JPH025468Y2 - - Google Patents

Info

Publication number
JPH025468Y2
JPH025468Y2 JP1980051137U JP5113780U JPH025468Y2 JP H025468 Y2 JPH025468 Y2 JP H025468Y2 JP 1980051137 U JP1980051137 U JP 1980051137U JP 5113780 U JP5113780 U JP 5113780U JP H025468 Y2 JPH025468 Y2 JP H025468Y2
Authority
JP
Japan
Prior art keywords
current
disconnector
circuit
output
disconnection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1980051137U
Other languages
Japanese (ja)
Other versions
JPS56152043U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1980051137U priority Critical patent/JPH025468Y2/ja
Publication of JPS56152043U publication Critical patent/JPS56152043U/ja
Application granted granted Critical
Publication of JPH025468Y2 publication Critical patent/JPH025468Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Keying Circuit Devices (AREA)

Description

【考案の詳細な説明】 本考案は、直流き電システムにおける断路器な
ど、しや断電流が残留する断路器の保護装置に関
し、特にしや断器に静止形しや断器を備えるシス
テムにおける断路器の保護装置に関する。
[Detailed description of the invention] The present invention relates to a protection device for a disconnector in which a residual current remains, such as a disconnector in a DC feeding system, and particularly for a system in which a static disconnector is provided. This invention relates to a protection device for a disconnector.

直流キ電システムにおける断路器のしや断電流
は、第1図に示す等価回路例で説明される。自変
電所内コンバータCNV1は定電圧制御されたとき
電圧を出力し、無負荷時電圧(a=30゜)は第2
図aに示す波形になる。コンバータCNV1と断路
器DSとのしや断器はそのしや断状態での漏れ電
流による定電流源iとして表わされる。断路器
DSの両電極側にはリツプル電流バイパス用コン
デンサC1,C2が存在する。断路器DSに接続され
るき電線には架線インダクタンスLを持つて隣接
変電所のコンバータCNV2に接続され、隣接変電
所側にもバイパス用コンデンサなどに代表される
コンデンサC3が存在する。コンバータCNV2の出
力電圧波形は断路器DS位置で第2図bに示すも
のになる。
The breaking current of a disconnector in a DC power supply system will be explained using an example of an equivalent circuit shown in FIG. The own substation converter CNV 1 outputs voltage when under constant voltage control, and the no-load voltage (a = 30°) is
The waveform will be as shown in Figure a. The connection between the converter CNV 1 and the disconnector DS is represented by a constant current source i due to the leakage current in its disconnected state. disconnector
Ripple current bypass capacitors C 1 and C 2 are present on both electrode sides of DS. The feeder line connected to the disconnector DS has an overhead line inductance L and is connected to the converter CNV 2 of the adjacent substation, and there is also a capacitor C 3 typified by a bypass capacitor on the adjacent substation side. The output voltage waveform of converter CNV 2 is as shown in FIG. 2b at the disconnector DS position.

従つて、断路器DSにはそのしや断に際して第
2図cに示す電流iが流れている。即ち、コンバ
ータCNV1からコンデンサC2への充電電流Ipと漏
れ電流iが流れ、隣接変電所側からインダクタン
スLを通してコンデンサC1へ逆方向電流irが流れ
る。この電流は断路器DSの許容しや断電流(1
アンペア程度)以下に設計されるが、許容しや断
電流以上になる場合には断路器の故障原因にな
る。即ち、断路器DSは消弧室を持たないためそ
の許容しや断電流以上の電流しや断によつて極間
アークが発生し、電極焼損事故に発展する。
Therefore, when the disconnector DS is disconnected, a current i shown in FIG. 2c flows through the disconnector DS. That is, charging current I p and leakage current i flow from converter CNV 1 to capacitor C 2 , and reverse current i r flows from the adjacent substation through inductance L to capacitor C 1 . This current is the allowable current (1
Although the disconnection current is designed to be less than the allowable current, it may cause the disconnector to malfunction. That is, since the disconnector DS does not have an arc extinguishing chamber, an arc occurs between the electrodes due to a current exceeding the allowable current or disconnection, leading to an electrode burnout accident.

