JPH0255465B2 - - Google Patents

Info

Publication number
JPH0255465B2
JPH0255465B2 JP20894386A JP20894386A JPH0255465B2 JP H0255465 B2 JPH0255465 B2 JP H0255465B2 JP 20894386 A JP20894386 A JP 20894386A JP 20894386 A JP20894386 A JP 20894386A JP H0255465 B2 JPH0255465 B2 JP H0255465B2
Authority
JP
Japan
Prior art keywords
resin
aqueous
electrodeposition
resin particles
aqueous resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP20894386A
Other languages
Japanese (ja)
Other versions
JPS6363760A (en
Inventor
Yasuyuki Tsucha
Shigeo Nishikawa
Kenshiro Tobinaga
Koichi Saito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Paint Co Ltd
Original Assignee
Nippon Paint Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Paint Co Ltd filed Critical Nippon Paint Co Ltd
Priority to JP61208943A priority Critical patent/JPS6363760A/en
Priority to AU77684/87A priority patent/AU590960B2/en
Priority to CA000545993A priority patent/CA1285671C/en
Priority to DE8787307840T priority patent/DE3785711T2/en
Priority to KR1019870009795A priority patent/KR940011829B1/en
Priority to EP87307840A priority patent/EP0259181B1/en
Publication of JPS6363760A publication Critical patent/JPS6363760A/en
Priority to US07/301,096 priority patent/US4975475A/en
Publication of JPH0255465B2 publication Critical patent/JPH0255465B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Paints Or Removers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明の背景および課題 電着塗料は、形状を選ばない塗装作業性、その
安全性のため、防食性機能を持つ下塗として広く
使用されている。電着塗料は、水を媒体として樹
脂が分散あるいは溶解した形態をとつているた
め、その安全性や通電によるつきまわり性の制御
が塗装ライン安定化のためには必要となる。また
その塗膜としての性能に関しても、特に自動車の
塗装系のように、高耐食性、耐ピツチング性の必
要とされる分野においては、高膜厚や高性能の物
性を有する塗膜が望まれる。また最近の消費者の
高級品質への志向から、塗膜外観においても高外
観への志向が強くなつてきており、従来よりも高
鮮映で高光沢な外観を有する塗膜に対するニーズ
も高い。 従来、電着塗料に内部架橋したエチレン性不飽
和単量体の重合体よりなる微小樹脂粒子(ミクロ
ゲル)を添加することは公知である。すわなち特
開昭58−93762には、通常ではなかなか得られ難
い艷消し塗膜を得る方法として多官能性ビニルモ
ノマーと単官能ビニルモノマーよりなる内部架橋
重合体のエマルジヨンと熱硬化性水溶性樹脂塗料
とからなる艷消し電着塗料が示されているが、内
部架橋エマルジヨンが、熱硬化性電着塗料用樹脂
との均一硬化物中に一様に分布して硬化し、その
結果光線が乱反射されることにより艷消し効果を
発現させている。この技術は表面が乱反射を生じ
るような凹凸性を有する電着塗料に関する技術で
あり、その凹凸性のためその上にさらに中塗や上
塗等を塗装して高外観の塗膜を得ることは意図さ
れていない。これと同じ原理によるアルミまたは
アルミ合金用艷消し電着塗料は特開昭56−49766
にも記載されている。 このように従来のミクロゲルを含む艷消し電着
塗料は、その用途がアルミもしくはアルミ合金用
艷消し透明塗料に限られ、汎用性がないばかり
か、塗料貯蔵中ミクロゲルが沈降する傾向を有
し、かつ充分な艷消し効果が得られる量で添加す
ると電着作業性を害する傾向がみられる。 そこで本発明は塗料の安定性や電着作業性を害
することなく、かつ平滑な塗膜を形成し得る艷消
し電着塗料を提供することを課題とする。 解決方法 前記課題は、電着可能な水性樹脂(ベース樹
脂)の水性分散液へ、かつ前記水性樹脂との屈折
率の差が一定範囲である内部架橋微小樹脂粒子を
添加することによつて解決される。 そのため本発明は、 (a) 電着可能な水性樹脂の水性分散液と、 (b) 該水性樹脂の水性分散液中に均一に分散され
た、かつ前記水性樹脂との屈折率の差が0.02〜
0.3である内部架橋微小樹脂粒子を必須成分と
して含むことを特徴とする艷消し電着塗料組成
物を提供する。 前記微小樹脂粒子は、電着、硬化して形成され
た塗膜中に保持され、マトリツクスとなる前記水
性樹脂との間に屈折率の差があるためその界面で
光が乱反射され、艷消し効果を生じるものであ
る。従つて艷消し効果は塗膜表面の凹凸に依存す
るものではないから平滑な塗膜が得られ、かつ水
性樹脂の水性分散液中に安定に分散し得る粒径で
あるから塗料の安定性を害することがなく、また
微小樹脂自体皮膜成形分の一部となるので他の塗
膜性能に悪影響しない。 詳細な議論 電着可能な水性樹脂 本発明は、カチオン型およびアニオン型電着塗
料どちらにも応用可能である。電着可能な水性樹
脂(ベース樹脂)は一般に電着に必要な電荷と親
水性を与える官能基を有するフイルム形成性樹脂
である。主として水分散時の形により、水溶液
型、デイスパージヨン型、エマルジヨン型、およ
びサスペンジヨン型に分けられるが、ここではそ
れらを総称して水性樹脂と呼ぶ。 電着塗料に使用する水性樹脂は種々のものが知
られており、本発明においては任意のこれら公知
の水性樹脂を使用することができる。 アニオン型電着塗料に使用する水性樹脂は、樹
脂に電着に必要な負の電荷と親水性を与えるた
め、カルボキシル基のようなアニオン性官能基を
持つている。典型的なそのような樹脂は、マレイ
ン化天然もしくは合成乾性油、マレイン化ポリブ
タジエン、それらのハーフエステル、ハーフアミ
ド等である。 カチオン型電着塗料に使用する水性樹脂は、正
の電荷と親水性を与えるためアミノ基のようなカ
チオン性官能基を持つている。このような樹脂の
例には、エポキシ系、ポリエーテル系、ポリエス
テル系、ポリウレタン系、ポリアミド系、ポリブ
タジエン系など各種のものが知られている。 これらの樹脂は、その硬化反応のメカニズムに
従つて、ラジカル重合や酸化重合によつて樹脂自
