JPH0255187B2 - - Google Patents

Info

Publication number
JPH0255187B2
JPH0255187B2 JP2959282A JP2959282A JPH0255187B2 JP H0255187 B2 JPH0255187 B2 JP H0255187B2 JP 2959282 A JP2959282 A JP 2959282A JP 2959282 A JP2959282 A JP 2959282A JP H0255187 B2 JPH0255187 B2 JP H0255187B2
Authority
JP
Japan
Prior art keywords
rotating
workpiece
spindle
guiding
tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2959282A
Other languages
Japanese (ja)
Other versions
JPS58149158A (en
Inventor
Tatsuji Wada
Kuniro Shibata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Koki KK
Original Assignee
Toyoda Koki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Koki KK filed Critical Toyoda Koki KK
Priority to JP2959282A priority Critical patent/JPS58149158A/en
Publication of JPS58149158A publication Critical patent/JPS58149158A/en
Publication of JPH0255187B2 publication Critical patent/JPH0255187B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q27/00Geometrical mechanisms for the production of work of particular shapes, not fully provided for in another subclass

Landscapes

  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Turning (AREA)

Description

【発明の詳細な説明】 本発明は回転二葉双曲面を創成加工する装置に
関するもので、その目的は工具刃先に円運動をさ
せた状態でワーク創成面等にワーク回転中心部に
切削残しを生じさせないで高精度の回転二葉双曲
面を創成加工することである。
[Detailed Description of the Invention] The present invention relates to a device for generating and machining a rotating bilobal hyperboloid surface, and its purpose is to create an uncut portion on the workpiece generation surface, etc. at the center of rotation of the workpiece while the cutting edge of the tool is in circular motion. The objective is to generate a high-precision rotating bilobal hyperboloid surface without causing any damage.

従来においては、回転二葉双曲面及びその他非
球面を創成加工するために、第1図に示すように
ワークWを主軸2の端面に取付けて高速回転させ
る主軸装置1を主軸軸線方向に移動可能に設ける
とともにバイト3を主軸軸線と直交する方向に移
動可能なスライドテーブル4上に固定し、ワーク
Wを高速回転させた状態でこのスライドテーブル
4と主軸装置1を数値制御により送り制御してバ
イト刃先が所定の双曲面等を描くようにして回転
双曲面等を創成するものがある。
Conventionally, in order to create rotating bilobal hyperboloids and other aspheric surfaces, a workpiece W is attached to the end face of a spindle 2 and a spindle device 1 for rotating it at high speed is movable in the axis direction of the spindle, as shown in FIG. At the same time, the cutting tool 3 is fixed on a slide table 4 that is movable in a direction perpendicular to the spindle axis, and while the workpiece W is rotating at high speed, the slide table 4 and the spindle device 1 are fed by numerical control to adjust the cutting edge. There is a method that creates a hyperboloid of revolution by drawing a predetermined hyperboloid.

かかる従来装置では、バイトの切削点における
ワークの回転速度が切削可能となるため、ワーク
回転中心部においては切削速度が零に近くなるた
め切削できず、切削残しが生ずる欠点があつた。
In such a conventional device, since the rotational speed of the workpiece at the cutting point of the cutting tool enables cutting, the cutting speed becomes close to zero at the center of rotation of the workpiece, so cutting cannot be performed, resulting in uncut residue.

本発明はかかる従来の欠点をなくするために、
工具側を回転させて回転二葉双曲面を創成加工せ
んとするものであり、ワーク回転中心部における
切削残しを生じさせないようにし、かつ一定の工
具回転半径に対してあらゆる諸元の回転二葉双曲
面の創成ができる調整要素を具備せしめ、汎用性
に富む加工装置を提供せんとするものである。
In order to eliminate such conventional drawbacks, the present invention has the following features:
The purpose is to generate a rotating bilobal hyperboloid by rotating the tool side, and to avoid leaving uncut parts at the center of rotation of the workpiece, and to generate a rotating bilobal hyperboloid of all specifications for a constant tool rotation radius. The purpose of the present invention is to provide a highly versatile processing device that is equipped with adjustment elements that can create the following.

