%,
Ti0.3%, Al1.2%, Fe1.5%, Cu0.2%), IN671
(Nominal composition C0.05%, Cr46.0%, Ni53.5%, Ti0.4
It is commercially available under the trade name %). While the first four of the above alloys are used for vane and disk manufacturing, due to the importance of strength requirements, especially in the low-temperature region of gas turbine operation, IN671 is primarily used for its environmental resistance. It is used. In such applications, IN671 is typically used as a wrought sheet, but it has also been proposed to be applied directly as a plasma sprayed coating onto the component to be protected. However, in order to use the other four alloys as blades and other high-temperature parts of gas turbines, they must be melted and then cast into a predetermined shape and size, or they must be cast or sintered. It is common to deform it mechanically. Regardless of the processing method, however, parts made of these alloys may require corrosion protection measures. Currently, thermally sprayed coatings are often used consisting of some type of MCrAlY alloy. As noted above, although considerable progress has been made in the development of materials in response to the special requirements of gas turbine engines, there are still important material performance gaps. To date, superalloys used in the manufacture of gas turbine high temperature components have been a compromise taking into account the various physical properties, operating conditions, and manufacturing operations described above. especially,
This is evident in the case of parts that are directly cast into a predetermined shape. Prior to this invention,
No new superalloys have emerged that eliminate the need for such compromises in the manufacture of cast parts for gas turbine engines, nor have other alternatives been proposed that would enable the elimination of such compromises. It should be noted that in the method described in U.S. Pat. Mechanical deformation processes such as forging are essential to manufacturing blades and other gas turbine engine components from ingots. The inventors have now discovered that it is possible to eliminate the need for compromises between materials of construction and operating conditions of components for gas turbine engines, as well as the need for forging and similar machining operations, and thus to eliminate the need for forging and similar machining operations. It has now been discovered that the long desired combination of properties in superalloy cast parts can now be achieved. The inventors have also discovered that the above results can be consistently achieved without modifying the superalloy composition or creating new superalloys, and without significantly increasing manufacturing costs. These results are based on the surprising discovery that, in a novel form, a superalloy traditionally used for casting parts for gas turbine engines has a nearly ideal combination of physical properties. It is. More specifically, in a morphology consisting of an extremely fine and uniform microstructure, such superalloys exhibit physical properties that are distinct from and significantly superior to the same alloy compositions exhibiting previously known morphologies. It was discovered that it has. These new morphologies cannot be obtained by conventional melt casting methods, but they can be achieved by forming parts of near theoretical density from fine superalloy particles near the melting temperature. Consistent results can be obtained by the plasma spray casting method carried out. Some conventional methods that fail to produce superalloy products with the unique combination of physical properties of this invention include, for example, Metals Engineering
Quarterly (Metals Engineering Quarterly)
Conventional plasma arc spraying methods include those described in the article by Mash & Brown entitled "Structure and Properties of Plasma Cast Materials" published in the February 1964 issue of . The strength properties of the independent members produced by Matsushi and Brown are limited by the achievable density (85-92%) and layered structure. The method selected for the production of superalloy products with unique physical properties of the present invention is ``Method and Apparatus for High-Energy Mechanical Coating of Substrates.''
No. 3,839,618 to Muehlberger, issued October 1, 1974. In fact, it was during the process of forming a superalloy coating using the low-pressure, high-speed plasma spray casting method of the aforementioned patent that the inventors made the important discovery that forms the basis of the present invention. Inspection and evaluation of the coatings thus obtained using nickel-based superalloys revealed unusual microstructures and physical properties attributable to them. Applying this knowledge, we fabricated a test piece using the plasma spray casting method and conducted a comparative test with a test piece made using the normal melt casting method. The novel idea has been established that the excellent physical properties of alloy coatings can be readily obtained even in bulk, ie components consisting entirely of plasma spray cast superalloys. Based on the above findings, plasma spray casting of superalloys in general, as well as other high-temperature alloys and alloys with high tensile strength in temperature ranges below the maximum operating temperature of gas turbine engines, can be It may be believed that components for turbine engines and other rotating machinery requiring severe tensile and fatigue loading conditions (eg flywheels) could be obtained. To illustrate typical operating conditions, the rotating disk of a gas turbine engine is 12.0 x 103 at 538-649°C (1000-1200〓).
Tensile load up to Kg/ cm2 (170ksi) and 399~649
8.4×10 3 Kg/cm 2 (120ksi) at °C (750-1200〓)
Normally, it is subjected to a fatigue load of Similarly, fixed vanes and nozzles in such engines typically experience creep loads at engine operating temperatures and also require thermal fatigue cracking resistance under fluctuating temperature conditions ranging from ambient to engine operating temperatures. . In view of all the foregoing descriptions, and in particular the above discoveries, in accordance with the present invention, briefly described is a plasma sprayed superalloy selected from the group consisting of nickel-based superalloys, cobalt-based superalloys and iron-based superalloys. In the cast product, as plasma spray cast, oxygen content of less than about 1000 ppm, density greater than about 97% of theoretical, grain size of about 0.2 to about 0.5Ό,
and a plasma spray cast product characterized in that it has a chemically homogeneous microstructure that is substantially free of microsegregation. When subjected to heat treatment, such products have densities in excess of about 98% of the theoretical value and exhibit less microsegregation due to the homogenization that occurs during heat treatment. The grain size of the product after heat treatment is generally greater than the grain size of the as-cast product, but the extent depends on the type of superalloy and the time and temperature of the heat treatment. However, for superalloys that are strengthened by the precipitation of one or more phases, the grain size after heat treatment may be limited to a small range of about 0.5 to about 5.0 microns. These products, whether flywheels, blades for gas turbine engines, disks for attaching blades to impellers, or other high-temperature components, are produced in solid form by low-pressure, high-velocity plasma spray casting. Alternatively, it can be manufactured as a hollow member by depositing the superalloy on a core and then selectively dissolving the core. The use of more complex core molds also allows for independent and self-supporting plasma sprayed cast parts having multiple hollow regions after melting. Furthermore, it is also possible to divide the heart shape into segments. That is, plasma spray casting a first superalloy onto a portion of the core to form a first portion of the final product, assembling such portion of the core with the remaining portions of the core, and then casting a first superalloy onto a portion of the core. The part can also be completed by plasma spray casting the second superalloy onto a complete core containing portions of the core. The invention will now be described in more detail with reference to the accompanying drawings. The gas turbine engine blade 10 shown in FIG.
1 is illustrative of the types of products that can be manufactured by plasma spray casting. A vane 10 of generally conventional size and shape is mounted on a platform 11.
and the simulated disk 50 of FIG. 5 and Example 5 described below.
It has a base 12 for rigid attachment in a conventional manner to a gas turbine disk such as a gas turbine disk. However, both vane 10 and disc 50 differ significantly from their conventional counterparts. That is, even if it is made of the same alloy composition as its conventional counterpart,
Vanes 10 and discs 50 have significantly different physical properties and therefore exhibit significantly different performance characteristics during normal engine operation. This fundamental and important difference stems from the different methods of manufacturing these new parts. That is, instead of using the usual melt casting method or the plasma arc spray casting method of Matsushi and Brown mentioned above, fine particles of a superalloy at a temperature slightly higher than the melting point are introduced into the plasma stream, and then cast in a low-pressure chamber with a neutral atmosphere. By projecting at high speed onto a placed substrate, the blade 1
0 and disk 50 are manufactured. Specifically, when manufacturing parts such as the vane 10 and disk 50, the particle size is -400 mesh (i.e., substantially all particles have a diameter of about
(less than 38Ό), and the atmosphere in the spraying room is 30~
Argon at 60 Torr. Note that the term "gas turbine engine" used in this specification,
This includes gas turbines for power generation and jet engines for aircraft propulsion. Using the same low-pressure, high-velocity plasma spray manufacturing method as described above, the hollow blades 20 of Figures 2 and 3 are manufactured as shown in Example 4, and have the microstructure as summarized above. and physical properties are obtained. The major structural difference between vanes 10 and 20 is the use of a selectively dissolvable core assembly 40 of FIG. This provides the necessary internal clearance for the formation of the wall 21, so that the interior of the vane is divided into independent channels 22 and 23 for the flow of coolant. Flywheel 60, shown in perspective view in FIG. 6, is also manufactured by the same low pressure, high velocity plasma spray casting process described above. For such purposes, any nickel-based, cobalt-based or iron-based superalloy that, when plasma spray cast, can meet the tensile and fatigue loading conditions required for long-term service in such applications may be suitably used. Can be used for
Those skilled in the art will appreciate that such cast flywheels can be manufactured as a single plasma spray casting, or they can be manufactured in sections and then assembled together by suitable means. . In order to enable those skilled in the art to understand the invention more clearly, examples of the invention are presented below. These examples were conducted in the course of testing designed to obtain comparative data regarding key physical properties of plasma spray cast products of the present invention and prior art melt cast products. Therefore, these examples are merely illustrative of the practice of the invention and are not intended to limit the scope of the invention as defined by the claims. The data obtained in the following examples are presented in the usual manner. Thus, in Tables 1, 2 and 3, UTS stands for ultimate tensile strength in units of 10 3 pounds per square inch and YS stands for 0.2% yield strength in the same units. Similarly, E ML is the elongation at maximum load, E FAIL is the elongation at break, and
RA is the cross-sectional reduction ratio, and all of these parameters are expressed in percentages. Example 1 A length of about 15 mm made of nickel-based superalloy IN738 was made by the low-pressure, high-speed plasma spray casting method as described above.
A plate member having a width of about 6.4 cm (2.5 inches) and a thickness of about 0.64 cm (0.25 inches) was manufactured. A steel plate that had been previously polished with No. 600 silicon carbide abrasive paper was used as the substrate. To achieve adhesion to the substrate (core) and control of IN738 density and microstructure, the substrate was preheated to approximately 1650°C (900°C). The pressure in the spraying chamber was 30 to 60Torr, the power of the plasma gun was 68KW, and the spraying time was 4 minutes and 30 seconds. After the thus coated substrate was cooled in a thermal spray chamber, the IN738 parts were separated by tapping the edge of the steel plate with a hammer. It takes
The total length is 2.54 cm (1.0 cm) from IN738 parts.
inch), width 1.0cm (0.4 inch) and thickness 0.16cm
A specimen with dimensions of (0.063 inch) was machined. The width of the gauge portion was 0.08 inch and was uniform over 0.25 inch. The test results obtained in this way were determined by the ordinary melt casting method.
Shown in Table 1 with typical data for specimens of the same size and shape made from IN738. Specimens formed by conventional melt casting were subjected to typical heat treatments used commercially. That is, prior to testing, the specimens were heated in argon at 2050° (1120°C) for 2 hours and then rapidly cooled, then heated in argon at 1550° (845°C) for 2 hours and then rapidly cooled. This represents the typical conditions under which IN738 components are used in today's gas turbine engines. In addition, for test pieces shaped by plasma spray casting method,
A simulated commercial heat treatment consisting of heating at 2100°C (1150°C) for 2 hours was performed. The data for 0.2% yield strength and elongation at break in Table 1 are graphically represented in Figures 7 and 8, respectively. As you can see from Figure 7,
When considering yield strength, it is approximately 1350〓 (735℃)
If:
Significantly stronger than IN738 parts. In addition,
The ultimate tensile strength shows a similar behavior. Approximately 1450〓
(790°C) and 1650°C (900°C), the yield strength of parts obtained by plasma spray casting is only 420 kg lower than the yield strength of parts obtained by ordinary melt casting. /cm 2 (6ksi) smaller. Next, as you can see from Figure 8, approximately 1290〓
(up to 700°C) parts obtained by plasma spray casting are more ductile than the same IN738 parts obtained by conventional melt casting.
At approximately 2000 °C (1090°C), the member of this example exhibits complete superplasticity, possibly due to the ultrafine grain size inherent in this member. In order to prove that such superplastic behavior is due to the ultrafine grain size, several specimens were
The crystal grains were grown by heat treatment at ℃). Two heat-treated specimens were tested at room temperature and 1832°C (1000°C), respectively.
After heat treatment at 2300〓(1260℃), 1832〓
The elongation at break of the specimen tested at (1000℃) is 12
%, thus confirming that the superplastic behavior is due to the ultrafine grain size inherent in plasma spray cast parts. On the other hand, 2300〓(1260
The yield strength of the specimens tested at room temperature increased by 1.8×10 3 Kg/cm 2 (26 ksi) to 12.4×10 3 Kg/cm 2 (176 ksi) and
The yield strength of the specimen tested at 1000℃ (1832〓) increased by 700Kg/cm 2 (10ksi) to 1.74×10 3
Kg/cm 2 (24.8ksi).