体で硬化する自己架橋タイプと、硬化例、例えば
メラミン樹脂やブロツクポリイソシアネート化合
物のような硬化剤との併用により硬化する硬化剤
タイプ、両者を併用するタイプがある。 さらに硬化エネルギーのタイプに従つて、常温
硬化、熱硬化、紫外線や電子線などの放射エネル
ギー硬化などのタイプに分類することもできる。 また、塗膜性能を向上させる目的で、電荷およ
び親水性を与える官能性を有しない樹脂、例えば
エポキシアクリレート系樹脂を前記親水性樹脂と
エマルジヨンの形で併用することも行われてい
る。本発明においてはこのような硬化剤および親
水性官能基を持たない樹脂との併用系をも含め
て、水性樹脂と呼ぶ。 このような電着可能な水性樹脂は当業者には良
く知られており、かつそれ自体本発明を構成する
ものではないからこれ以上の説明は必要としな
い。 微小樹脂粒子 従来微小樹脂粒子の製法としては各種の方法が
提案されているが、その一つはエチレン性不飽和
単量体を架橋性の共重合体と水性媒体中でサスペ
ンジヨン重合または乳化重合させて微小樹脂粒子
分散液をつくり、溶媒置換、共沸、遠心分離、乾
燥などにより水を除去して微小樹脂粒子を得るも
のであり、他の方法は脂肪族炭化水素等の低SP
有機溶媒あるいはエステル、ケトン、アルコール
等の内の高SP有機溶媒のようにモノマーは溶か
すが重合体は溶解しない非水性有機溶媒中でエチ
レン性不飽和単量体と架橋性共重合体とを共重合
させ、得られる微小樹脂粒子共重合体を分散する
NAD法あるいは沈澱析出法と称せられる方法で
ある。 本発明の微小樹脂粒子は、上記いずれの方法で
製造してもよい。 エチレン性不飽和単量体としては、(メタ)ア
クリル酸メチル、(メタ)アクリル酸エチル、(メ
タ)アルリル酸n−ブチル、(メタ)アクリル酸
イソブチル、(メタ)アクリル酸2−エチルヘキ
シル等のアクリル酸またはメタクリル酸のアルキ
ルエステルや、これと共重合し得るエチレン性不
飽和結合を有する他の単量体、例えばスチレン、
α−メチルスチレン、ビニルトルエン、t−ブチ
ルスチレン、エチレン、プロビレン、酢酸ビニ
ル、プロピオン酸ビニル、アクリロニトリル、メ
タクリロニトリル、(メタ)アクリル酸ジメチル
アミノエチルなどがある。これら単量体は二種類
以上用いてもよい。 架橋性共重合単量体は、分子内に2固以上のラ
ジカル重合可能なエチレン性不飽和結合を有する
単量体および/または相互に反応し得る基をそれ
ぞれ担持する2種のエチレン性不飽和基含有単量
体を含む。 分子内に2個以上のラジカル重合可能なエチレ
ン性不飽和を有する単量体としては、多価アルコ
ールの重合性不飽和モノカルボン酸エステル、多
塩基酸の重合性不飽和アルコールエステル、およ
び2固以上のビニル基で置換された芳香族化合物
などがあり、それらの例としては以下のような化
合物がある。 エチレングリコールジアクリレート、エチレン
グリコールジメタクリレート、トリエチレングリ
コールジメタクリレート、テトラエチレングリコ
ールジメタクリレート、1,3−ブチレングリコ
ールジメタクリレート、トリメチロールプロパン
トリアクリレート、トリメチロールプロパントリ
メタクリレート、1,4−ブタンジオールジアク
リレート、ネオペンチルグリコールジアクリレー
ト、1,6−ヘキサンジオールジアクリレート、
ペンタエリスリトールジアクリレート、ペンタエ
リスリトールトリアクリレート、ペンタエリスリ
トールテトラアクリレート、ペンタエリスリトー
ルジメタクリレート、ペンタエリスリトールトリ
メタクリレート、ペンタエリスリトールテトラメ
タクリレート、グリセロールジメタクリレート、
グリセロールジアクリレート、グリセロールアリ
ロキシジメタクリレート、1,1,1−トリスヒ
ドロキシメチルエタンジアクリレート、1,1,
1−トリスヒドロキシメチルエタントリアクリレ
ート、1,1,1−トリスヒドロキシメチルエタ
ンジメタクリレート、1,1,1−トリスヒドロ
キシメチルエタントリメタクリレート、1,1,
1−トリスヒドロキシメチルプロパンジアクリレ
ート、1,1,1−トリスヒドロキシメチルプロ
パントリアクリレート、1,1,1−トリスヒド
ロキシメチルプロパンジメタクリレート、1,
1,1−トリスヒドロキシメチルプロパントリメ
タクリレート、トリアリルシアヌレート、トリア
リルイソシアヌレート、トリアリルトリメリテー
ト、ジアリルテレフタレート、ジアリルフタレー
トおよびジビニルベンゼン。 また相互に反応し得る基をそれぞれ担持する2
種のエチレン性不飽和基を有する単量体としては
例えばグリシジルアクリレート、グリシジルメタ
クリレートなどのエポキシ基含有エチレン性不飽
和単量体と、アクリル酸、メタクリル酸、クロト
ン酸などカルボキシル基含有エチレン性不飽和単
量体が最も代表的なものであるが、相互に反応性
の基としてはこれらに限定されるものではなく、
例えばアミンとカルボニル、エポキシドとカルボ
ン酸無水物、アミンとカルボン酸塩化物、アルキ
レンイミンとカルボニル、オルガノアルコキシシ
ランとカルボキシル、ヒドロキシルとイソシアナ
ト等種々のものが提案されており、本発明はこれ
らを広く包含するものである。 微小樹脂粒子は、分子内に2個以上のラジカル
重合可能なエチレン性不飽和結合を有する単量体
および/または相互に反応し得る基をそれぞれ担
持する2種のエチレン性不飽和基含有単量体を1
〜100重量部、単官能エチレン性不飽和単量体を
99〜0重量部含むのが好ましい。 水性媒体または非水溶性有機媒体中で製造した
微小樹脂粒子は、ロ過、スプレー乾燥、凍結乾燥
などの方法で微小樹脂粒子を単離し、そのまま、
もくしはミルなどを用いて適当な粒径に粉砕して
用いることもできるし、さらに合成した分散液を
そのまま、または溶媒置換により媒体を置換して
用いることができる。 上記合成方法によつて得られる微小樹脂粒子は
一般に0.01〜20μの粒径を持つている。 一般的にいつて得られる粒子の粒径はその重合
法によつてコントロールするのが望ましい。0.01
〜0.6μの粒子に対しては乳化重合法、NAD法が、
0.2以上の粒子に対しては沈澱重合法が適してい
る。 内部架橋微小樹脂粒子の屈折率(nDb)は、水
性樹脂の屈折率(nDa)に対して 0.02≦|nDa−nDb|≦0.3 の範囲でなくてはならない。これをこえるものに
ついては十分な艷消し効果を発揮しない。 水性樹脂の屈折率(nDa)は30〜50μ厚のフイ
ルムにした後Abbe Refractometer(ATAGO株
式社製)で、α−ブロムナフタレンを媒体にして
20℃にて測定した。 内部架橋微小樹脂(nDb)はフイルムとして同
様に実測して測定することもできるが、下記式に
より計算によつて求めることができる。 nDb=ΣC1n1、C2n2…Cm nm ただし、C1、C2…Cmは微小樹脂粒子を構成す
る各単量体の重量分率(C1+C2+…Cm=1)で
あり、n1、n2…nmは各単量体の単独ポリマーの
20℃の屈折率である。 微小樹脂粒子は、塗料中および電着浴中で安定
な分散状態を保つため、それ自体ベース樹脂であ
る水性樹脂と同じ極性のイオン化基をもつている
ことが好ましい。すなわちアニオン電着にあつて
はカルボキシル基、スルホン酸基等のアニオン性
基を、カチオン電着にあつてはアミノ基や第4級
アンモニウム基のカチオン性基をそれぞれ担持す
ることが好ましい。これを実現するには、エチレ
ン性不飽和結合とカルボキシル基とを有する単量
体、例えばアクリル酸、メタクリル酸や、エチレ
ン性不飽和結合と塩基性基とを有する単量体、例
えばジメチルアミノエチル(メタ)アクリレー
ト、ビニルピリジン類などを微小樹脂粒子合成に
際して単量体混合物へ添加するか、または微小樹
脂粒子の合成に対し、カチオン性末端を与える開