本発明による回転二葉双曲面の創成原理につい
て説明する。
The principle of creation of a rotating bilobal hyperboloid according to the present invention will be explained.

一般に回転二葉双曲面をxyz座標系で表わせば x2/a2−y2+z2/b2=1 (a>0、b>0) 回転対称軸はx軸である。この曲面はx軸上の
点を中心とする内接球の包絡面である。従つて第
2図に示すように工具側はOcを通りx軸とθだ
け傾いたを回転軸とし、回転工具半径で
回転し、ワーク側をx軸まわりに1回転すれば内
接球のOcの一部QQ′⌒−SS′⌒が創成される。この球
面の一部がMM′を含むとき双曲面のMM′が切削
される。Ocの位置を頂点Tに接する球の中心位
置までx軸に沿つて移動し(第3図参照)同時に
OcPの長さを変化させれば回転二葉双曲面
MTM′が創成される。
In general, if a rotating bilobal hyperboloid is expressed in an xyz coordinate system, x 2 /a 2 −y 2 +z 2 /b 2 =1 (a>0, b>0) The axis of rotational symmetry is the x-axis. This curved surface is an envelope surface of an inscribed sphere centered on a point on the x-axis. Therefore, as shown in Figure 2, the tool side passes through Oc and is tilted by θ with the x-axis as the rotation axis, rotates with the rotating tool radius, and if the workpiece side rotates once around the x-axis, the inscribed sphere Oc A part QQ′⌒−SS′⌒ is created. When part of this spherical surface includes MM', the hyperboloid MM' is cut. Move the position of Oc along the x-axis to the center position of the sphere touching the vertex T (see Figure 3) and at the same time
If we change the length of OcP, we get a rotating bilobal hyperboloid.
MTM′ is created.

ここにxy平面で考えて 双曲面x2/a2−y2/b2=1と 円(x+a+X)2+y2=R2 が接するには R2=b2{(a+X)2/a2+b2−1} また頂点に接する内接円では (x+a+X)2+y2=b2{(a+X)2/a2+b2
1} で、x=−a、y=0を満足するから、このとき
のXをX0として X0=b2/a⇒R0=b2/a またQはT点に一致させるから sinθ=d/2/R0=b2d/2a= ………(1) また Z222=R2−d2/4 この(2)式の関係をもつてZとXを制御すれば回
転二葉双曲面は創成される。
Considering the xy plane, for the hyperboloid x 2 /a 2 -y 2 /b 2 = 1 and the circle (x+a+X) 2 +y 2 =R 2 to touch, R 2 = b 2 {(a+X) 2 /a 2 +b 2 −1} Also, in the inscribed circle touching the vertex, (x+a+X) 2 +y 2 =b 2 {(a+X) 2 /a 2 +b 2
1}, and satisfies x = -a, y=0, so if X at this time is X 0 , then = d/2/R 0 = b 2 d/2a = ………(1) Also, Z 2 = 22 = R 2d 2 /4 If Z and X are controlled using the relationship expressed by equation (2), a rotating bilobal hyperboloid can be created.

かかる創成原理を応用した加工装置の一実施例
を第4図、第5図に示す。
An example of a processing device to which such a creation principle is applied is shown in FIGS. 4 and 5.