【衚】 実斜䟋  䞊蚘のごずき䜎圧・高速プラズマ溶射鋳造法に
より、ルネ80から成る第図のガスタヌビン゚ン
ゞン甚暡擬円板を補造した。盎埄4.2cmの鋌
管から成る基䜓䞊に超合金を溶射するこずに
より、長手方向たたは軞方向に察しお垂盎な方向
に沿぀お芋た堎合に環状の暪断面を有する構造物
を埗た。なお、蓄積する超合金局の厚さを構造物
の長手方向に沿぀お倉化させたため、軞方向たた
は長手方向に沿぀た断面は攟物圢を瀺しおいた。
かかる構造物の呌び盎埄は玄10cmであ぀た。 詳しく述べれば、実斜䟋の堎合ず同様、先ず
基䜓の衚面を枅浄にし、グリツトブラスト凊理を
斜し、次いで玄1650〓900℃に予熱した。䜜
業党䜓を通じ、実斜䟋の堎合ず同様、溶射宀の
圧力は30〜60Torrアルゎンであり、たたプラ
ズマガンの電力は68KWであ぀た。溶射宀内で冷
华した埌、ルネ80補の環状䜓を鋌管から分離
し、そしお第図に瀺されるような圢状に機械加
工した。その埌、円板䞭の耇数の穎によ
぀お瀺されるごずく柱状䜓を切抜くこずによ぀お
物理詊隓甚の詊隓片を埗た。暙準的な圢状および
寞法の詊隓片に察し、1145℃で時間および870
℃で時間の熱凊理を斜した埌、通垞の方法に埓
぀お詊隓を行぀た。こうしお埗られた結果は第
衚䞭に瀺されおいる。第衚䞭にはたた、融解鋳
造埌に兞型的な商業甚段熱凊理操䜜を受けたル
ネ80に関する比范デヌタも瀺されおいる。 第衚からわかる通り、実斜䟋においお
IN738に぀いお芋られた結果ず同様、プラズマ溶
射鋳造法によ぀お埗られたルネ80補の郚材の物理
的性質は通垞の融解鋳造法によ぀お埗られたルネ
80補の郚材の物理的性質よりも優れおいる。
[Table] Example 2 A simulated disk 50 for a gas turbine engine, shown in FIG. 5, made of Rene 80 was manufactured by the low-pressure, high-speed plasma spray casting method as described above. By spraying the superalloy onto a substrate 51 consisting of a steel tube with a diameter of 4.2 cm, a structure having an annular cross-section when viewed along the longitudinal or perpendicular direction to the axial direction was obtained. Note that since the thickness of the accumulated superalloy layer was varied along the longitudinal direction of the structure, the cross section along the axial or longitudinal direction had a parabolic shape.
The nominal diameter of such a structure was approximately 10 cm. Specifically, as in Example 1, the surface of the substrate was first cleaned, grit blasted, and then preheated to about 1650°C (900°C). Throughout the work, the pressure in the spray chamber was 30-60 Torr (argon) and the power of the plasma gun was 68 KW, as in Example 1. After cooling in the spray chamber, the Rene 80 ring was separated from the steel tube 51 and machined into the shape shown in FIG. Thereafter, specimens for physical testing were obtained by cutting out the columns as indicated by the plurality of holes 52 in the disk 50. 1145°C for 2 hours and 870°C for specimens of standard shape and dimensions.
After heat treatment at ℃ for 2 hours, the test was carried out according to the usual method. The results obtained in this way are the second
Shown in the table. Also shown in Table 2 is comparative data for Rene 80, which was subjected to a typical commercial five-stage heat treatment operation after melt casting. As can be seen from Table 2, in Example 1
Similar to the results seen for IN738, the physical properties of Rene 80 parts obtained by plasma spray casting are superior to those of Rene 80 obtained by conventional melt casting.
The physical properties are better than those made of 80%.