始剤を用いて単量体混合物を重合する方法があ
る。 微小樹脂粒子を構成するポリマー自体が無極性
である場合、微小樹脂粒子の合成時適当な乳化
剤、特に両性イオン基を有するオリゴソープ、ポ
リソープまたは反応性乳化剤を使用し、微小樹脂
粒子を安定に分散させることもできる。これらの
両性イオン基を持つ乳化剤は、本出願人の特開昭
56−24461、同57−21927、同57−40522等に開示
されている。 微小樹脂粒子は、前記した単官能エチレン性不
飽和単量体および架橋性単量体を溶液重合または
塊状重合等によつて重合し、得られた重合体を粉
砕した後所定粒度に分級して得ることもできる。 さらに別法として、エポキシ樹脂、メラミン樹
脂、アルキツド樹脂等の微小樹脂粒子の場合、液
状の樹脂を水中に乳化分散し、該乳化樹脂分散液
を噴霧乾燥して所定粒径の微小樹脂を得ることも
できるし、樹脂が固体の場合はそれを粉砕、分級
し、所定粒径の微小樹脂とすることもできる。 電着塗料組成物 本発明の電着塗料組成物は、必須成分として前
記電着可能な水性樹脂と、前記微小樹脂粒子とを
含んでいる。水性樹脂と微小樹脂粒子との比率
は、固形分として前者に対し、後者1〜50重量%
である。微小樹脂粒子の添加量は、あまり少なけ
れば効果がなく、あまり多いと塗料の安定性や電
着作業性を害する。 また使用する水性樹脂のタイプに応じ、メラミ
ン樹脂、ベンゾグアナミン樹脂、フエノール樹
脂、ブロツクポリイソシアネート化物のような補
助硬化剤や、マンガン、コバルト、銅、鉛、錫等
の金属化合物を触媒として含むことができる。 これらの成分は、アニオン電着にあつては塩
基、カチオン電着にあつては酸を含む水性媒体中
に分散される。これらの酸および塩基は電着可能
な水溶性樹脂を中和するために用いられる。 中和に用いる塩基としては、例えばアンモニ
ア、ジエタノールアミン、トリエタノールアミ
ン、メチルエタノールアミン、ジエチルアミン、
モルホリン、水酸化カリウムなどがある。 酸としては、リン酸、酢酸、プロピオン酸、乳
酸等が用いられる。 水性媒体は水か、または水と水混和性有機溶剤
との混合物である。必要に応じ水性媒体は水不混
和性有機溶剤を含んでいてもよい。水混和性有機
溶剤の例には、エチルセロソルブ、プロピルセロ
ソルブ、ブチルセロソルブ、エチレングリコール
ジメチルエーテル、ジアセトンアルコール、4−
メトキシ−4−メチルペンタノン−2、メチルエ
チルケトンなどがある。また、水不混和性有機溶
剤の例には、キシレン、トルエン、メチルイソブ
チルケトン、2−エチルヘキサノールなどがあ
る。 本発明の塗料組成物は、塗料の不揮発分を10〜
20%程度に調節し、乾燥膜厚15〜30μに電着し、
樹脂のタイプに応じて常温硬化、熱硬化、紫外線
硬化、電子線硬化等により硬化させることができ
る。 以下に本発明の製造例、実施例および比較例を
示す。これらの例において部および%は重量基準
による。 製造例 1 アニオン性微小樹脂粒子の製造 撹拌機を備えた反応容器に脱イオン水216部を
仕込み、撹拌下温度を80℃に保持しながら、これ
にアゾビスシアノ吉草酸4.5部、トリエチルアミ
ン4.9部および脱イオン水45部からなる混合溶液
を添加した。次いで同温度でN−ドデシル−N−
ビニルベンジルタウリン6部、トリエチルアミン
2.4部および脱イオン水90部からなる第1混合溶
液とメチルメタクリレート156部およびn−ブチ
ルアクリルレート135部およびエチレングリコー
ルメタクリレート3部からなる第2混合溶液とを
それぞれ60分間を要して同時滴下した。滴下後、
さらに同温度でアゾビスシアノ吉草酸1.5部とト
リエチルアミン1.6部および脱イオン水15部から
なる混合溶液を添加し60分間撹拌を継続して、不
揮発分45%、PH7.8、粘度(25℃)108cps、粒子
径132nmのエマルジヨンを得た。屈折率1.479 製造例 2 微小樹脂粒子の製造 撹拌機、温度計を備けたフラスコに、脱イオン
水426部を入れ、温度を80℃に加熱した。窒素気
流下過硫酸アンモニウム1部と脱イオン水20部か
らなる水溶液を滴下した。さらにスチレン5部、
n−ブチルアクリレート4.5部およびネオペンチ
ルグリコールジメタクリレート0.5部よりなるモ
ノマー混合液を加え、10分間反応させた後、過硫
酸アンモニウム1部と脱イオン水20部からなる水
溶液と、メチルメタクリレート10部、n−ブチル
メタクリレート10部、スチレン60部およびエチレ
ングリコールジメタクリレート10からなるモノマ
ー混合液とを60分間をかけて滴下した。さらに温
度80℃で2時間保温し、反応を終了した。 得られたエマルジヨンは粒径208nmであつた。
このエマルジヨンをスプレードライで乾燥し、平
均5μの微小樹脂粒子を得た。屈折率1.547 製造例 3 日石ポリブタジエンB−1500(*1) 1000g アンチゲン6C(*2) 10g 無水マレイン酸 250g 脱イオン水 20g ジエチルアミン 0.5g プロピレングリコール 100g エチルセロソルブ 340g (*1) 日本石油化学(株)製:Mn1500、ビニル
65%、トランス14%、シス16% (*2) 住友化学(株)製:N−メチル−N′−1,
3−ジメチルブチル)、p−フエニレンジアミ
ン 冷却管付2コルベンに、日石ポリブタジエン
B−1500 1000gを仕込み、アンチゲン6C10gと
無水マレイン酸250gを添加する。撹拌しながら、
内温を190〜200℃に保ちながらマレイン酸のポリ
ブタジエンへの付加反応を行う。昇温後約5時間
でジメチルアニリン呈色反応で反応が終了したこ
とを確認した。その後内温を100℃まで冷却し、
脱イオン水20gとジエチルアミン0.5gの混合物
を約30分間で滴下する。さらに滴下終了後約1時
間撹拌を続け、酸価が140であることを確認した。
その後プロピレングリコール100gを添加し110℃
で3時間反応させ全酸価が125であることを確認
した。その後エチルセロソルブ340gを加え、80
℃で約1時間撹拌した後、合成を終了した。不揮
発分80% 製造例 4 エポトートYD−014(*3) 950g エチルセロソルブ 240g ハイドロキノン 10g アクリル酸 65g ジメチルベンジルアミン 5g (*3) 東部化成(株)製、エポキシ樹脂、エポキ
シ当量950 冷却管付2コルベンにエポトートYD−014
950gとエチルセロソルブ240gを仕込み、徐々に
120℃まで撹拌しながらYD−014を均一に溶解す
る。その後ハイドロキノン10gを加え、さらにア
クリル酸65g、ジメチルベンジルアミン5gを加
える。120℃で4時間反応して後酸価が1以下で
あることを確認した。不揮発分80% 実施例 1 製造例3のワニス125g、製造例4のワニス75
g、ブチル化メラミン(不揮発分50%)40g、レ
ゾール型フエノール樹脂(不揮発分50%)40gを
採取し、これにノニオン界面活性剤2gとナフテ
ン酸コバルト3gを加え均一に撹拌した後、トリ
エチルアミン13gを加え、次いで脱イオン水707
gを徐々に加えながら均一に撹拌して溶解し、製
造例1の微小樹脂粒子分散液47gを添加し、固形
分濃度約20%(塗料中の微小樹脂粒子固形分約2
%)の塗料浴を調製した。マトリツクス樹脂の屈
折率nDa=1.41 微小樹脂粒子の屈折率nDb=1.479 |△nD|=0.069 リン酸亜鉛処理を施したダブル鋼板を塗料浴に
浸漬し、被塗物を陽極として、150Vで3分間電
着塗装した。その後、被塗物表面を水洗し、焼付
炉で140℃×30分間焼付け、膜厚約20μの塗装板
を得た。得られた塗膜の性能を試験した結果を表
−1に示す。 製造例 5 日石ポリブタジエンB−2000(数平均分子量
2000、1、2結合65%)を過酢酸を用いてエポキ