特に、しや断器として静止形しや断器を採るも
のは、しや断要素としてのサイリスタ及びその
CRスナバー回路や転流回路を通した漏れ電流が
大きく、さらにき電システムでは定常運転電流が
数千アンペアとなることからサイリスタの並列素
子数も多くなる結果、漏れ電流も大きくなり、断
路器の焼損事故を起し易い。
In particular, those that use a static type as the shear breaker, use thyristors and their like as the shear breaker element.
Leakage current through the CR snubber circuit and commutation circuit is large, and the steady-state operating current in the feeding system is several thousand amperes, so the number of parallel thyristor elements increases, resulting in a large leakage current and the disconnector. Easy to cause burnout accidents.

第3図は静止形しや断器の1回路のみを示し、
主サイリスタTH1のほかにその転流回路として
転流コンデンサC1,補助サイリスタTH2及びダ
イオードD1を具え、主サイリスタTH1のスナバ
ー回路として抵抗R1とコンデンサC2を具える。
主サイリスタのしや断動作は、補助サイリスタ
TH2を点弧することによつて予め図示極性に充
電されたコンデンサC1の電荷をダイオードD1
補助サイリスタTH2のループで放電させ、主サ
イリスタTH1にそのターンオフ時間以上逆バイ
アスして該主サイリスタTH1をターンオフ動作
させる。補助サイリスタTH2は転流コンデンサ
C1の電圧極性が反転してターンオフする。こう
したしや断器において、主サイリスタTH1はオ
フ状態でその漏れ電流が断路器DS側に流れ、ス
ナバー回路にはリツプル電流が流れ、これら漏れ
電流の総和は並列主サイリスタ個々の漏れ電流の
和として増大する。
Figure 3 shows only one circuit of a static type circuit breaker.
In addition to the main thyristor TH 1, the commutation circuit includes a commutation capacitor C 1 , an auxiliary thyristor TH 2 and a diode D 1 , and a snubber circuit for the main thyristor TH 1 includes a resistor R 1 and a capacitor C 2 .
The main thyristor's cutting action is controlled by the auxiliary thyristor.
The charge of the capacitor C 1 , previously charged to the polarity shown by igniting TH 2 , is transferred to the diode D 1
A discharge is caused in the loop of the auxiliary thyristor TH2 , and the main thyristor TH1 is reverse biased for a period longer than its turn-off time to turn off the main thyristor TH1 . Auxiliary thyristor TH 2 is a commutating capacitor
The voltage polarity of C1 is reversed and turned off. In such a short circuit, main thyristor TH 1 is in the off state and its leakage current flows to the disconnect switch DS side, ripple current flows to the snubber circuit, and the sum of these leakage currents is the sum of the leakage currents of the individual parallel main thyristors. increases as

本考案の目的は、断路器の断路動作がその許容
しや断電流以下で確実になされるようにした保護
装置を提供するにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a protection device which ensures that the disconnection operation of a disconnector is performed at a current below its allowable limit.

本考案は、断路器電路導体の電流を許容しや断
電流レベルで検出し、この検出出力に基づいて断
路器の断路操作可否を判定及び操作制御すること
を特徴とする。また、しや断電流検出に従来の変
流器によるものに比べて精度良く検出できるしや
断電流検出器を特徴とする。また、しや断電流の
検出出力から断路器操作の可否判定に検出電流の
平均値から判定することを特徴とする。
The present invention is characterized in that the current in the disconnector circuit conductor is detected at an acceptable or disconnection current level, and based on this detection output, it is determined whether or not the disconnector can be disconnected, and the operation is controlled. Additionally, it features a shingle break current detector that can detect shingle break current with higher accuracy than conventional current transformers. Further, the present invention is characterized in that the determination of whether or not the disconnector can be operated is made based on the detection output of the disconnection current based on the average value of the detected current.

以下、本考案の保護装置を詳細に説明する。 Hereinafter, the protection device of the present invention will be explained in detail.