【衚】 実斜䟋  本発明の補品の熱疲劎挙動を調べるために蚈画
された実隓に際し、ニツケル基超合金であるルネ
80をルネ80補の基䜓䞊にプラズマ溶射鋳造した。
詳しく述べれば、公称ルネ80組成物の溶融䜓を銅
板補の金型内でチル鋳造するこずによ぀お10cm×
3.8cm×0.64cmむンチ×1.5むンチ×0.25むン
チの寞法を有する枚の板を埗た。各々の板の
䞀方の端面10cm×0.64cm〔むンチ×0.25むン
チ〕にグリツトブラスト凊理および脱脂操䜜を
斜した。次いで、実斜䟋の䜎圧・高速プラズマ
溶射鋳造法により、凊理枈みの端面䞊にプラズマ
溶射鋳造組織を圢成した。この堎合、−400メツシ
ナの粒床を有する公称ルネ80組成物の粉末を䜿甚
した。こうしお埗られたプラズマ溶射鋳造組織の
局の厚さは玄0.381cm0.150むンチであ぀た。
かかる板から第図に瀺されるような二重くさび
圢の熱疲劎詊隓片を機械加工した。かかる詊
隓片の䞀方のくさびは通垞の鋳造組織を有す
るのに察し、他方のくさびは最終的に0.20
cm0.08むンチの厚さにわたりプラズマ溶射
鋳造組織を有しおいた。かかる詊隓片を穎で
吊䞋げるこずにより、1787〓975℃に保たれ
た流動局䞭に分間暎露するこず䞊びに75〓24
℃に保たれた流動局䞭に分間暎露するこずを
亀互に繰返した。このような操䜜を1030100
300600および1000サむクルにわた぀お繰返した
埌に詊隓片を怜査した。プラズマ溶射鋳造さ
れた偎のくさびには1000サむクル埌にも亀裂
は党く芋られなか぀たのに察し、通垞のごずくに
鋳造された偎のくさびには10サむクル埌に亀
裂が芋られた。埌者のくさびに぀いおは、30
サむクル埌に亀裂は0.10cm0.04むンチ以䞊の
長さに成長し、そしお1000サむクル埌には0.572
cm0.225むンチにも達した。 実斜䟋  第図の銅補心型アセンブリを䜿甚しなが
ら䞊蚘のごずきプラズマ溶射鋳造法を行うこずに
より、基郚を持たない点を陀けば第および
図のものに類䌌した矜根を補造した。溶射宀の
条件は実斜䟋の堎合ず同じであ぀た。第の工
皋においおは、銅補心型セグメントおよび
䞊にIN738を玄0.38mm15ミルの厚さたでプ
ラズマ溶射鋳造した。次いで、心型セグメント
およびを残りの心型アセンブリず共に組立
おるこずにより、第図に瀺されるような心型ア
センブリを圢成した。心型セグメントの
穎はニクロム組成物の線材で充填した。 第の工皋においおは、第図の銅補心型アセ
ンブリおよび第の工皋で圢成されたIN738
の壁䜓䞊に厚さ0.38〜0.76mm15〜30ミルの
ルネをプラズマ溶射鋳造するこずにより、た
ずえば領域のごずき領域においお耇合積局構
造が圢成された。溶射宀内においお冷华した埌、
かかる構造物を硝酞氎溶液䞭に浞挬しお銅補心型
セグメントを溶解陀去すれば、矜根が埗られ
た。第図の䜍眮においお芋た堎合、矜根の
高さは玄cmむンチであり、たた前瞁ず埌
瞁ずの距離は玄3.8cm1.5むンチであ぀た。第
図を芋ればわかる通り、内郚の壁䜓は
IN738から成るもので、それがルネの倖殻
により構造的に接合されお矜根を成しおい
る。ルネから成る倖殻の倖呚面は矜
根の圢状を芏定しおいる。たた、内呚面
は通路およびを包囲するず共に、IN738
の壁䜓の倖呚の少なくずも䞀郚に接着しか぀
それを構造的に接合しおいる。穎の䞭に予め
配眮された線材は今では矜根の䞀䜓郚材
を成しおいお、矜根の埌瞁郚分の䞭空通路
を通぀お流れる冷华材を撹拌するのに圹立぀。
矜根の肉厚は、ルネのみから成る領域で
は玄0.38〜玄0.76cm玄15〜玄30ミルである。
たた、積局構造を成す領域における肉厚は玄1.14
cm45ミル以䞊にも達するが、そのうちの0.38
cm15ミルはIN738から成る。 実斜䟋  実斜䟋の堎合ず同じプラズマ溶射鋳造法およ
びパラメヌタの䜿甚により、ルネから成る薄
肉管状郚材たたはケヌシングを補造した。詳しく
述べれば、内埄10cmむンチか぀長さ30cm
12むンチの鋌管䞊に厚さ0.51cm20ミルの
ルネをプラズマ溶射鋳造した。 本実斜䟋の薄肉管状郚材を通垞の鋳造技術によ
぀お心材の呚囲に鋳造しようずしおも、著しく亀
裂の入぀た補品しか埗られないこずが倚い。その
他の通垞技術たずえば厚肉管状郚材を鋳造しお
から所定の寞法にたで機械加工する方法は倚く
の経費がかかる。いずれにせよ、たずえば玄0.2
〜玄0.5Όの結晶粒床およびミクロ偏析を実質的に
瀺さない化孊的に均質なミクロ組織をはじめずす
る特異な性質を有する本実斜䟋の薄肉管状郚材は
いかなる埓来技術によ぀おも補造するこずができ
ない 実斜䟋  実斜䟋の手順を繰返すこずにより、ニツケル
基超合金補のガスタヌビン゚ンゞン甚矜根に察す
る被膜ずしお通䟋䜿甚されるコバルト基超合金
Co−29Cr−6Al−1Yから成る板状郚材をプラ
ズマ溶射補造した。プラズマ溶射補造されたたた
の郚材の結晶粒床を透過電子顕埮鏡によ぀お枬定
したずころ、玄0.1〜玄0.3Όであ぀た。 実斜䟋  実斜䟋の手順を再び繰返すこずにより、鉄基
超合金19.5Cr−9.5CAl−残郚Feから成る板
状郚材をプラズマ溶射鋳造した。プラズマ溶射鋳
造されたたたの郚材の結晶粒床を透過電子顕埮鏡
によ぀お枬定したずころ、玄0.15〜玄0.25Όであ
぀た。宀枩、1110〓600℃および1380〓750
℃における機械的性質は第衚に瀺す通りであ
぀たが、それらを融解鋳造された垂販の鉄基超合
金MA95620Cr−4.5Al−0.5Ti−0.5Y−残郚Fe
の堎合ず比范した。プラズマ溶射鋳造された鉄基
合金は、匷床の点で劣るずは蚀え、MA956に十
分匹敵するものである。なお、MA956は匷化元
玠ずしおチタンおよびむツトリりムを远加含有し
おいるわけであるから、このような結果の埗られ
たこずは意倖ではない。
[Table] Example 3 During an experiment designed to investigate the thermal fatigue behavior of a product of the present invention, a nickel-based superalloy, Rene
80 was plasma spray cast onto a Rene 80 substrate.
Specifically, by chill-casting a melt of nominal Rene 80 composition in a mold made of copper plate,
Two plates were obtained having dimensions of 4 inches x 1.5 inches x 0.25 inches. One end surface of each plate (10 cm x 0.64 cm [4 inches x 0.25 inches]) was grit blasted and degreased. Next, by the low-pressure, high-speed plasma spray casting method of Example 1, a plasma spray casting structure was formed on the treated end face. In this case, a powder of nominal Rene 80 composition with a particle size of -400 mesh was used. The resulting layer of plasma spray cast structure was approximately 0.150 inches thick.
A double wedge-shaped thermal fatigue specimen 70 as shown in FIG. 9 was machined from such a plate. One wedge 71 of such a specimen has a normal cast structure, whereas the other wedge 72 (finally 0.20
cm (0.08 inch) thick) had a plasma spray cast structure. By suspending such a test piece in the hole 73, it was exposed to a fluidized bed maintained at 1787〓 (975°C) for 4 minutes and 75〓 (24°C).
The samples were exposed to alternating periods of 2 minutes in a fluidized bed maintained at 10°C. Perform such operations 10, 30, 100,
Specimens 70 were inspected after 300, 600, and 1000 cycles. The plasma spray cast side wedge 72 showed no cracks after 1000 cycles, while the conventionally cast side wedge 71 showed cracks after 10 cycles. For the latter wedge 71, 30
After cycling the crack grows to a length of over 0.10 cm (0.04 inch), and after 1000 cycles it grows to a length of 0.572
cm (0.225 inch). EXAMPLE 4 A vane similar to that of FIGS. 2 and 3 except without the base 12 was produced by using the copper core assembly 40 of FIG. 4 and performing the plasma spray casting process described above. did. The spray chamber conditions were the same as in Example 1. In the first step, copper core segments 41 and 4
2 was plasma spray cast with IN738 to a thickness of approximately 0.38 mm (15 mils). Then, the heart segment 4
1 and 42 were assembled with the rest of the core assembly to form core assembly 40 as shown in FIG. Hole 43 in core segment 44 was filled with wire of nichrome composition. In the second step, the copper core assembly 40 of FIG. 4 and the IN738 formed in the first step are
A composite laminate structure was formed in areas such as area 24 by plasma spray casting Rene 80, 0.38-0.76 mm (15-30 mils), onto wall 21 of 1. After cooling in the spray chamber,
The blade 20 was obtained by immersing this structure in an aqueous nitric acid solution to dissolve and remove the copper core segment. When viewed in the position of FIG. 2, the height of the vane 20 was approximately 5 cm (2 inches) and the distance between the leading and trailing edges was approximately 3.8 cm (1.5 inches). As can be seen from FIG. 3, the internal wall 21 is
It consists of IN738, which is the outer shell 2 of Rene 80.
5 to form a blade 20. The outer peripheral surface 26 of the outer shell 25 made of Lune 80 defines the shape of the blade 20. In addition, the inner peripheral surface 27
surrounds aisles 22 and 23 and IN738
It is adhered to at least a part of the outer periphery of the wall body 21 and structurally joins it. The wire previously placed in the hole 43 is now an integral part 45 of the vane 20.
A hollow passage 2 at the trailing edge of the blade 20
3 serves to stir the coolant flowing through it.
The wall thickness of the vane 20 is about 15 to about 30 mils in the region consisting only of Lune 80.
In addition, the wall thickness in the area forming the laminated structure is approximately 1.14
cm (45 mil) or more, of which 0.38
cm (15 mil) consists of IN738. Example 5 Using the same plasma spray casting method and parameters as in Example 1, a thin walled tubular member or casing consisting of Rene 80 was manufactured. To be more specific, the inner diameter is 10cm (4 inches) and the length is 30cm.
A 0.51 cm (20 mil) thick Rene 80 was plasma spray cast onto a (12 inch) steel tube. Attempts to cast the thin-walled tubular member of this embodiment around a core material using conventional casting techniques often result in a product that is severely cracked. Other conventional techniques (eg, casting thick-walled tubular members and then machining them to size) are expensive. In any case, for example about 0.2
The thin-walled tubular member of this example, which has unique properties including a grain size of ~0.5 microns and a chemically homogeneous microstructure with substantially no microsegregation, can be manufactured by any conventional technique. Example 6 By repeating the procedure of Example 1, a plate made of cobalt-based superalloy (Co-29Cr-6Al-1Y), which is commonly used as a coating for gas turbine engine blades made of nickel-based superalloy, was obtained. The parts were manufactured by plasma spraying. The grain size of the as-produced plasma sprayed part was measured by transmission electron microscopy and was about 0.1 to about 0.3 microns. Example 7 By repeating the procedure of Example 1 again, a plate member made of an iron-based superalloy (19.5Cr-9.5CAl-balance Fe) was plasma spray cast. The grain size of the as-sprayed part was measured using a transmission electron microscope and was about 0.15 to about 0.25 microns. Room temperature, 1110〓(600℃) and 1380〓(750℃)
The mechanical properties of the commercially available iron-based superalloy MA956 (20Cr−4.5Al−0.5Ti−0.5Y−balance Fe) were melted and cast as shown in Table 3.
compared with the case of Plasma spray cast iron-based alloys are quite comparable to MA956, although they are less strong. Furthermore, since MA956 additionally contains titanium and yttrium as reinforcing elements, it is not surprising that such results were obtained.