シ化し、オキシラン酸素含有量6.4%のエポキシ
化ポリブタジエンを製造した。 このエポキシ化ポリブタジエン1000gおよびエ
チルセロソルブ354gを2オートクレーブに仕
込んだ後、ジメチルアミン62.1gを加え、150℃
で5時間反応させた。未反応アミンを留去した
後、120℃まで冷却しアクリル酸79.3g、ハイド
ロキノン7.6gおよびエチルセロソルブ26.4gの
混合物を添加し、さらに120℃で3時間45分反応
させて樹脂溶液(A)を製造した。このアミン価は
85.2ミリモル/100g、酸価は100ミリモル/100
g、そして固形分濃度は75.0重量%であつた。 製造例 6 エポキシ当量950を持つビスフエノールタイプ
エポキシ樹脂〔商品名エピコート1004、油化シエ
ルエポキシ(株)製〕1000gをエチルセロソルブ343
gに溶解し、アクリル酸76.3g、ハイドロキノン
10gおよびN,N−ジメチルアミノエタノールを
5g添加し、100℃に加熱して5時間反応させ、
樹脂溶液(B)を合成した。固形分濃度75% 製造例 7 日石ポリブタジエンB−1000(数平均分子量
1000、1、2結合60%)1000g、無水マレイン酸
265.8g、キシレン10g、アンチゲン6C(住友化学
商品名)1gを還流冷却器を設置した2セパラ
ブルフラスコに仕込み窒素気流下にて190℃で5
時間反応させた。次に未反応無水マレイン酸、キ
シレンを減圧下に留去し、酸価214ミリモル/100
gのマレイン化ポリブタジエンを合成した。 次にマレイン化ポリブタジエン1000g、エチル
セロソルブ212.4gを還流冷却器を備えた2セ
パラブルフラスコに仕込み撹拌下に120℃で2時
間反応させ、マレイン化ポリブタジエンの半エス
テル化物(C)を製造した。固形分濃度98% 実施例 2 製造例5で製造した(A)400g、製造例6で製造
した(B)240gおよび製造例7で製造した(C)19.2g
を均一になるまで混合した。 ワニスの屈折率nDa=1.43 酢酸8.1gを加え十分にかきまぜ中和した。こ
のワニスへ製造例2の微小樹脂粒子200gを添加
してデイスパーにて均一に分散した後、脱イオン
水1835gを徐々に加えて固形分濃度約20%のエマ
ルジヨンを得た。次に脱イオン水を徐々に加え固
形分濃度が20%(塗料浴中の微小樹脂粒子固形分
約3%)の水溶液を調製した。 上記電着塗料液を用いてカーボン電極を陽極と
し、リン酸亜鉛処理板を陰極とし100V×3分陰
極析出型電着塗装を行つた。焼付175℃×30分。
テスト結果を表−1に示した。 比較例 1 実施例1で製造例1の微小樹脂粒子47gを添加
しないこと以外は実施例1と同様に実施した。
(塗装電圧100V) 比較例 2 実施例2で製造例2の微小樹脂粒子200gを添
加しないこと以外は実施例2と同様に実施した。
(塗装電圧80V)
Background and Problems of the Present Invention Electrodeposition paints are widely used as undercoats with anticorrosive properties because of their workability regardless of shape and their safety. Electrodeposition paints are in the form of resins dispersed or dissolved in water as a medium, so safety and control of throwing power by energization are necessary to stabilize the coating line. Regarding its performance as a coating film, coating films with high film thickness and high performance physical properties are desired, particularly in fields where high corrosion resistance and pitting resistance are required, such as automotive coating systems. In addition, as consumers have recently become more conscious of high-quality products, there has been a strong desire for high-quality paint films, and there is a strong need for paint films that have higher definition and higher gloss than ever before. It is conventionally known to add minute resin particles (microgel) made of internally crosslinked polymers of ethylenically unsaturated monomers to electrodeposition paints. In other words, Japanese Patent Application Laid-Open No. 58-93762 describes an emulsion of an internally crosslinked polymer consisting of a polyfunctional vinyl monomer and a monofunctional vinyl monomer and a thermosetting water-soluble polymer as a method for obtaining a washable coating film that is difficult to obtain with normal methods. The internally crosslinked emulsion is uniformly distributed and cured in the uniformly cured product with the thermosetting resin for the electrodeposition paint, and as a result, the light rays are hardened. The diffused reflection creates a fading effect. This technology is related to electrodeposition paints whose surface has unevenness that causes diffused reflection, and because of the unevenness, it is not intended to obtain a coating film with a high appearance by applying an intermediate coat or top coat on top of it. Not yet. An erasable electrodeposition paint for aluminum or aluminum alloy based on the same principle is disclosed in Japanese Patent Application Laid-Open No. 56-49766.