10はベツドで、このベツド10上には工具支
持台11とワーク支持台12が設けられている。
工具支持台11は、工具20を支持する面板21
を備えた回転主軸22を回転可能に軸承した工具
主軸台23と、この主軸台23を主軸軸線Uと平
行な方向に摺動させるための摺動台24及び案内
ベース25と、この案内ベース25を載置し主軸
軸線Uと直交する軸線Vを中心にして旋回可能な
旋回台26及び旋回支持台27とより構成されて
いる。前記主軸台23には主軸駆動モータ28が
載置され、プーリ23a,28a及びベルト29
を介して回転主軸22に回転連結されている。前
記面板21には回転中心に対し偏心して軸線方向
に突出するダイヤモンドバイトよりなる工具20
が設けられ、工具の切刃20aは回転直径dの円
運動を行う。尚、この工具20としては、シング
ルポイントのバイトに限定されるものでなく、フ
ライスカツタとか砥石も使用可能である。前記旋
回支持台27には調整ハンドル27aが設けられ
ており、このハンドル27aには図示省略のウオ
ーム、ウオーム歯車を介して旋回台26と連結さ
れており、ハンドル27aを回すことにより旋回
台26の旋回角度θの調整ができるようになつて
いる。旋回台26上に載置された案内ベース25
には、主軸台23を載置した摺動台24と図示省
略の送りねじを介して連結されたサーボモータ
SMaが設けられ、第2図における移動量Zを制
御する。
10 is a bed, and on this bed 10 a tool support stand 11 and a workpiece support stand 12 are provided.
The tool support stand 11 includes a face plate 21 that supports the tool 20.
A tool headstock 23 that rotatably supports a rotating spindle 22 equipped with a rotary spindle 22, a slide base 24 and a guide base 25 for sliding the headstock 23 in a direction parallel to the spindle axis U, and a guide base 25. It is comprised of a swivel base 26 and a swivel support base 27 on which a rotary machine is placed and can be rotated about an axis V perpendicular to the spindle axis U. A spindle drive motor 28 is mounted on the spindle stock 23, and pulleys 23a, 28a and a belt 29
It is rotatably connected to the rotating main shaft 22 via. On the face plate 21 is a tool 20 made of a diamond cutting tool that is eccentric to the center of rotation and protrudes in the axial direction.
is provided, and the cutting edge 20a of the tool performs a circular motion with a rotational diameter d. Note that the tool 20 is not limited to a single-point cutting tool, and a milling cutter or a grindstone can also be used. The swivel support base 27 is provided with an adjustment handle 27a, which is connected to the swivel base 26 via a worm and a worm gear (not shown), and the swivel base 26 can be adjusted by turning the handle 27a. The turning angle θ can be adjusted. Guide base 25 placed on swivel table 26
, a servo motor is connected to a slide table 24 on which a headstock 23 is mounted and a feed screw (not shown).
SMa is provided to control the amount of movement Z in FIG.

ワーク支持装置12は、ワークWを支持する回
転主軸30を回転可能に軸承したワークヘツド3
1と、このワークヘツド31を主軸軸線Tと平行
な方向に摺動させるための可動台32及びスライ
ドベース33と、このスライドベース33を主軸
軸線Tと直角な方向に摺動案内する案内ベース3
4とにより構成されている。前記ワークヘツド3
1には主軸駆動モータ35が設けられ減速機構を
介して回転主軸30の一端と連結されている。回
転主軸30の他端には、面板30aが設けられて
おり、この面板30aにワークWが同心的に固定
される。前記案内ベース34には、調整ハンドル
34aが設けられ、このハンドル34aにはスラ
イドベース33に螺合する図示省略の送りねじが
連結されている。このハンドル34aを回すこと
によりワークヘツド31を軸線と直交する方向に
移動させ、第5図に示すように工具20の切削点
がワーク回転中心線T上を通るような位置関係に
ワークヘツド31を設定することができる。スラ
イドベース33には、摺動台32に螺合する図示
省略の送りねじと連結されたサーボモータSMb
が設けられ、ワークヘツド31のワーク軸線方向
の移動を制御する。
The workpiece support device 12 includes a workhead 3 that rotatably supports a rotating main shaft 30 that supports a workpiece W.
1, a movable base 32 and a slide base 33 for sliding the work head 31 in a direction parallel to the spindle axis T, and a guide base 3 for slidingly guiding the slide base 33 in a direction perpendicular to the spindle axis T.
4. The work head 3
1 is provided with a main shaft drive motor 35, which is connected to one end of the rotating main shaft 30 via a speed reduction mechanism. A face plate 30a is provided at the other end of the rotating main shaft 30, and a workpiece W is concentrically fixed to this face plate 30a. The guide base 34 is provided with an adjustment handle 34a, and a feed screw (not shown) that is threadedly engaged with the slide base 33 is connected to the handle 34a. By turning this handle 34a, the work head 31 is moved in a direction perpendicular to the axis, and the work head 31 is set in a positional relationship such that the cutting point of the tool 20 passes on the work rotation center line T, as shown in FIG. be able to. The slide base 33 has a servo motor SMb connected to a feed screw (not shown) that is screwed into the slide base 32.
is provided to control movement of the work head 31 in the workpiece axis direction.