【衚】【table】

【衚】 実斜䟋〜およびのプラズマ溶射鋳造
郚材は、いずれも本質的に同じミクロ組織特性を
瀺しおいた。すなわち、プラズマ溶射鋳造された
たたの状態では、結晶粒床は通䟋玄0.2〜玄0.5ÎŒ
の範囲内にあり、しかもミクロ組織は実質的にミ
クロ偏析を瀺さない化孊的に均質なものであ぀
た。怜査は行わなか぀たが、実斜䟋のルネ
補薄肉管状郚材のミクロ組織も他の実斜䟋の堎合
ず同じであるず予想される。 実斜䟋の方法および手順に埓぀おプラズマ溶
射鋳造されたルネ補板状郚材のミクロ組織を
第図に瀺すが、これはプラズマ溶射鋳造され
たたたの状態にある超合金のミクロ組織の兞型䟋
を成すものである。薄板詊隓片の透過電子顕埮鏡
写真40000Xである第図を芋れば、玄0.2
〜玄0.5Όの範囲内にある超埮现な結晶粒床が明ら
かずなる。第図を芋ればたた、結晶粒界およ
び結晶粒内郚が析出物や偏析物を実質的に含た
ず、埓぀おミクロ組織が実質的にミクロ偏析を瀺
さない化孊的に均質なものであるこずもわかる。
本発明のプラズマ溶射鋳造されたたたの超合金郚
材のミクロ組織䞭には、溶射装眮たたは粉末の撹
乱に原因する未融解粒子が時折認められるこずも
ある。しかし、たずえば2100〓1150℃で時
間の熱凊理埌には、かかる粒子は残存しない。な
お、プラズマ溶射鋳造されたたたの郚材を怜査す
るためには、通垞の光孊顕埮鏡でなく電子顕埮鏡
を䜿甚するこずが必芁である。なぜなら、かかる
郚材の結晶粒床は極めお埮现であ぀お光孊顕埮鏡
の分解胜を越えおいるからである。 第図のプラズマ溶射鋳造されたルネに
おける化孊的均質性およびミクロ偏析の䞍存圚を
蚌明するため、第衚䞭に瀺されるような電子マ
むクロプロヌブによる線螢光分析デヌタを求め
た。第衚䞭では、プラズマ溶射鋳造されたルネ
が玄60ミル1525Όの平均結晶粒床を有す
る通垞のごずくに融解鋳造されたルネず比范
されおいる。第衚のデヌタは詊料を暪切぀お盎
埄〜3Όのビヌムを段階走査するこずによ぀お
求められたもので、走査間隔は通垞のごずくに融
解鋳造されたルネに぀いおは50Ό、たたプラ
ズマ溶射鋳造されたルネに぀いおは1Όであ
぀た。いずれの堎合にも、ビヌムは結晶粒および
結晶粒界の䞡方ず亀叉した。特にプラズマ溶射鋳
造されたルネの堎合には、ビヌム盎埄が結晶
粒埄の玄倍であるこずから考えればそれは圓然
であ぀た。 コバルトはニツケル䞭においお本質的に偏析し
ない元玠であり、埓぀おかかるデヌタ䞭における
ばら぀きの床合の指暙ずしおコバルト濃床の倉動
を䜿甚するこずができる。プラズマ溶射鋳造され
たルネの堎合、TiAlおよびCr濃床の倉動
すなわちミクロ偏析たたは化孊的䞍均質性の床
合は正垞のばら぀きより玄〜高いだけで
ある。通垞のごずくに融解鋳造されたルネの
堎合、CrおよびAl濃床の倉動は正垞のばら぀き
より玄11高く、たたTi濃床の倉動は正垞のば
ら぀きより玄70高か぀た。それ故、第衚のデ
ヌタによれば、通垞のごずくに融解鋳造されたル
ネに比べるず溶射鋳造されたルネはミク
ロ偏析や化孊的䞍均質性を実質的に瀺さないこず
がわかる。
Table: The plasma spray cast parts of Examples 1-4, 6 and 7 all exhibited essentially the same microstructural properties. That is, in the as-plasma spray cast state, the grain size is typically about 0.2 to about 0.5Ό.
Moreover, the microstructure was chemically homogeneous with virtually no microsegregation. Although no test was conducted, Rene 80 of Example 5
The microstructure of the thin-walled tubular member is also expected to be the same as in other embodiments. The microstructure of a Rene 80 plate member plasma spray cast according to the method and procedure of Example 1 is shown in Figure 10, which is similar to the microstructure of the superalloy as it was plasma spray cast. This is a typical example. If you look at Figure 10, which is a transmission electron micrograph (40000X) of a thin plate specimen, it is approximately 0.2
Ultra-fine grain sizes in the range ~0.5Ό are evident. Fig. 10 also shows that the grain boundaries and the interior of the grains are substantially free of precipitates and segregation, and therefore the microstructure is chemically homogeneous with virtually no microsegregation. I also understand.
Unfused particles may occasionally be found in the microstructure of the as-cast superalloy components of the present invention due to thermal spray equipment or powder disturbance. However, after heat treatment at 2100° C. (1150° C.) for 2 hours, no such particles remain. Note that in order to inspect the plasma spray cast member, it is necessary to use an electron microscope instead of a normal optical microscope. This is because the crystal grain size of such a member is extremely fine and exceeds the resolution of an optical microscope. To demonstrate the chemical homogeneity and absence of microsegregation in the plasma spray cast Rene 80 of FIG. 10, electron microprobe X-ray fluorescence data were determined as shown in Table 4. In Table 4, plasma spray cast Rene 80 is compared to conventionally melt cast Rene 80 having an average grain size of about 60 mils (1525 microns). The data in Table 4 were determined by stepwise scanning a beam of diameter 1-3Ό across the sample, with scan intervals of 50Ό for conventionally melt-cast Rene 80 and For spray cast Rene 80 it was 1Ό. In both cases, the beam intersected both grains and grain boundaries. Especially in the case of Rene 80, which was cast by plasma spraying, this was natural considering that the beam diameter was about four times the crystal grain size. Cobalt is an essentially non-segregating element in nickel, so variations in cobalt concentration can be used as an indicator of the degree of dispersion in such data. For plasma spray cast Rene 80, the variation in Ti, Al, and Cr concentrations (ie, the degree of microsegregation or chemical heterogeneity) is only about 2-3% higher than normal variation. For Rene 80 which was melt cast as usual, the variation in Cr and Al concentrations was about 11% higher than the normal variation, and the variation in Ti concentration was about 70% higher than the normal variation. Therefore, the data in Table 4 shows that spray cast Rene 80 exhibits substantially no microsegregation or chemical heterogeneity compared to conventionally melt cast Rene 80.