It is also stated. As described above, the use of conventional erasable electrodeposition paints containing microgels is limited to erasable transparent paints for aluminum or aluminum alloys, and not only is it not versatile, but the microgels tend to settle during paint storage. Moreover, if it is added in an amount that provides a sufficient erasing effect, it tends to impair electrodeposition workability. Therefore, an object of the present invention is to provide an erasable electrodeposition paint that can form a smooth coating film without impairing the stability of the paint or the workability of electrodeposition. Solution The above problem is solved by adding internally crosslinked fine resin particles whose refractive index difference from the aqueous resin is within a certain range to an aqueous dispersion of an electrodepositable aqueous resin (base resin). be done. Therefore, in the present invention, (a) an aqueous dispersion of an aqueous resin that can be electrodeposited, and (b) a refractive index difference of 0.02 that is uniformly dispersed in the aqueous dispersion of the aqueous resin and that the aqueous resin has a refractive index difference of 0.02. ~
Provided is an erasable electrodeposition coating composition characterized in that it contains internally crosslinked fine resin particles having a molecular weight of 0.3 as an essential component. The fine resin particles are held in a coating film formed by electrodeposition and curing, and because there is a difference in refractive index between the resin and the water-based resin that forms the matrix, light is diffusely reflected at the interface, creating an quenching effect. It is something that causes Therefore, the erasing effect does not depend on the unevenness of the paint film surface, so a smooth paint film can be obtained, and the particle size is such that it can be stably dispersed in an aqueous dispersion of an aqueous resin, which improves the stability of the paint. Furthermore, since the minute resin itself becomes part of the film forming component, it does not adversely affect the performance of other coating films. Detailed Discussion Electrodepositable Aqueous Resins The present invention is applicable to both cationic and anionic electrodeposition coatings. Electrodepositable aqueous resins (base resins) are generally film-forming resins that have functional groups that provide the charge and hydrophilicity necessary for electrodeposition. They are classified into aqueous solution type, dispersion type, emulsion type, and suspension type, mainly depending on their form when dispersed in water, and they are collectively referred to herein as aqueous resin. Various types of water-based resins are known for use in electrodeposition paints, and any of these known water-based resins can be used in the present invention. The water-based resin used in anionic electrodeposition paints has anionic functional groups such as carboxyl groups in order to give the resin the negative charge and hydrophilicity necessary for electrodeposition. Typical such resins are maleated natural or synthetic drying oils, maleated polybutadiene, half esters, half amides thereof, and the like. The water-based resin used in cationic electrodeposition paints has cationic functional groups such as amino groups to give it positive charge and hydrophilicity. Various types of resins such as epoxy resins, polyether resins, polyester resins, polyurethane resins, polyamide resins, and polybutadiene resins are known as examples of such resins. Depending on the mechanism of the curing reaction, these resins can be classified into self-crosslinking types that are cured by themselves through radical polymerization or oxidative polymerization, and those that are cured with a curing agent such as melamine resin or blocked polyisocyanate compound. There are curing agent types that harden when used in combination, and types that use both in combination. Furthermore, according to the type of curing energy, it can be classified into types such as room temperature curing, heat curing, and radiant energy curing such as ultraviolet rays and electron beams. Furthermore, for the purpose of improving coating film performance, resins that do not have functionality that imparts charge and hydrophilicity, such as epoxy acrylate resins, are used in combination with the hydrophilic resins in the form of emulsions. In the present invention, a system in which such a curing agent is used in combination with a resin having no hydrophilic functional group is also referred to as an aqueous resin. Such electrodepositable aqueous resins are well known to those skilled in the art and do not require further explanation as such do not form part of the present invention. Micro resin particles Various methods have been proposed to produce micro resin particles, one of which involves suspension polymerization or emulsion polymerization of an ethylenically unsaturated monomer with a crosslinkable copolymer in an aqueous medium. This method creates a dispersion of fine resin particles, and then removes water by solvent replacement, azeotropy, centrifugation, drying, etc. to obtain fine resin particles.
Ethylenically unsaturated monomers and crosslinkable copolymers are co-coated in organic solvents or non-aqueous organic solvents that dissolve monomers but do not dissolve polymers, such as high SP organic solvents such as esters, ketones, and alcohols. Polymerize and disperse the resulting micro resin particle copolymer
This method is called the NAD method or precipitation method. The fine resin particles of the present invention may be produced by any of the above methods. Examples of ethylenically unsaturated monomers include methyl (meth)acrylate, ethyl (meth)acrylate, n-butyl (meth)allylate, isobutyl (meth)acrylate, and 2-ethylhexyl (meth)acrylate. Alkyl esters of acrylic acid or methacrylic acid and other monomers having ethylenically unsaturated bonds that can be copolymerized with them, such as styrene,
Examples include α-methylstyrene, vinyltoluene, t-butylstyrene, ethylene, propylene, vinyl acetate, vinyl propionate, acrylonitrile, methacrylonitrile, dimethylaminoethyl (meth)acrylate, and the like. Two or more types of these monomers may be used. The crosslinkable copolymerizable monomer is a monomer having two or more radically polymerizable ethylenically unsaturated bonds in the molecule and/or two types of ethylenically unsaturated monomers each carrying groups that can react with each other. Contains group-containing monomers. Examples of monomers having two or more radically polymerizable ethylenic unsaturations in the molecule include polymerizable unsaturated monocarboxylic acid esters of polyhydric alcohols, polymerizable unsaturated alcohol esters of polybasic acids, and monomers having two or more radically polymerizable ethylenic unsaturations in the molecule. There are aromatic compounds substituted with the above vinyl groups, examples of which include the following compounds. Ethylene glycol diacrylate, ethylene glycol dimethacrylate, triethylene glycol dimethacrylate, tetraethylene glycol dimethacrylate, 1,3-butylene glycol dimethacrylate, trimethylolpropane triacrylate, trimethylolpropane trimethacrylate, 1,4-butanediol dimethacrylate acrylate, neopentyl glycol diacrylate, 1,6-hexanediol diacrylate,
Pentaerythritol diacrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate, pentaerythritol dimethacrylate, pentaerythritol trimethacrylate, pentaerythritol tetramethacrylate, glycerol dimethacrylate,
Glycerol diacrylate, glycerol allyloxy dimethacrylate, 1,1,1-trishydroxymethylethane diacrylate, 1,1,
1-trishydroxymethylethane triacrylate, 1,1,1-trishydroxymethylethane dimethacrylate, 1,1,1-trishydroxymethylethane trimethacrylate, 1,1,
1-trishydroxymethylpropane diacrylate, 1,1,1-trishydroxymethylpropane triacrylate, 1,1,1-trishydroxymethylpropane dimethacrylate, 1,
1,1-trishydroxymethylpropane trimethacrylate, triallyl cyanurate, triallyl isocyanurate, triallyl trimellitate, diallyl terephthalate, diallyl phthalate and divinylbenzene. In addition, two groups each carrying a group that can react with each other
Examples of monomers having ethylenically unsaturated groups include epoxy group-containing ethylenically unsaturated monomers such as glycidyl acrylate and glycidyl methacrylate, and carboxyl group-containing ethylenically unsaturated monomers such as acrylic acid, methacrylic acid, and crotonic acid. Monomers are the most representative, but mutually reactive groups are not limited to these.