40は数値制御装置で、前記サーボモータ
SMaとSMbを前記(2)式の関係を保つべく制御す
るものである。ここにおいて、第5図に示すよう
に工具回転軸線Uとワーク回転軸線Tのなす角度
θ一定として両軸線の交点Ocに対するZ寸法は
前記サーボモータSMaによつて制御される。即
ち交点Ocは角度θを一定とすれば不動の点であ
り、工具回転軸線Uに沿つて主軸台23を前進送
りすればaは増大し、後退送りすればZは減少す
る。又交点Ocに対するX寸法はサーボモータ
SMbによつて制御され、ワーク回転軸線Tに沿
つてワークヘツド31を前進送り(図示左方送
り)すればXは減少し、後退送り(図示右方送
り)すればXは増大する。尚、両軸線のなす角度
θは、前記(1)式の関係より回転二葉双曲面の諸元
a、bを変える場合に調整されるものであり、こ
の角度θを変化させると工具刃先がワーク回転軸
線T上を通らなくなるので、ハンドル34aによ
るワーク回転軸線と直交する方向にワークヘツド
31を移動させる調整が必要となる。これらの調
整は回転二葉双曲面の創成諸元の変更に伴い手動
で行われる。
40 is a numerical control device, which controls the servo motor;
SMa and SMb are controlled to maintain the relationship expressed by equation (2) above. Here, as shown in FIG. 5, the angle θ between the tool rotation axis U and the workpiece rotation axis T is constant, and the Z dimension with respect to the intersection Oc of both axes is controlled by the servo motor SMa. That is, the intersection Oc is an immovable point if the angle θ is constant, and if the headstock 23 is fed forward along the tool rotation axis U, a will increase, and if it is sent backward, Z will decrease. Also, the X dimension with respect to the intersection Oc is the servo motor
Controlled by SMb, if the work head 31 is fed forward (to the left in the drawing) along the workpiece rotation axis T, X will decrease, and if it is sent backward (to the right in the drawing), X will increase. Note that the angle θ formed by both axes is adjusted when changing the dimensions a and b of the rotating bilobal hyperboloid based on the relationship in equation (1) above, and changing this angle θ causes the tool cutting edge to move closer to the workpiece. Since it does not pass on the rotation axis T, it is necessary to make an adjustment using the handle 34a to move the work head 31 in a direction perpendicular to the work rotation axis. These adjustments are made manually as the creation specifications of the rotating bilobal hyperboloid are changed.

前記(2)式を電子計算機で計算することにより、
ZとXの組がいくつか求められるが求める組の数
は要求精度に応じて増減させれば良い。求めたZ
とXによつてきまる多数の点を直線ないし円弧で
結んで一つの折線ないしは曲線として2次元のパ
ルス分配を前記数値制御装置40にて行わせる。
この場合ZとXの点群データは予めプログラム
し、数値制御装置40内蔵の記憶装置41に記憶
させておく。数値制御装置40から出力される同
時2軸のパルス列のうちA軸用のパルス列はサー
ボモータSMaに与えて工具主軸台23を工具回
転軸線U方向に移動させて交点Ocに対する刃先
回転平面までの距離Zを制御し、他のB軸用のパ
ルス列はサーボモータSMbに与えてワークヘツ
ド31をワーク回転軸線V方向に移動させて、交
点Ocに対するワーク創成面までの距離Xを制御
する。こうして1組のZとXを与えてワークWを
1回転させると第2図における放物面の一部
MM′が加工されるので、ワークWを1回転させ
るたびに他の組のZとXが与えられ加工点をZ軸
方向に順次ずらしていけば回転二葉双曲面が創成
できる。
By calculating the above formula (2) with an electronic computer,
Several pairs of Z and X are determined, but the number of pairs to be determined may be increased or decreased depending on the required accuracy. The Z I asked for
The numerical control device 40 performs two-dimensional pulse distribution by connecting a large number of points defined by
In this case, the Z and X point group data are programmed in advance and stored in the storage device 41 built into the numerical control device 40. Of the pulse trains for the two axes simultaneously outputted from the numerical control device 40, the pulse train for the A-axis is applied to the servo motor SMa to move the tool headstock 23 in the direction of the tool rotation axis U to determine the distance from the intersection point Oc to the cutting edge rotation plane. Z is controlled, and the other B-axis pulse train is applied to the servo motor SMb to move the work head 31 in the direction of the work rotation axis V, thereby controlling the distance X from the intersection Oc to the work creation surface. In this way, when a set of Z and X is given and the work W is rotated once, a part of the paraboloid in Fig. 2
Since MM' is machined, each time the work W is rotated, another set of Z and X is given, and by sequentially shifting the machining point in the Z-axis direction, a rotating bilobal hyperboloid can be created.