まず、本考案の保護装置としては電路導体電流
を検出できる検出器を用意する。この電流検出器
としては、一般にはシヤフト抵抗とこの抵抗の電
圧を検出増幅する増幅器から成るシヤント方式が
知られている。しかし、直流き電システムにおい
ては定常時数千アンペア(4000〜10000アンペア)
流れる電路から断路操作時の1アンペア程度の電
流検出を必要とするため、シヤント方式による電
流検出は不都合を生じる。即ち、シヤント方式に
よる1アンペア程度の電流検出には、増幅器のオ
フセツト電流変化による誤差をカバーするために
シヤント抵抗検出電圧が5mv/1Aになるようシ
ヤント抵抗値を設計すると、定常電流通電時にシ
ヤフト抵抗の損失が大きくなる。このため、シヤ
ント抵抗自体の製作が困難であるし、実用に供し
得ない。
First, as the protection device of the present invention, a detector capable of detecting electric circuit conductor current is prepared. As this current detector, a shunt type is generally known, which is composed of a shaft resistor and an amplifier that detects and amplifies the voltage of this resistor. However, in a DC feeding system, the current is several thousand amperes (4,000 to 10,000 amperes) at steady state.
Since it is necessary to detect a current of about 1 ampere during a disconnection operation from a flowing electric path, current detection using the shunt method is inconvenient. In other words, when detecting a current of about 1 ampere using the shunt method, if the shunt resistance value is designed so that the shunt resistance detection voltage is 5mv/1A in order to cover the error caused by the offset current change of the amplifier, the shaft resistance will change when a steady current is applied. losses will increase. For this reason, it is difficult to manufacture the shunt resistor itself, and it is not practical.

そこで、本考案の保護装置は磁気的な電流検出
をなすしや断電流検出器とし、この検出器は定常
運転電流に対しては磁気飽和し許容しや断電流レ
ベルを精度良く検出し、しかも損失を無くしてい
る。
Therefore, the protective device of the present invention uses magnetic current detection as a break-out current detector, and this detector is magnetically saturated with steady-state operating current, and accurately detects the allowable break-out current level. Eliminating losses.

第4図は本考案の回路構成を示す。同図におい
て、断路器電路を構成する導体1を一次側として
該導体電流により発生する起磁力の磁気回路を鉄
心2で形成し、この鉄心2のギヤツプにホール素
子3を配置し、このホール素子3には磁界方向と
は直角方向に流す電流源(図示しない)を接続
し、導体1の電流に比例した電圧をホール素子3
から取り出す。このホール発電器は、導体1に流
れる電流が断路器の許容しや断電流以上にあると
きに磁気回路が飽和するよう飽和アンペア回数を
小さく設計することで微小電流検出レベルを大き
くかつ良好な直線性を確保している。また、定常
電流通電時には磁気回路が飽和するために、しや
断器引外し後も磁気回路の鉄心2には保磁力が残
り、この保磁力がしや断電流検出に影響する。そ
こで、鉄心2はパーマロイ系でかつ温度変化に影
響されにくい材料、例えば45%ニツケルパーマロ
イで構成し、鉄心2の保磁力が微小電流の起磁力
に比べて充分小さくなるホール発電器としてい
る。
FIG. 4 shows the circuit configuration of the present invention. In the figure, a magnetic circuit for magnetomotive force generated by the conductor current is formed with an iron core 2, with a conductor 1 constituting a disconnector circuit as the primary side, and a Hall element 3 is arranged in the gap of the iron core 2. A current source (not shown) that flows in a direction perpendicular to the direction of the magnetic field is connected to 3, and a voltage proportional to the current in conductor 1 is applied to Hall element 3.
Take it out. This Hall generator is designed to have a small saturation amperage so that the magnetic circuit is saturated when the current flowing through the conductor 1 is higher than the allowable current of the disconnector. Ensures sex. Furthermore, since the magnetic circuit is saturated when a steady current is applied, a coercive force remains in the iron core 2 of the magnetic circuit even after the shield breaker is tripped, and this coercive force affects the shield current detection. Therefore, the iron core 2 is made of a permalloy-based material that is not easily affected by temperature changes, for example, 45% nickel permalloy, and a Hall generator is used in which the coercive force of the iron core 2 is sufficiently small compared to the magnetomotive force of a minute current.