For example, various compounds have been proposed, such as amine and carbonyl, epoxide and carboxylic acid anhydride, amine and carboxylic acid chloride, alkyleneimine and carbonyl, organoalkoxysilane and carboxyl, hydroxyl and isocyanate, etc., and the present invention broadly encompasses these. It is something to do. The micro resin particles are composed of a monomer having two or more radically polymerizable ethylenically unsaturated bonds in the molecule and/or two types of ethylenically unsaturated group-containing monomers each carrying a group capable of reacting with each other. body 1
~100 parts by weight of monofunctional ethylenically unsaturated monomer
It is preferable to contain 99 to 0 parts by weight. Fine resin particles produced in an aqueous medium or a water-insoluble organic medium are isolated by methods such as filtration, spray drying, and freeze drying, and then directly processed.
Alternatively, it can be used by pulverizing it to an appropriate particle size using a mill or the like, and the synthesized dispersion can be used as it is or by replacing the medium with the solvent. The fine resin particles obtained by the above synthesis method generally have a particle size of 0.01 to 20μ. Generally, it is desirable to control the particle size of the particles obtained by the polymerization method. 0.01
For particles of ~0.6 μ, emulsion polymerization method and NAD method are
Precipitation polymerization is suitable for particles larger than 0.2. The refractive index (nDb) of the internally crosslinked microscopic resin particles must be in the range of 0.02≦|nDa−nDb|≦0.3 with respect to the refractive index (nDa) of the aqueous resin. If it exceeds this level, it will not have a sufficient erasing effect. The refractive index (nDa) of the aqueous resin was measured using an Abbe Refractometer (manufactured by ATAGO Corporation) after forming a film with a thickness of 30 to 50 μm using α-bromnaphthalene as a medium.
Measured at 20°C. The internally crosslinked microscopic resin (nDb) can be measured by actually measuring it as a film, but it can also be determined by calculation using the following formula. nDb=ΣC 1 n 1 , C 2 n 2 ...Cm nm However, C 1 , C 2 ...Cm are the weight fractions of each monomer constituting the micro resin particles (C 1 +C 2 +...Cm=1) Yes, n 1 , n 2 …nm is the individual polymer of each monomer.
It is the refractive index at 20℃. In order to maintain a stable dispersion state in the paint and the electrodeposition bath, the fine resin particles themselves preferably have ionizable groups having the same polarity as the aqueous resin that is the base resin. That is, in the case of anionic electrodeposition, it is preferable to support an anionic group such as a carboxyl group or a sulfonic acid group, and in the case of cationic electrodeposition, it is preferable to support a cationic group such as an amino group or a quaternary ammonium group. To achieve this, monomers having an ethylenically unsaturated bond and a carboxyl group, such as acrylic acid and methacrylic acid, and monomers having an ethylenically unsaturated bond and a basic group, such as dimethylaminoethyl (Meth)acrylates, vinylpyridines, etc. are added to the monomer mixture during the synthesis of minute resin particles, or the monomer mixture is polymerized using an initiator that provides a cationic end for the synthesis of minute resin particles. There is a way. If the polymer itself that makes up the micro resin particles is non-polar, use an appropriate emulsifier during synthesis of the micro resin particles, especially oligosoaps, polysoaps, or reactive emulsifiers that have amphoteric ionic groups to stably disperse the micro resin particles. You can also do so. These emulsifiers having zwitterionic groups were disclosed in Japanese Patent Application Laid-Open No.
56-24461, 57-21927, 57-40522, etc. The fine resin particles are obtained by polymerizing the above-mentioned monofunctional ethylenically unsaturated monomer and crosslinkable monomer by solution polymerization or bulk polymerization, crushing the resulting polymer, and then classifying it to a predetermined particle size. You can also get it. As another method, in the case of fine resin particles such as epoxy resin, melamine resin, alkyd resin, etc., a liquid resin is emulsified and dispersed in water, and the emulsified resin dispersion is spray-dried to obtain a fine resin having a predetermined particle size. Alternatively, if the resin is solid, it can be pulverized and classified to form a fine resin with a predetermined particle size. Electrodeposition Coating Composition The electrodeposition coating composition of the present invention contains the electrodepositable aqueous resin and the fine resin particles as essential components. The ratio of aqueous resin and fine resin particles is 1 to 50% by weight of the former as solid content.
It is. If the amount of fine resin particles added is too small, there will be no effect, and if it is too large, the stability of the paint and the workability of electrodeposition will be impaired. Depending on the type of aqueous resin used, auxiliary curing agents such as melamine resin, benzoguanamine resin, phenol resin, and blocked polyisocyanates, and metal compounds such as manganese, cobalt, copper, lead, and tin may be included as catalysts. can. These components are dispersed in an aqueous medium containing a base for anionic electrodeposition and an acid for cationic electrodeposition. These acids and bases are used to neutralize the electrodepositable water-soluble resin. Examples of the base used for neutralization include ammonia, diethanolamine, triethanolamine, methylethanolamine, diethylamine,
Examples include morpholine and potassium hydroxide. As the acid, phosphoric acid, acetic acid, propionic acid, lactic acid, etc. are used. The aqueous medium is water or a mixture of water and a water-miscible organic solvent. If necessary, the aqueous medium may contain a water-immiscible organic solvent. Examples of water-miscible organic solvents include ethyl cellosolve, propyl cellosolve, butyl cellosolve, ethylene glycol dimethyl ether, diacetone alcohol, 4-
Examples include methoxy-4-methylpentanone-2 and methyl ethyl ketone. Examples of water-immiscible organic solvents include xylene, toluene, methyl isobutyl ketone, and 2-ethylhexanol. The coating composition of the present invention has a non-volatile content of the coating of 10 to 10%.