尚、ワークの回転に応じて加工点をZ軸方向に
ずらして螺旋軌跡上に沿つて制御することもでき
る。この場合には、ワーク駆動用のモータもサー
ボモータとなし前記数値制御装置40には、ワー
ク回転角αを含む点群データ(α、Z、X)の組
を予めプログラムしておき、このデータによつて
同時3軸のパルス分配を行わしめ、各サーボモー
タにその分配パルスを与えれば良い。
In addition, it is also possible to shift the machining point in the Z-axis direction according to the rotation of the workpiece and control it along a helical locus. In this case, the motor for driving the workpiece is also a servo motor, and the numerical control device 40 is programmed with a set of point group data (α, Z, X) including the workpiece rotation angle α, and this data It suffices to distribute pulses to three axes at the same time and apply the distributed pulses to each servo motor.

本発明によれば、ワーク軸線と角度をなす軸線
回りに工具を回転させ、工具回転軸線方向及びワ
ーク回転軸線方向に工具とワークを相対的に移動
制御しかつワークを回転させて、工具切削点がワ
ーク創成面上で双曲面を描くように運動させ回転
二葉双曲面を創成するものであるから、工具の切
削点がワークの回転中心部になつても切削速度は
低下せず切削残しは生じない。
According to the present invention, the tool is rotated around an axis that makes an angle with the workpiece axis, the tool and the workpiece are controlled to move relative to each other in the direction of the tool rotation axis and the workpiece rotation axis, and the workpiece is rotated. Since the tool is moved so as to draw a hyperboloid on the workpiece creation surface to create a rotating bilobal hyperboloid, even if the cutting point of the tool becomes the center of rotation of the workpiece, the cutting speed will not decrease and uncut material will remain. do not have.

その上、制御軸であるA軸とB軸は高速回転す
る工具の回転角の関数として制御しなくてもよい
ので、制御が比較的容易であり、機械系の設計も
し易い。
Furthermore, since the A-axis and B-axis, which are the control axes, do not have to be controlled as a function of the rotation angle of the tool rotating at high speed, control is relatively easy and the mechanical system can be easily designed.

又、回転二葉双曲面の創成諸元としてのa、b
の変更は、ワーク回転軸線に対する工具回転軸線
のなす角θの調整で任意に変えられるので、加工
装置としては汎用性のあるものとすることができ
る利点を有する。
Also, a, b as the creation dimensions of the rotating bilobal hyperboloid
can be changed arbitrarily by adjusting the angle θ formed by the tool rotation axis with respect to the workpiece rotation axis, so the processing apparatus has the advantage of being versatile.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来装置を示す平面図、第2図は本発
明による回転二葉双曲面の創成原理説明図、第3
図は頂点に接する内接球との関係を示す図、第4
図、第5図は本発明の実施例である加工装置を示
すもので、第4図は正面図、第5図は平面図であ
る。 11……工具支持装置、12……ワーク支持装
置、20……工具、23……工具主軸台、24…
…摺動台、25……案内ベース、26……旋回
台、27……旋回支持台、30……回転主軸、3
1……ワークヘツド、32……摺動台、33……
スライドベース、34……案内ベース、SMa,
SMb……サーボモータ。
Fig. 1 is a plan view showing a conventional device, Fig. 2 is an explanatory diagram of the creation principle of a rotating bilobal hyperboloid according to the present invention, and Fig. 3 is a plan view showing a conventional device.
The figure is a diagram showing the relationship with the inscribed sphere touching the vertex, the fourth
5 and 5 show a processing apparatus which is an embodiment of the present invention, with FIG. 4 being a front view and FIG. 5 being a plan view. DESCRIPTION OF SYMBOLS 11... Tool support device, 12... Work support device, 20... Tool, 23... Tool headstock, 24...
...Sliding base, 25...Guide base, 26...Swivel base, 27...Swivel support base, 30...Rotating main shaft, 3
1...Work head, 32...Sliding table, 33...
Slide base, 34... Guide base, SMa,
SMb...Servo motor.