【衚】 第図は、第図の堎合ず同様にしおプラ
ズマ溶射鋳造した埌に2190〓1200℃で時間
の熱凊理を斜したルネの薄板詊隓片の透過電
子顕埮鏡写真20000Xである。結晶粒は玄5ÎŒ
の平均結晶粒床にたで成長したが、それでも通垞
のごずくに融解鋳造されたルネの堎合に比べ
ればただ小さい。結晶粒の内郚にはγ′盞の析出物
が認められる。より䜎い枩床䞋での熱凊理、たず
えば実斜䟋に蚘茉された2100〓1150℃で
時間の熱凊理によれば、結晶粒の成長は䞀局少な
くお、埗られる結晶粒床は玄2.0〜玄3.0Ό皋床で
ある。理論的に蚀えば、高枩熱凊理の均質化効果
のためにミクロ偏析もなお䞀局少なくなる。ルネ
がγ′盞の析出によ぀お匷化されるこずから考
えれば、高枩䞋での結晶粒に察するこの超合金の
安定性は予想されるこずであ぀た。 ここで、γ′盞によ぀お匷化されないニツケル基
超合金IN617の挙動を比范しおみよう。実斜䟋
の手順に埓぀おプラズマ溶射鋳造されたIN617
は、プラズマ溶射鋳造法によ぀おその他の超合金
から補造された郚材ず同じく超埮现な結晶粒床
0.2〜0.5Όを有しおいた。たた、プラズマ溶射
鋳造されたIN617の宀枩䞋における匕匵特性は通
垞のごずくに融解鋳造されたIN617の堎合よりも
かなり良奜であ぀た。たずえば、UTSは7.80×
103Kgcm2111ksiに察しお9.98×103Kgcm2
142ksiであり、たたEFAILは34に察しお54
であ぀た。しかしながら、通垞のごずくに融解鋳
造されたIN617およびプラズマ溶射鋳造された
IN617は1650〓600℃で詊隓した堎合にほが
同じ匕匵特性を瀺した。このように䞡者がほが等
しい挙動を瀺したこずは、詊隓䞭に結晶粒の成長
が起こ぀たこずによるものである。2280〓1250
℃での熱凊理を斜したずころ、プラズマ溶射鋳
造されたIN617の結晶粒は著しく成長した。かか
る熱凊理埌においおは、宀枩および1650〓900
℃のいずれの枩床䞋で詊隓した堎合でも、プラ
ズマ溶射鋳造されたIN617の匕匵特性は通垞のご
ずくに融解鋳造されたIN617の匕匵特性はほずん
ど同じであ぀た。 本発明のプラズマ溶射鋳造郚材は、熱凊理前に
おいおは、いずれも理論的に可胜な倀の玄97〜玄
100ずいう高い密床を䞀貫しお有しおいた。埓
来の溶射鋳造法によ぀お補造された郚材は、その
党域にわた぀お個々の粒子間に隙間、気孔たたは
空隙を䞀様に、䞍芏則に、あるいはその䞡方の状
態で有するこずが特城である。このような隙間や
空隙が存圚すれば、郚材は十分に高い密床たたは
100の密床に達するこずはできない。 熱凊理埌、たずえば実斜䟋に蚘茉されたよう
な2100〓1150℃で時間の熱凊理埌には、本
発明のプラズマ溶射鋳造郚材は以䞊高くな
り、埓぀お最䜎密床は理論倀の玄98ずな぀た。
なお、熱凊理によ぀お詊隓片の酞玠含量は倉化し
なか぀た。しかし、玄1000ppm未満ずいうレベル
では、酞玠含量は本発明のプラズマ溶射鋳造郚材
の匷床特性にず぀お重芁な因子ずはならない。た
だし、酞玠含量がそのレベルを越えお過剰になる
ず、延性等の超合金の性質に有害な圱響を及がす
こずがある。そこで、酞玠含量が玄1000ppm未満
に抑えられれば、超合金はより高い匕匵匷床ず良
奜な延性を瀺し、ガスタヌビン内の郚材ずしお䜿
甚できるように耐熱疲劎性を備えるこずが保蚌さ
れる。 曎にたた、本発明のプラズマ溶射鋳造郚材の機
械的性質から明らかなごずく、本発明の回転機械
甚プラズマ溶射鋳造郚品はガスタヌビン゚ンゞン
のロヌタ郚品およびステヌタ郚品ずしお長期䜿甚
に耐える。ずりわけ航空機甚゚ンゞンの堎合、
816〜982℃1500〜1800〓で玄1.8×103Kgcm2
25ksiのピツチ線䞭心線応力を通䟋受ける
回転矜根ずしおそれは有甚である。実際、ガスタ
ヌビン゚ンゞン甚の本発明の超合金補回転矜根、
固定矜根、ノズル、移行郚材および円板は、我々
の経隓および䞊蚘のデヌタに基づけば、埓来技術
に埓぀お補造された察応品よりも遥かに長い実甚
寿呜を有するこずが予想できる。 以䞊の説明から明らかな通り、本発明のプラズ
マ溶射鋳造補品はガスタヌビン゚ンゞン郚品のご
ずき郚材の補造に際しお機械的倉圢を必芁ずしな
い。たずえば、第および図に瀺されるような
䞭空の矜根も倖壁および内郚郚分が所望の厚さを
有するように鋳造可胜であり、か぀たた䞊蚘のご
ずく本発明の補品に固有の優れたミクロ組織およ
び物理的性質も埗られるのである。このように、
本発明は比范的小圢で薄肉の郚材ぞの適甚に圓぀
お特に有甚である。ずは蚀え、鋳造品のたずえ
ば鍛造による機械的倉圢が䞍芁ずなるこずを考
えれば、本発明を倧圢で厚肉の郚材に適甚しおも
実質的な利益を埗るこずができる。 本明现曞䞭に瀺された結晶粒床は、盎線亀叉法
ずしお知られる方法を甚いお透過電子顕埮鏡写真
たずえば第および図から求めた倀で
ある。なお、溶射面に察しお平行に芋た堎合の結
晶粒は第および図に芋られるごずく等軞
晶系の倖芳を有するのが通䟋であるけれど、結晶
粒床は結晶粒の「盎埄」ずしお報告されおいる。 実斜䟋の態様  ニツケル基超合金、コバルト基超合金および
鉄基超合金から成る矀より遞ばれた超合金から
成るプラズマ溶射鋳造補品においお、プラズマ
溶射鋳造されたたたの状態の前蚘超合金が玄
1000ppm未満の酞玠含量、理論倀の玄97を越
える密床、玄0.2〜玄0.5Όの範囲内の結晶粒床、
およびミクロ偏析を実質的に瀺さない化孊的に
均質なミクロ組織を有するこずを特城ずするプ
ラズマ溶射鋳造補品。  ニツケル基超合金、コバルト基超合金および
鉄基超合金から成る矀より遞ばれた超合金から
成るプラズマ溶射鋳造補品においお、前蚘超合
金が玄1000ppm未満の酞玠含量、理論倀の玄98
を越える密床、玄0.5〜玄5.0Όの範囲内の結
晶粒床、およびミクロ偏析を実質的に瀺さない
化孊的に均質なミクロ組織を有するこずを特城
ずするプラズマ溶射鋳造補品。  ニツケル基超合金、コバルト基超合金および
鉄基超合金から成る矀より遞ばれた超合金から
成る回転機械甚プラズマ溶射鋳造補品におい
お、プラズマ溶射鋳造さたたたの状態の前蚘超
合金が玄1000ppm未満の酞玠含量、理論倀の玄
97を越える密床、玄0.2〜玄0.5Όの範囲内の
結晶粒床、およびミクロ偏析を実質的に瀺さな
い化孊的に均質なミクロ組織を有するこずを特
城ずする回転機械甚プラズマ溶射鋳造郚品。  ニツケル基超合金、コバルト基超合金および
鉄基超合金から成る矀より遞ばれた超合金から
成る回転機械甚プラズマ溶射鋳造補品におい
お、前蚘超合金が玄1000ppm未満の酞玠含量、
理論倀の玄98を越える密床、玄0.5〜玄5.0ÎŒ
の範囲内の結晶粒床、およびミクロ偏析ず実質
的に瀺さない化孊的に均質なミクロ組織を有す
るこずを特城ずする回転機械甚プラズマ溶射鋳
造郚品。  ガスタヌビンロヌタ郚品、ガスタヌビンステ
ヌタ郚品たたははずみ車である第たたは
項蚘茉の回転機械甚プラズマ溶射鋳造郚品。  前蚘ガスタヌビンロヌタ郚品がニツケル基超
合金から成る回転矜根たたはガスタ
ヌビン円板である第項蚘茉の回転機械甚
プラズマ溶射鋳造郚品。  前蚘ガスタヌビンステヌタ郚品が固定矜根で
ある第項蚘茉の回転機械甚プラズマ溶射鋳造
郚品。  前蚘矜根が䜿甚時に冷华材を流すための
少なくずも぀の通路を有する䞭空
の構造物である第項蚘茉の回転機械甚プラズ
マ溶射鋳造郚品。  ニツケル基超合金、コバルト基超合金および
鉄基超合金から成る矀より遞ばれた少なくずも
第および第の超合金から成り、前蚘第の
超合金は前蚘第の超合金ず異なる組成を有
し、しかも前蚘第の超合金の第の局が前蚘
第の超合金の第の局䞊に隣接しお䜍眮する
ようなプラズマ溶射鋳造耇合補品においお、プ
ラズマ溶射鋳造されたたたの状態の前蚘第お
よび第の超合金が玄1000ppm未満の酞玠含
量、理論倀の玄97を越える密床、玄0.2〜玄
0.5Όの範囲内の結晶粒床、およびミクロ偏析を
実質的に瀺さない化孊的に均質なミクロ組織を
有するこずを特城ずするプラズマ溶射鋳造耇合
補品。 10 ニツケル基超合金、コバルト基超合金および
鉄基超合金から成る矀より遞ばれた少なくずも
第および第の超合金から成り、前蚘第の
超合金は前蚘第の超合金ず異なる組成を有
し、しかも前蚘第の超合金の第の局が前蚘
第の超合金の第の局䞊に隣接しお䜍眮する
ようなプラズマ溶射鋳造耇合補品においお、前
蚘第および第の超合金が玄1000ppm未満の
酞玠含量、理論倀の玄98を越える密床、玄
0.5〜玄5.0Όの範囲内の結晶粒床、およびミク
ロ偏析を実質的に瀺さない化孊的に均質なミク
ロ組織を有するこずを特城ずするプラズマ溶射
鋳造耇合補品。 11 前蚘プラズマ溶射鋳造耇合補品が耇数の䞭空
通路を有する矜根である堎合に
おいお、前蚘第の超合金の前蚘第の局
が前蚘䞭空通路の少なくずも぀を芏定するよ
うに成圢されおおり、前蚘第の超合金の前蚘
第の局が前蚘䞭空通路を包囲しか぀内呚
面および倖呚面を有し、前蚘倖呚面が
前蚘矜根の圢状を芏定し、しかも前蚘内呚面の
少なくずも䞀郚分が前蚘第の超合金の前蚘第
の局の少なくずも䞀郚分䞊に隣接しお䜍眮し
おいる第10項蚘茉のプラズマ溶射鋳造耇合補
品。
[Table] Figure 11 is a transmission electron micrograph (20000X) of a thin plate specimen of Rene 80 that was subjected to plasma spray casting in the same manner as in Figure 10 and then heat treated at 2190°C (1200℃) for 2 hours. It is. Crystal grain size is approximately 5ÎŒ
However, this is still smaller than the average grain size of Rene 80, which is melt-cast as usual. Precipitates of γ′ phase are observed inside the crystal grains. Heat treatment at lower temperatures, e.g.
According to the heat treatment for several hours, the growth of crystal grains is less, and the obtained crystal grain size is about 2.0 to about 3.0ÎŒ. Theoretically speaking, microsegregation will also be even lower due to the homogenizing effect of the high temperature heat treatment. Given that Rene 80 is strengthened by precipitation of the γ' phase, the stability of this superalloy to grains at elevated temperatures was expected. Let us now compare the behavior of the nickel-based superalloy IN617, which is not strengthened by the γ′ phase. Example 1
IN617 plasma spray cast according to the procedure of
had the same ultrafine grain size (0.2-0.5ÎŒ) as parts made from other superalloys by plasma spray casting. Also, the tensile properties of plasma spray cast IN617 at room temperature were significantly better than those of conventionally melt cast IN617. For example, UTS is 7.80×
9.98×10 3 Kg/cm 2 for 10 3 Kg/cm 2 (111ksi)
(142ksi) and E FAIL is 54% vs. 34%
It was hot. However, IN617 is melt cast as usual and plasma spray cast
IN617 exhibited approximately the same tensile properties when tested at 1650°C (600°C). The fact that the two exhibited almost equal behavior is due to the fact that crystal grains grew during the test. 2280〓(1250
When subjected to heat treatment at temperatures (℃), the grains of plasma spray cast IN617 grew significantly. After such heat treatment, the temperature at room temperature and 1650〓(900〓
The tensile properties of plasma spray cast IN617 were almost the same as those of conventional melt cast IN617 when tested at any temperature (°C). Before heat treatment, the plasma sprayed cast member of the present invention has a theoretically possible value of about 97 to about 97%.
It consistently had a high density of 100%. Components manufactured by conventional thermal spray casting methods are characterized by having gaps, pores, or voids between individual particles uniformly, irregularly, or both over their entire area. . If such gaps or voids exist, the member will have a sufficiently high density or
It is not possible to reach 100% density. After heat treatment, for example at 2100° C. (1150° C.) for 2 hours as described in Example 1, the plasma sprayed cast parts of the present invention are more than 1% higher and therefore have a minimum density of approximately It became 98%.