ホール素子3の出力電圧は第2図cに示すスパ
イクを持つ波形であるため、センスアンプ4に縦
続してローパスフイルタ5を設け、その平均値を
断路器のしや断電流として検出する。例えば、断
路動作が第2図cのスパイク電流Ipの流れる期間
tipと漏れ電流iの流れる期間tiを比べると、tip
≪tiであり、スパイク電流Ipの流れている期間は
極めて短いため、しや断電流としては電流波形の
平均値を採ることで不都合はない。ローパスフイ
ルタ5の平均値出力は絶対値回路6を通すことで
その極性が揃えられ、第2図cの電流iと逆電流
irの何れの極性電流にも断路器の許容しや断電流
以下であることを比較器7で検出する。比較器7
に設定する許容しや断電流値に対して絶対値回路
6の出力が小さいときリレー8を付勢しておき、
その接点を閉状態にして断路器の断路操作コイル
9の動作を許容する。逆に、断路器に流れる電流
がその許容しや断電流よりも大きいときリレー8
を復旧させて断路器操作を抑止する。10は断路
器操作指令を等価的に示すスイツチである。
Since the output voltage of the Hall element 3 has a waveform having spikes as shown in FIG. 2c, a low-pass filter 5 is provided in series with the sense amplifier 4, and the average value thereof is detected as the disconnection current of the disconnector. For example, the disconnection operation is the period in which the spike current Ip flows as shown in Figure 2c.
Comparing tip and the period ti during which leakage current i flows, tip
<<ti, and since the period during which the spike current Ip flows is extremely short, there is no problem in taking the average value of the current waveform as the shearing current. The average value output of the low-pass filter 5 is passed through the absolute value circuit 6, so that its polarity is aligned, and the current i and the reverse current in Fig. 2c are
The comparator 7 detects that any polarity current of i r is below the allowable disconnection current of the disconnector. Comparator 7
When the output of the absolute value circuit 6 is smaller than the allowable current value set in , the relay 8 is energized.
The contact is closed to allow the disconnection operation coil 9 of the disconnector to operate. Conversely, when the current flowing through the disconnector is larger than its allowable disconnection current, relay 8
to prevent disconnection switch operation. 10 is a switch equivalently indicating a disconnector operation command.

従つて、本考案による保護装置は、電路導体電
流をホール発電器で検出し、磁気回路の飽和をし
や断電流レベルに設定し、定常運転電流での磁気
回路の保磁力を小さくした磁気回路検出であるた
め、定常運転電流での損失が無くしかもしや断電
流を精度良く検出できる。また、磁気回路検出で
あるため、一次側導体との絶縁が容易で小型のホ
ール発電器に構成できる。また、ホール発電器の
出力から断路動作の可否を判定する判定回路は、
平均値から判定するため、ピーク電流(スパイク
電流)と最小電流の通電時間比率を測定する手段
を不要とし、判定回路構成が複雑になることなく
断路器のしや断特性に合つた判定ができる。
Therefore, the protective device according to the present invention detects the conductor current of the circuit with a Hall generator, sets the saturation of the magnetic circuit to a low current level, and reduces the coercive force of the magnetic circuit at a steady operating current. Since this is a detection method, there is no loss in steady-state operating current, and short-circuit current can be detected with high accuracy. Furthermore, since it uses a magnetic circuit for detection, it is easy to insulate from the primary conductor and can be configured into a small Hall generator. In addition, the determination circuit that determines whether or not a disconnection operation is possible from the output of the Hall generator is
Since the judgment is made from the average value, there is no need for a means to measure the current-carrying time ratio between the peak current (spike current) and the minimum current, and the judgment can be made in accordance with the disconnection characteristics of the disconnector without complicating the judgment circuit configuration. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は直流き電システムにおける断路器しや
断電流を説明するための等価回路、第2図は断路
器のしや断電流波形を説明するための波形図、第
3図は静止形しや断器を例示する回路図、第4図
は本考案の一実施例を示す回路構成図である。 1……電路導体、2……鉄心、3……ホール素
子、4……センスアンプ、5……ローパスフイル
タ、6……絶対値回路、7……比較器、8……リ
レー、9……断路器操作コイル、DS……断路器。
Figure 1 is an equivalent circuit to explain disconnector disconnection current waveforms in a DC feeding system, Figure 2 is a waveform diagram to explain disconnector disconnection current waveforms, and Figure 3 is a static type circuit. FIG. 4 is a circuit configuration diagram showing an embodiment of the present invention. 1... Electric circuit conductor, 2... Iron core, 3... Hall element, 4... Sense amplifier, 5... Low pass filter, 6... Absolute value circuit, 7... Comparator, 8... Relay, 9... Disconnector operation coil, DS...disconnector.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 直流き電線路に静止形しや断器と直列に介挿さ
れる断路器において、断路器の電路導体を一次側
として該断路器の許容しや断電流以上の電流レベ
ルで飽和しかつ該電流レベルによる起磁力に較べ
て保磁力を充分小さくした磁気回路と、この磁気
回路のギヤツプに設けられ該磁気回路の起磁力に
比例した電圧出力を得るホール素子と、このホー
ル素子の出力電圧を増幅するセンスアンプと、こ
のセンスアンプの出力に含まれる前記電路導体の
スパイク電流分をしや断して平均値出力を得るロ
ーパスフイルタと、このローパスフイルタの出力
極性を揃える絶対値回路と、この絶対値回路の出
力から前記断路器の許容しや断電流以下にあるか
否かを判定する比較器と、この比較器に許容しや
断電流以下の判定出力があるときに断路器の断路
操作を許容するリレー回路とを備えたことを特徴
とする断路器の保護装置。
In a disconnector that is inserted in series with a static type disconnector in a DC feeder line, the circuit conductor of the disconnector is used as the primary side and is saturated at a current level that is higher than the allowable disconnection current of the disconnector. A magnetic circuit whose coercive force is sufficiently smaller than the magnetomotive force caused by the magnetic circuit, a Hall element provided in the gap of this magnetic circuit to obtain a voltage output proportional to the magnetomotive force of the magnetic circuit, and a Hall element that amplifies the output voltage of the Hall element. a sense amplifier, a low-pass filter that obtains an average value output by suppressing the spike current of the conductor included in the output of this sense amplifier, an absolute value circuit that aligns the output polarity of this low-pass filter, and this absolute value. A comparator that determines from the output of the circuit whether or not the current is below the allowable or disconnection current of the disconnector, and when the comparator has a determination output that is below the allowable or disconnection current, the disconnection operation of the disconnector is permitted. A protection device for a disconnector, comprising a relay circuit.
JP1980051137U 1980-04-15 1980-04-15 Expired JPH025468Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1980051137U JPH025468Y2 (en) 1980-04-15 1980-04-15