Claims (1)

【特許請求の範囲】 1 回転二葉双曲面の形成されるワークを支持し
て回転せしめるワーク支持装置と、ワークの回転
軸線に対し傾斜する回転軸線を有し一端に偏心し
て工具を突設してなる回転主軸と、この回転主軸
を回転可能に軸承する工具主軸台と、前記回転主
軸とワークを回転主軸軸線方向に相対移動せしめ
る第1の送り手段と、前記回転主軸とワークをワ
ーク回転軸線方向に相対移動せしめる第2の送り
手段と、数値制御装置とを有し、前記工具を回転
させ前記第1の送り手段による回転主軸の軸線方
向移動と前記第2の送り手段によるワークの軸線
方向移動を制御して回転二葉双曲面x2/a2−y2+z2/b2 =1を切削する加工装置において、工具の回転直
径をdとして、前記回転主軸の軸線とワークの軸
線のなす角度θを sinθ=b2d/2a 前記第1の送り手段による回転主軸の軸線方向
の移動量Zと前記第2の送り手段によるワークの
軸線方向移動量Xとを なる関係を保つように制御して回転二葉双曲面を
創成加工することを特徴とする回転二葉双曲面創
成加工装置。 2 前記第1の送り手段は、前記回転主軸を回転
可能に軸承する工具主軸台を回転主軸軸線方向に
摺動可能に案内する案内手段と、この案内手段に
案内された工具主軸台を移動せしめる送りねじ機
構と、この送りねじ機構に連結されたサーボモー
タとを有してなる特許請求の範囲第1項記載の回
転二葉双曲面創成加工装置。 3 前記第2の送り手段は、前記ワーク支持装置
をワークの回転軸線方向に摺動可能に案内せしめ
る案内手段と、この案内手段に案内されたワーク
支持装置を移動せしめる送りねじ機構と、この送
りねじ機構に連結されたサーボモータとを有して
なる特許請求の範囲第1項記載の回転二葉双曲面
創成加工装置。 4 前記第1の送り手段は、前記工具主軸台を案
内せしめる案内手段を、前記回転主軸の軸線及び
ワークの回転軸線を含む平面に垂直でかつ回転主
軸の軸線に直交する軸線を中心にして旋回せしめ
る旋回調整手段を有する特許請求の範囲第2項記
載の回転二葉双曲面創成加工装置。 5 前記第2の送り手段は、前記ワーク支持装置
を案内せしめる案内手段を、この案内方向と直角
な方向に移動調整せしめる移動調整手段を有する
特許請求の範囲第3項記載の回転二葉双曲面創成
加工装置。
[Scope of Claims] 1. A workpiece support device that supports and rotates a workpiece in which a rotating bilobal hyperboloid is formed; a workpiece support device that has a rotational axis that is inclined with respect to the rotational axis of the workpiece; and a tool that is eccentrically protruded from one end thereof; a rotating spindle, a tool headstock that rotatably supports the rotating spindle, a first feeding means for moving the rotating spindle and the workpiece relative to each other in the axial direction of the rotating spindle, and a first feeding means that moves the rotating spindle and the workpiece in the direction of the workpiece rotational axis. and a numerical control device, the tool is rotated, and the rotating main shaft is moved in the axial direction by the first feeding device, and the workpiece is moved in the axial direction by the second feeding device. In a processing device that cuts a rotating bilobal hyperboloid x 2 /a 2 −y 2 +z 2 /b 2 = 1 by controlling the θ is sinθ=b 2 d/2a The axial movement amount Z of the rotating main shaft by the first feeding means and the axial movement amount X of the workpiece by the second feeding means. 1. A rotating bilobal hyperboloid generation processing device characterized by generating a rotating bilobal hyperboloid surface by controlling the relationship such that the following relationship is maintained. 2. The first feeding means includes a guide means for slidably guiding a tool headstock that rotatably supports the rotary spindle in an axial direction of the rotary spindle, and a guide means for moving the tool headstock guided by the guide means. 2. The rotating bilobal hyperboloid generating processing device according to claim 1, comprising a feed screw mechanism and a servo motor connected to the feed screw mechanism. 3. The second feeding means includes a guiding means for slidably guiding the work supporting device in the direction of the rotational axis of the work, a feed screw mechanism for moving the work supporting device guided by the guiding means, and a feeding screw mechanism for moving the work supporting device guided by the guiding means. 2. The rotating bilobal hyperboloid generating processing device according to claim 1, comprising a servo motor connected to a screw mechanism. 4. The first feeding means rotates the guide means for guiding the tool headstock about an axis that is perpendicular to a plane including the axis of the rotational spindle and the rotational axis of the workpiece and orthogonal to the axis of the rotational spindle. 3. The rotating bilobal hyperboloid generating processing apparatus according to claim 2, further comprising a turning adjustment means for adjusting the rotating bilobal surface. 5. The rotating bilobal hyperboloid generating device according to claim 3, wherein the second feeding means includes a movement adjusting means for adjusting the movement of the guiding means for guiding the work supporting device in a direction perpendicular to the guiding direction. Processing equipment.
JP2959282A 1982-02-25 1982-02-25 Generation machining device of rotary two lobe hyperboloid Granted JPS58149158A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2959282A JPS58149158A (en) 1982-02-25 1982-02-25 Generation machining device of rotary two lobe hyperboloid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2959282A JPS58149158A (en) 1982-02-25 1982-02-25 Generation machining device of rotary two lobe hyperboloid