Note that the oxygen content of the test piece did not change due to the heat treatment. However, at levels below about 1000 ppm, oxygen content is not a significant factor in the strength properties of the plasma spray cast parts of the present invention. However, excess oxygen content beyond that level can have a detrimental effect on superalloy properties such as ductility. Thus, keeping the oxygen content below about 1000 ppm ensures that the superalloy exhibits higher tensile strength, good ductility, and thermal fatigue resistance for use as components in gas turbines. Furthermore, as is clear from the mechanical properties of the plasma sprayed cast parts of the present invention, the plasma sprayed cast parts for rotating machinery of the present invention can withstand long-term use as rotor and stator parts of gas turbine engines. Especially in the case of aircraft engines,
Approximately 1.8×10 3 Kg/cm 2 at 816-982℃ (1500-1800〓)
It is useful as a rotating vane that typically experiences pitch line (centerline) stresses of (25 ksi). In fact, the superalloy rotor blade of the present invention for a gas turbine engine,
The stationary vanes, nozzles, transition members and disks can be expected, based on our experience and the data above, to have a much longer service life than their counterparts manufactured according to the prior art. As can be seen from the foregoing description, the plasma spray cast products of the present invention do not require mechanical deformation during the manufacture of components such as gas turbine engine components. For example, hollow vanes such as those shown in FIGS. 2 and 3 can also be cast with the outer wall and inner portion having the desired thickness, and also the superior microstructure inherent in the products of the present invention as described above. and physical properties can also be obtained. in this way,
The present invention is particularly useful in applications to relatively small, thin-walled components. However, the present invention can also be applied to large, thick-walled components with substantial benefits, given that no mechanical deformation of the casting (e.g., by forging) is required. The grain sizes shown herein are values determined from transmission electron micrographs (eg, Figures 10 and 11) using a method known as the linear crossover method. When viewed parallel to the sprayed surface, crystal grains usually have an equiaxed appearance as shown in Figures 10 and 11, but the grain size is defined as the "diameter" of the crystal grains. It has been reported. Embodiment Aspect 1 A plasma spray cast product comprising a superalloy selected from the group consisting of nickel-based superalloys, cobalt-based superalloys and iron-based superalloys, wherein said superalloy in the as-plasma spray cast state is about
Oxygen content less than 1000ppm, density greater than about 97% of theoretical value, grain size within the range of about 0.2 to about 0.5Ό,
and a plasma spray cast product characterized by having a chemically homogeneous microstructure that exhibits substantially no microsegregation. 2. In a plasma spray cast product comprising a superalloy selected from the group consisting of nickel-based superalloys, cobalt-based superalloys, and iron-based superalloys, said superalloy has an oxygen content of less than about 1000 ppm, a theoretical value of about 98
%, a grain size within the range of about 0.5 to about 5.0 microns, and a chemically homogeneous microstructure exhibiting substantially no microsegregation. 3. In a plasma spray casting product for rotating machinery made of a superalloy selected from the group consisting of a nickel-based superalloy, a cobalt-based superalloy, and an iron-based superalloy, the superalloy in a state as it is plasma sprayed and cast is about 1000 ppm. Oxygen content less than the theoretical value of approx.
A plasma sprayed cast part for rotating machinery characterized by having a density greater than 97%, a grain size within the range of about 0.2 to about 0.5 microns, and a chemically homogeneous microstructure exhibiting substantially no microsegregation. 4. A plasma spray cast product for rotating machinery comprising a superalloy selected from the group consisting of a nickel-based superalloy, a cobalt-based superalloy, and an iron-based superalloy, wherein said superalloy has an oxygen content of less than about 1000 ppm;
Density exceeding about 98% of the theoretical value, about 0.5 to about 5.0Ό
Plasma sprayed cast parts for rotating machinery characterized by having a grain size in the range of , and a chemically homogeneous microstructure exhibiting substantially no microsegregation. 5. The plasma sprayed cast part for a rotating machine according to item 3 or 4, which is a gas turbine rotor part, a gas turbine stator part, or a flywheel 60. 6. The plasma spray cast part for a rotating machine according to claim 5, wherein the gas turbine rotor part is a rotating blade 10, 20 or a gas turbine disc 50 made of a nickel-based superalloy. 7. The plasma spray cast part for a rotating machine according to item 5, wherein the gas turbine stator part is a fixed blade. 8. Plasma spray cast part for a rotating machine according to claim 6, wherein the vane 20 is a hollow structure having at least one passage 22, 23 for the flow of coolant during use. 9 consisting of at least a first and a second superalloy selected from the group consisting of a nickel-based superalloy, a cobalt-based superalloy, and an iron-based superalloy, the first superalloy having a different composition from the second superalloy; and wherein a first layer of said first superalloy is located adjacent to a second layer of said second superalloy, said plasma spray cast as-cast composite article The first and second superalloys have an oxygen content of less than about 1000 ppm, a density of greater than about 97% of theoretical, about 0.2 to about
A plasma spray cast composite product characterized by having a grain size in the range of 0.5Ό and a chemically homogeneous microstructure that is substantially free of microsegregation. 10 consisting of at least a first and a second superalloy selected from the group consisting of a nickel-based superalloy, a cobalt-based superalloy and an iron-based superalloy, the first superalloy having a different composition from the second superalloy; and wherein a first layer of said first superalloy is located adjacently on a second layer of said second superalloy. The superalloy has an oxygen content of less than about 1000 ppm, a density exceeding about 98% of the theoretical value, about
A plasma spray cast composite product characterized by having a grain size in the range of 0.5 to about 5.0 microns and a chemically homogeneous microstructure that is substantially free of microsegregation. 11 said second layer 21 of said second superalloy where said plasma spray cast composite product is a vane 20 having a plurality of hollow passages 22, 23;
is shaped to define at least one of the hollow passageways, and the first layer 25 of the first superalloy surrounds the hollow passageways and has an inner circumferential surface 27 and an outer circumferential surface 26. 11. The outer circumferential surface defines the shape of the vane, and at least a portion of the inner circumferential surface is located adjacently on at least a portion of the second layer of the second superalloy. plasma spray casting composite products.