Adjust to about 20%, electrodeposit to a dry film thickness of 15 to 30μ,
Depending on the type of resin, it can be cured by room temperature curing, heat curing, ultraviolet curing, electron beam curing, etc. Production examples, examples and comparative examples of the present invention are shown below. Parts and percentages in these examples are by weight. Production Example 1 Production of Anionic Fine Resin Particles 216 parts of deionized water was charged into a reaction vessel equipped with a stirrer, and while stirring and maintaining the temperature at 80°C, 4.5 parts of azobiscyanovaleric acid, 4.9 parts of triethylamine and deionized water were added. A mixed solution consisting of 45 parts of ionized water was added. Then, at the same temperature, N-dodecyl-N-
6 parts of vinylbenzyl taurine, triethylamine
A first mixed solution consisting of 2.4 parts and 90 parts of deionized water and a second mixed solution consisting of 156 parts of methyl methacrylate, 135 parts of n-butyl acrylate, and 3 parts of ethylene glycol methacrylate were simultaneously dropped over 60 minutes each. did. After dripping,
Furthermore, at the same temperature, a mixed solution consisting of 1.5 parts of azobiscyanovaleric acid, 1.6 parts of triethylamine, and 15 parts of deionized water was added, and stirring was continued for 60 minutes, resulting in a non-volatile content of 45%, a pH of 7.8, a viscosity (25°C) of 108 cps, An emulsion with a particle size of 132 nm was obtained. Refractive index: 1.479 Production Example 2 Production of fine resin particles 426 parts of deionized water was placed in a flask equipped with a stirrer and a thermometer, and the temperature was heated to 80°C. An aqueous solution consisting of 1 part of ammonium persulfate and 20 parts of deionized water was added dropwise under a nitrogen stream. In addition, 5 parts of styrene,
After adding a monomer mixture consisting of 4.5 parts of n-butyl acrylate and 0.5 parts of neopentyl glycol dimethacrylate and reacting for 10 minutes, an aqueous solution consisting of 1 part of ammonium persulfate and 20 parts of deionized water and 10 parts of methyl methacrylate, n - A monomer mixture consisting of 10 parts of butyl methacrylate, 60 parts of styrene, and 10 parts of ethylene glycol dimethacrylate was added dropwise over 60 minutes. The reaction was further kept at 80° C. for 2 hours to complete the reaction. The resulting emulsion had a particle size of 208 nm.
This emulsion was dried by spray drying to obtain fine resin particles with an average size of 5 μm. Refractive index 1.547 Production example 3 Nisseki Polybutadiene B-1500 (*1) 1000g Antigen 6C (*2) 10g Maleic anhydride 250g Deionized water 20g Diethylamine 0.5g Propylene glycol 100g Ethyl cellosolve 340g (*1) Nippon Petrochemical Co., Ltd. ) Made: Mn1500, vinyl
65%, trans 14%, cis 16% (*2) Manufactured by Sumitomo Chemical Co., Ltd.: N-methyl-N'-1,
3-dimethylbutyl), p-phenylenediamine Charge 1000 g of Nisseki Polybutadiene B-1500 into a 2-kolben equipped with a cooling tube, and add 10 g of Antigen 6C and 250 g of maleic anhydride. While stirring,
The addition reaction of maleic acid to polybutadiene is carried out while maintaining the internal temperature at 190 to 200°C. Approximately 5 hours after the temperature was raised, it was confirmed that the reaction was completed by a dimethylaniline color reaction. After that, the internal temperature is cooled to 100℃,
A mixture of 20 g deionized water and 0.5 g diethylamine is added dropwise over about 30 minutes. Further, stirring was continued for about 1 hour after the completion of the dropwise addition, and the acid value was confirmed to be 140.
Then add 100g of propylene glycol and heat to 110℃.
The mixture was reacted for 3 hours and the total acid value was confirmed to be 125. Then add 340g of ethyl cellosolve and add 80g of ethyl cellosolve.
After stirring at °C for about 1 hour, the synthesis was completed. Non-volatile content 80% Production example 4 Epotote YD-014 (*3) 950g Ethyl cellosolve 240g Hydroquinone 10g Acrylic acid 65g Dimethylbenzylamine 5g (*3) Manufactured by Tobu Kasei Co., Ltd., epoxy resin, epoxy equivalent 950 2 Kolben with cooling tube Epotote YD−014
Add 950g and 240g of ethyl cellosolve and gradually
Uniformly dissolve YD-014 while stirring to 120℃. Then add 10 g of hydroquinone, and further add 65 g of acrylic acid and 5 g of dimethylbenzylamine. After reacting at 120°C for 4 hours, it was confirmed that the post-acid value was 1 or less. Non-volatile content 80% Example 1 125g of varnish from Production Example 3, 75g of varnish from Production Example 4
g, butylated melamine (50% non-volatile content), 40 g of resol type phenolic resin (50% non-volatile content) were collected, 2 g of nonionic surfactant and 3 g of cobalt naphthenate were added thereto, stirred uniformly, and 13 g of triethylamine was collected. and then deionized water 707
47g of the fine resin particle dispersion of Production Example 1 was added, and the solid content concentration was approximately 20% (the solid content of fine resin particles in the paint was approximately 20%).
%) paint bath was prepared. Refractive index of matrix resin nDa = 1.41 Refractive index of minute resin particles nDb = 1.479 |△nD | = 0.069 A double steel plate treated with zinc phosphate is immersed in a paint bath, and the object to be coated is used as an anode at 150V for 3 minutes. Electrodeposition painted. Thereafter, the surface of the object to be coated was washed with water and baked in a baking oven at 140°C for 30 minutes to obtain a coated plate with a film thickness of about 20μ. Table 1 shows the results of testing the performance of the obtained coating film. Production example 5 Nisseki polybutadiene B-2000 (number average molecular weight
2000, 1, 2 bonds (65%) was epoxidized using peracetic acid to produce epoxidized polybutadiene with an oxirane oxygen content of 6.4%. After charging 1000 g of this epoxidized polybutadiene and 354 g of ethyl cellosolve into two autoclaves, 62.1 g of dimethylamine was added, and the mixture was heated to 150°C.
The reaction was carried out for 5 hours. After distilling off the unreacted amine, it was cooled to 120°C, a mixture of 79.3g of acrylic acid, 7.6g of hydroquinone and 26.4g of ethyl cellosolve was added, and the reaction was further carried out at 120°C for 3 hours and 45 minutes to obtain the resin solution (A). Manufactured. This amine value is
85.2 mmol/100g, acid value 100 mmol/100
g, and the solid content concentration was 75.0% by weight. Production Example 6 1000 g of bisphenol type epoxy resin with an epoxy equivalent of 950 [trade name Epicote 1004, manufactured by Yuka Ciel Epoxy Co., Ltd.] was mixed with ethyl cellosolve 343.
Dissolved in g, 76.3 g of acrylic acid, hydroquinone
Add 10g and 5g of N,N-dimethylaminoethanol, heat to 100°C and react for 5 hours,
A resin solution (B) was synthesized. Solid content concentration 75% Production example 7 Nisseki polybutadiene B-1000 (number average molecular weight
1000, 1, 2 bonds 60%) 1000g, maleic anhydride
265.8 g, xylene 10 g, and Antigen 6C (Sumitomo Chemical brand name) 1 g were placed in two separable flasks equipped with a reflux condenser and heated at 190°C under a nitrogen stream for 50 minutes.