Publications (2)

Publication Number Publication Date
JPS58149158A JPS58149158A (en) 1983-09-05
JPH0255187B2 true JPH0255187B2 (en) 1990-11-26

Family

ID=12280338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2959282A Granted JPS58149158A (en) 1982-02-25 1982-02-25 Generation machining device of rotary two lobe hyperboloid

Country Status (1)

Country Link
JP (1) JPS58149158A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0423539U (en) * 1990-06-21 1992-02-26

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007031703A1 (en) * 2007-07-06 2009-01-08 Satisloh Gmbh Machine for processing optical workpieces, in particular plastic spectacle lenses

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0423539U (en) * 1990-06-21 1992-02-26

Also Published As

Publication number Publication date
JPS58149158A (en) 1983-09-05

Similar Documents

Publication Publication Date Title
US8424427B2 (en) Method and apparatus for roll surface machining
JP4013252B2 (en) Hale processing method and processing apparatus
US5168661A (en) Method of grinding the surfaces of cutting blades and grinding wheel therefor
US3212405A (en) Method for cutting internal spherical surfaces
US7179025B2 (en) Machine and method with 7 axes for CNC-controlled machining, particularly generating cutting or grinding; of spiral bevel gears
JP2008509012A (en) Raster cutting technology for ophthalmic lenses
JP2012152883A (en) Machine tool, machining method, program, and nc data generation device
EP0044207B1 (en) Method and apparatus for generating aspherical surfaces of revolution
US4643622A (en) Automatic C-axis feedrate control for machine tools
US4443975A (en) Dual wheel cylindrical grinding center
US5241794A (en) Grinding wheel for cutting blades
JPH11138321A (en) Cam shaft processing machine
JPH08318456A (en) Spindle tapered hole re-boring device
JPH0255187B2 (en)
CN2062269U (en) Universal tool mill with group drill edge milling function
JPH0132029B2 (en)
JPH0255186B2 (en)
JPH02139112A (en) Profile grinding machine
JPS60259377A (en) Working device and method of automatically controlling said device
JPH0132031B2 (en)
CN221364363U (en) High-precision superhard material grinding equipment
JPS62102960A (en) Tool grinding device for end mill
GB2084064A (en) Turning spheres
JPS6368349A (en) Numeric control cam grinding machine
JPS62241605A (en) Tarret device of column traverse type