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1980051137U JPH025468Y2 (en) 1980-04-15 1980-04-15

Publications (2)

Publication Number Publication Date
JPS56152043U JPS56152043U (en) 1981-11-14
JPH025468Y2 true JPH025468Y2 (en) 1990-02-09

Family

ID=29646049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1980051137U Expired JPH025468Y2 (en) 1980-04-15 1980-04-15

Country Status (1)

Country Link
JP (1) JPH025468Y2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54163369A (en) * 1978-06-15 1979-12-25 Tokyo Electric Power Co Automatic controller for disconnecting switch

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54163369A (en) * 1978-06-15 1979-12-25 Tokyo Electric Power Co Automatic controller for disconnecting switch

Also Published As

Publication number Publication date
JPS56152043U (en) 1981-11-14

Similar Documents

Publication Publication Date Title
US4425596A (en) Electric circuit breaker
JPH0152974B2 (en)
JPH05501043A (en) Loss of neutral or ground protection circuit
CN110036455A (en) Under-voltage circuit breaker equipment
US9780551B2 (en) Differential protection device for a switchgear apparatus, and electric switchgear apparatus comprising one such device
CA1079347A (en) Saturating time-delay transformer for overcurrent protection
JPH0514690Y2 (en)
CN102290689B (en) Earth leakage protection plug
EP0302470B1 (en) Circuit breaker including selectively operable long-time-delay tripping circuit
JPH025468Y2 (en)
CN102354863B (en) Electricity leakage protection plug
JPH01170313A (en) Circuit breaker
CN102354868B (en) Electric leakage protection plug
JPH0212367B2 (en)
US4652965A (en) High level magnetic trip circuit
JPS58364Y2 (en) Tripping circuit for circuit breakers
JPH038036Y2 (en)
SU851598A1 (en) Device for protecting ac contact network from earthing
RU1788549C (en) Device for protection of three-phase electric installation against abnormal operating conditions
JP3248154B2 (en) DC high-speed vacuum circuit breaker
JP2800374B2 (en) Power converter overcurrent protection device
CN117039816A (en) Bridge type magnetic coupling Z source direct current breaker and direct current transmission equipment
JPH0632755Y2 (en) AC thyristor power protection circuit
JPH072006B2 (en) Chopper protection method
JPS6288422A (en) Contactless switch