Allowed time to react. Next, unreacted maleic anhydride and xylene were distilled off under reduced pressure, and the acid value was 214 mmol/100.
g maleated polybutadiene was synthesized. Next, 1000 g of maleated polybutadiene and 212.4 g of ethyl cellosolve were charged into a two-separable flask equipped with a reflux condenser and reacted with stirring at 120°C for 2 hours to produce a half-esterified product (C) of maleated polybutadiene. Solid content concentration 98% Example 2 400 g of (A) produced in Production Example 5, 240 g of (B) produced in Production Example 6, and 19.2 g of (C) produced in Production Example 7
were mixed until homogeneous. Refractive index of varnish nDa = 1.43 8.1 g of acetic acid was added and thoroughly stirred to neutralize. After adding 200 g of the fine resin particles of Production Example 2 to this varnish and uniformly dispersing it with a disper, 1835 g of deionized water was gradually added to obtain an emulsion with a solid content concentration of about 20%. Next, deionized water was gradually added to prepare an aqueous solution having a solid content of 20% (the solid content of the fine resin particles in the paint bath was about 3%). Cathode deposition type electrodeposition coating was carried out using the above electrodeposition coating solution at 100V for 3 minutes using the carbon electrode as the anode and the zinc phosphate treated plate as the cathode. Baking at 175℃ x 30 minutes.
The test results are shown in Table-1. Comparative Example 1 The same procedure as in Example 1 was carried out except that 47 g of the fine resin particles of Production Example 1 were not added.
(Coating voltage: 100 V) Comparative Example 2 The same procedure as in Example 2 was carried out except that 200 g of the fine resin particles of Production Example 2 were not added.
(Painting voltage 80V)

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 (a) 電着可能な水性樹脂の水性分散液と、 (b) 該水性樹脂の水性分散液中に均一に分散され
た、かつ前記水性樹脂との屈折率の差が0.02〜
0.3である内部架橋微小樹脂粒子とを必須成分
として含むことを特徴とする艷消し電着塗料組
成物。 2 前記電着可能な水性樹脂の水性分散液がエマ
ルジヨンである第1項記載の艷消し電着塗料組成
物。 3 前記水性樹脂はカチオン基を持つている第1
項または第2項記載の艷消し電着塗料組成物。 4 前記水性樹脂はアニオン基を持つている第1
項または第2項記載の艷消し電着塗料組成物。 5 前記微小樹脂粒子の配合量が、前記水性樹脂
の固形分の1〜50重量%である第1項ないし第4
項のいずれかに記載の艷消し電着塗料組成物。
[Scope of Claims] 1. A difference in refractive index between (a) an aqueous dispersion of an aqueous resin capable of electrodeposition, and (b) an aqueous resin that is uniformly dispersed in the aqueous dispersion of the aqueous resin. is 0.02~
1. An erasable electrodeposition paint composition comprising as an essential component internally crosslinked fine resin particles having a molecular weight of 0.3. 2. The erasable electrodeposition coating composition according to item 1, wherein the aqueous dispersion of the electrodepositable aqueous resin is an emulsion. 3 The aqueous resin has a cationic group.
3. The erasable electrodeposition coating composition according to item 1 or 2. 4 The aqueous resin has a first aqueous resin having an anionic group.
3. The erasable electrodeposition coating composition according to item 1 or 2. 5 Items 1 to 4, wherein the amount of the fine resin particles is 1 to 50% by weight of the solid content of the aqueous resin.
3. The erasable electrodeposition paint composition according to any one of the above items.
JP61208943A 1986-09-04 1986-09-04 Matte electrodeposition paint composition Granted JPS6363760A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP61208943A JPS6363760A (en) 1986-09-04 1986-09-04 Matte electrodeposition paint composition
AU77684/87A AU590960B2 (en) 1986-09-04 1987-08-28 Electrodeposition coating composition
CA000545993A CA1285671C (en) 1986-09-04 1987-09-02 Electrodeposition coating composition
DE8787307840T DE3785711T2 (en) 1986-09-04 1987-09-04 ELECTRO-DIP PAINT COATING.
KR1019870009795A KR940011829B1 (en) 1986-09-04 1987-09-04 Electrodeposition coating composition
EP87307840A EP0259181B1 (en) 1986-09-04 1987-09-04 Electrodeposition coating composition
US07/301,096 US4975475A (en) 1986-09-04 1989-01-25 Electrodeposition coating composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61208943A JPS6363760A (en) 1986-09-04 1986-09-04 Matte electrodeposition paint composition

Publications (2)

Publication Number Publication Date
JPS6363760A JPS6363760A (en) 1988-03-22
JPH0255465B2 true JPH0255465B2 (en) 1990-11-27

Family

ID=16564704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61208943A Granted JPS6363760A (en) 1986-09-04 1986-09-04 Matte electrodeposition paint composition

Country Status (1)

Country Link
JP (1) JPS6363760A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08302239A (en) * 1995-04-28 1996-11-19 Toyo Ink Mfg Co Ltd Transparent coating
JP2007262248A (en) * 2006-03-29 2007-10-11 Seikoh Chem Co Ltd Water-based matte coating agent

Also Published As

Publication number Publication date
JPS6363760A (en) 1988-03-22

Similar Documents

Publication Publication Date Title
US4975475A (en) Electrodeposition coating composition
JPS63169398A (en) Double painting method by electrodeposition
EP0256776B1 (en) Method of coating a substrate by electrodeposition
JP3071998B2 (en) Aqueous paint composition
JPH07252321A (en) Production of fine cross-linked polymer particle
JPS63111976A (en) Coating method
JPH0374475A (en) Cationic electrodeposition coating composition
JPH0781112B2 (en) Method for obtaining multi-layer coating, aqueous coating composition and process for preparing water-dilutable polyacrylate resin
JPH0255466B2 (en)
JP4642217B2 (en) Thermosetting powder coating composition
JPH0255465B2 (en)
AU595938B2 (en) Electrodeposition coating composition
JP2001104878A (en) Coating film forming method
JPS63286475A (en) Coating composition
JPH04293973A (en) Cationic electrodeposition coating composition
WO1995033795A1 (en) Flat electrodeposition coating composition and flat electrodeposition coating method
JP2513161B2 (en) Resin composition for low temperature dry paint
JPS6368678A (en) Electrodeposition paint composition
JPS6081262A (en) Resin composition for cold drying coating material
WO1994025639A1 (en) Organic-composite-plated steel plate and coating resin composition used for producing the same
JPS6348367A (en) Electrodeposition paint composition
JPH0255467B2 (en)
JP2002294173A (en) Cationic electrodeposition coating material composition and method for forming coating film by using the same
JPH0474386B2 (en)
JP2002038096A (en) Base coating material composition