【図面の簡単な説明】[Brief explanation of drawings]

第図は䜎圧・高速プラズマ溶射鋳造法によ぀
おニツケル基超合金から補造されか぀党䜓がニツ
ケル基超合金から成る䞭実構造物を成す矜根の立
面図、第図は銅補の心型アセンブリ䞊にプラズ
マ溶射鋳造を行぀おから遞択的な化孊溶解によ぀
お心型アセンブリを陀去したために第図の矜根
ず違぀お䞭空であるような矜根の郚分断面立面
図、第図はプラズマ溶射鋳造法によ぀お矜根を
圢成しおから銅補の心型アセンブリを陀去するこ
ずによ぀お生じた内郚通路を瀺す第図䞭の線
−に沿぀た暪断面図、第図はプラズマ溶射鋳
造法によ぀お第および図の矜根を補造するた
めの銅補心型アセンブリの斜芖図、第図は䜎
圧・高速プラズマ溶射鋳造法によ぀お補造された
暡擬ガスタヌビン円板の略斜芖図、第図は䜎
圧・高速プラズマ溶射鋳造法によ぀お補造された
はずみ車の斜芖図、第図は実斜䟋に蚘茉のご
ずくプラズマ溶射鋳造によ぀お埗られたIN738è©Š
隓片の0.2耐力匷床を詊隓枩床に察しおプロツ
トしたグラフ、第図は実斜䟋に蚘茉のごずく
プラズマ溶射鋳造によ぀お埗られたIN738詊隓片
の砎断点䌞びを詊隓枩床に察しおプロツトしたグ
ラフ、第図は熱疲劎詊隓甚の二重くさび圢詊隓
片の略図、第図はプラズマ溶射鋳造されたた
たのルネの薄板詊隓片の透過電子顕埮鏡写真
40000X、そしお第図はプラズマ溶射鋳造
埌に2190〓1200℃で時間の熱凊理を斜した
ルネの薄板詊隓片の透過電子顕埮鏡写真
20000Xである。 図䞭、は䞭実の矜根、はプラツトホヌ
ム、は基郚、は䞭空の矜根、は内郚
の壁䜓、およびは冷华材の通路、は
倖殻、は倖呚面、は内呚面、は心型
アセンブリ、およびは心型セグメ
ント、は暡擬円板、は基䜓、そしお
ははずみ車を衚わす。
Figure 1 is an elevational view of a vane manufactured from a nickel-based superalloy by a low-pressure, high-velocity plasma spray casting method and comprising a solid structure entirely made of the nickel-based superalloy, and Figure 2 is an elevational view of a blade made of a copper core. FIG. 3 is a partial cross-sectional elevation view of a vane which, unlike the vane of FIG. 1, is hollow due to plasma spray casting on the assembly and subsequent removal of the core assembly by selective chemical dissolution. Line 3 in Figure 2 shows the internal passageway created by removing the copper core assembly after forming the vane by plasma spray casting.
Figure 4 is a perspective view of a copper core assembly for producing the blades of Figures 2 and 3 by plasma spray casting; Figure 5 is a low-pressure, high-velocity plasma spray casting. FIG. 6 is a perspective view of a flywheel manufactured by low-pressure, high-speed plasma spray casting method, and FIG. 7 is a schematic perspective view of a simulated gas turbine disk manufactured by the method described in Example 1. A graph plotting the 0.2% yield strength of the IN738 test piece obtained by plasma spray casting against the test temperature. Figure 8 shows the IN738 test piece obtained by plasma spray casting as described in Example 1. Figure 9 is a schematic diagram of a double wedge specimen for thermal fatigue testing; Figure 10 is a diagram of a Rene 80 sheet specimen as plasma spray cast. Transmission electron micrograph (40,000X), and Figure 11 is a transmission electron micrograph (20,000X) of a thin plate specimen of Rene 80 that was heat treated at 2190°C (1200°C) for 2 hours after plasma spray casting. In the figure, 10 is a solid blade, 11 is a platform, 12 is a base, 20 is a hollow blade, 21 is an internal wall, 22 and 23 are coolant passages, 25 is an outer shell, 26 is an outer peripheral surface, 27 is an inner peripheral surface, 40 is a core assembly, 41, 42 and 44 are core segments, 50 is a simulated disk, 51 is a base body, and 60
represents a flywheel.

Claims (1)

【特蚱請求の範囲】  ニツケル基超合金、コバルト基超合金および
鉄基超合金から成る矀より遞ばれた超合金から成
る䜎圧高速床プラズマ溶射鋳造補品であ぀お、前
蚘補品は、プラズマ溶射鋳造されたたたの状態で
は理論倀の97を越える密床を、さらに熱凊理を
うけた状態では理論倀の98を越える密床を有
し、 前蚘補品の超合金は、プラズマ溶射鋳造された
たたの状態では0.2〜0.5Όの範囲内の結晶粒床を、
さらに熱凊理をうけた状態では0.5〜5.0Όの範囲
内の結晶粒床を有し、1000ppm未満の酞玠含量、
およびミクロ偏析を実質的に瀺さない化孊的に均
質なミクロ組織を有するこずを特城ずする補品。  回転機械郚品である特蚱請求の範囲第項蚘
茉の補品。  前蚘回転機械郚品がガスタヌビンロヌタ郚品
である特蚱請求の範囲第項蚘茉の補品。  前蚘回転機械郚品がガスタヌビンステヌタ郚
品である特蚱請求の範囲第項蚘茉の補品。  前蚘ガスタヌビンステヌタ郚品がニツケル基
超合金からなる回転矜根である特蚱請求の範囲第
項蚘茉の補品。  前蚘ガスタヌビンステヌタ郚品が固定矜根で
ある特蚱請求の範囲第項蚘茉の補品。  前蚘回転矜根が、䜿甚時に冷华材を流すため
の少なくずも぀の通路を有する䞭空の構造物で
ある特蚱請求の範囲第項蚘茉の補品。  前蚘ガスタヌビンロヌタ郚品がガスタヌビン
゚ンゞンデむスクである特蚱請求の範囲第項蚘
茉の補品。  前蚘回転機械郚品がはずみ車である特蚱請求
の範囲第項蚘茉の補品。  第の䜎圧高速床プラズマ溶射鋳造堆積局
の少なくずも䞀郚分の䞊に少なくずも第の䜎圧
高速床プラズマ溶射鋳造堆積局が重な぀お接合構
造をずる耇合補品であ぀お、第及び少なくずも
第の堆積局をなすそれぞれの超合金はニツケル
基超合金、コバルト基超合金および鉄基超合金か
らなる矀より遞ばれるが互いに組成を異にし、し
かも、プラズマ溶射鋳造されたたたの状態では
0.2〜0.5Όの範囲内の結晶粒床を、熱凊理をさら
にうけた状態では0.5〜5.0Όの範囲内の結晶粒床
を有し、1000ppm未満の酞玠含量、およびミクロ
偏析を実質的に瀺さない化孊的に均質なミクロ組
織を有し、プラズマ溶射鋳造されたたたの状態で
は理論倀の97を越える密床を、熱凊理をさらに
うけた状態では理論倀の98を越える密床を有す
る耇合補品。  前蚘補品が耇数の䞭空通路を有する回転矜
根の圢態をずり、前蚘第堆積局が少なくずも
぀の前蚘䞭空通路を画成し、かかる䞭空通路を包
囲する前蚘第堆積局は内呚面ず倖呚面を具え、
前蚘倖呚面が前蚘回転矜根の圢状を芏定し、しか
も前蚘内呚面の少なくずも䞀郚分が前蚘第堆積
局の少なくずも䞀郚分に隣接しお接合構造をず぀
おいる特蚱請求の範囲第項蚘茉の補品。
[Scope of Claims] 1. A low-pressure, high-velocity plasma spray casting product comprising a superalloy selected from the group consisting of a nickel-based superalloy, a cobalt-based superalloy, and an iron-based superalloy, the product comprising: a plasma spray casting product; The product's superalloy has a density greater than 97% of its theoretical value in its as-assembled state and a density greater than 98% of its theoretical value in its heat-treated state; Then, the grain size within the range of 0.2~0.5Ό,
In addition, the heat-treated state has a grain size in the range of 0.5-5.0Ό, an oxygen content of less than 1000ppm,
and a product characterized in that it has a chemically homogeneous microstructure that exhibits substantially no microsegregation. 2. The product according to claim 1, which is a rotating machine part. 3. The product according to claim 2, wherein the rotating mechanical component is a gas turbine rotor component. 4. The product according to claim 2, wherein the rotating mechanical component is a gas turbine stator component. 5. The product according to claim 3, wherein the gas turbine stator component is a rotating blade made of a nickel-based superalloy. 6. The product of claim 4, wherein the gas turbine stator component is a fixed blade. 7. The product of claim 5, wherein the rotary vane is a hollow structure having at least one passageway for the flow of coolant during use. 8. The article of claim 3, wherein the gas turbine rotor component is a gas turbine engine disk. 9. The product according to claim 2, wherein the rotating mechanical part is a flywheel. 10 A composite product having a bonded structure in which at least a second low-pressure high-velocity plasma spray-cast deposit layer overlaps at least a portion of the first low-pressure high-velocity plasma spray-cast deposit layer, the first and at least second The superalloys forming the deposited layer are selected from the group consisting of nickel-based superalloys, cobalt-based superalloys, and iron-based superalloys, but have different compositions from each other.
a grain size in the range of 0.2 to 0.5Ό, with a grain size in the range of 0.5 to 5.0Ό after further heat treatment, an oxygen content of less than 1000ppm, and a chemical composition that shows virtually no microsegregation. Composite products with a homogeneous microstructure and a density greater than 97% of the theoretical value in the as-sprayed state and a density greater than 98% of the theoretical value after further heat treatment. 11 said article is in the form of a rotating vane having a plurality of hollow passages, said first deposited layer comprising at least one
the second deposited layer defining two hollow passageways and surrounding the hollow passageways has an inner circumferential surface and an outer circumferential surface;
The product according to claim 10, wherein the outer circumferential surface defines the shape of the rotating blade, and at least a portion of the inner circumferential surface is adjacent to at least a portion of the first deposited layer to form a bonded structure. .
JP15827681A 1980-10-06 1981-10-06 Plasma flame-spray casted article Granted JPS57152459A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US19408480A 1980-10-06 1980-10-06

Publications (2)

Publication Number Publication Date
JPS57152459A JPS57152459A (en) 1982-09-20
JPH0255493B2 true JPH0255493B2 (en) 1990-11-27

Family

ID=22716247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15827681A Granted JPS57152459A (en) 1980-10-06 1981-10-06 Plasma flame-spray casted article

Country Status (1)

Country Link
JP (1) JPS57152459A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4671192A (en) * 1984-06-29 1987-06-09 Power Generating, Inc. Pressurized cyclonic combustion method and burner for particulate solid fuels
US10408083B2 (en) 2013-06-07 2019-09-10 General Electric Company Hollow metal objects and methods for making same

Also Published As

Publication number Publication date
JPS57152459A (en) 1982-09-20

Similar Documents

Publication Publication Date Title
US4418124A (en) Plasma spray-cast components
JP5398123B2 (en) Nickel alloy
US11371120B2 (en) Cobalt-nickel base alloy and method of making an article therefrom
US7479299B2 (en) Methods of forming high strength coatings
US4447466A (en) Process for making plasma spray-cast components using segmented mandrels
EP2532762B1 (en) Alumina-forming cobalt-nickel base alloy and method of making an article therefrom
CA2023400C (en) High strength fatigue crack-resistant alloy article and method for making the same
Clemens Intermetallic γ-TiAl Based Alloy Sheet Materials-—Processing and Mechanical Properties
US5451142A (en) Turbine engine blade having a zone of fine grains of a high strength composition at the blade root surface
EP3725902B1 (en) Cobalt-based alloy product and method for producing same
US6551372B1 (en) High performance wrought powder metal articles and method of manufacture
US4907947A (en) Heat treatment for dual alloy turbine wheels
EP0333129B1 (en) Gas turbine, shroud for gas turbine and method of producing the shroud
EP1724439A2 (en) Method for making a compositionally graded gas turbine disk
CA2023399A1 (en) Creep, stress rupture and hold-time fatigue crack resistant alloys and method for making
EP3901297A1 (en) Nickel-based alloy repaired member and method for manufacturing same
EP2319948A1 (en) Nickel-containing alloys, method of manufacture thereof and articles derived therefrom
Kear Advanced metals
US9399223B2 (en) System and method of forming nanostructured ferritic alloy
JPH0255493B2 (en)
JPH02277760A (en) Constitution member with protecting layer based on nickel or cobalt and preparation thereof
EP0957183A1 (en) Heat treated spray formed superalloy articles and method of making the same
Kablov et al. Strategic trends of development of structural materials and technologies of their processing for modern and future aircraft engines
JPH05195186A (en) Super alloy article having protective coating film containing dispersed matter and preparation thereof
CA1217073A (en) Plasma spray-cast components