JPH0254512B2 - - Google Patents

Info

Publication number
JPH0254512B2
JPH0254512B2 JP17012280A JP17012280A JPH0254512B2 JP H0254512 B2 JPH0254512 B2 JP H0254512B2 JP 17012280 A JP17012280 A JP 17012280A JP 17012280 A JP17012280 A JP 17012280A JP H0254512 B2 JPH0254512 B2 JP H0254512B2
Authority
JP
Japan
Prior art keywords
lanthanide
gas detection
basic
detection element
basic gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP17012280A
Other languages
Japanese (ja)
Other versions
JPS5793253A (en
Inventor
Masatake Matsuo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP17012280A priority Critical patent/JPS5793253A/en
Publication of JPS5793253A publication Critical patent/JPS5793253A/en
Publication of JPH0254512B2 publication Critical patent/JPH0254512B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N31/00Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods
    • G01N31/22Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods using chemical indicators
    • G01N31/223Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods using chemical indicators for investigating presence of specific gases or aerosols

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Dispersion Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Description

【発明の詳細な説明】 本発明はランタニドジフタロシアニン錯体を用
いた塩基性ガス検出素子に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a basic gas detection element using a lanthanide diphthalocyanine complex.

従来の塩基性ガス検出方法としてたとえばアン
モニアガス検出方法としては、ガスクロマトグラ
フ法および溶液導電率法がある。ところがガスク
ロマトグラフ法および溶液導電率法は次のような
欠点をもつ。すなわち、ガスクロマトグラフ法に
ついては調査したい試料の収集手段などに手間が
かかる欠点あるいはガスクロマトグラフ装置自体
比較的高価なものであるという欠点を持つ。また
溶液導電率法についても、溶液と調査したい試料
ガスの混合手段に手間がかかり、純水の製造など
溶液の調整もめんどうであるという欠点をもち、
さらにこの方法は定量分折法であり、定性分折に
は向かない。
Conventional basic gas detection methods include gas chromatography and solution conductivity methods, for example, as ammonia gas detection methods. However, the gas chromatography method and the solution conductivity method have the following drawbacks. That is, the gas chromatography method has disadvantages in that it requires time and effort to collect the sample to be investigated, and the gas chromatograph device itself is relatively expensive. The solution conductivity method also has the disadvantage that it takes time and effort to mix the solution and the sample gas to be investigated, and the preparation of the solution, such as the production of pure water, is also troublesome.
Furthermore, this method is a quantitative spectroscopy and is not suitable for qualitative spectroscopy.

本発明はかかる欠点を除去したもので、その目
的は極めて簡単な方法でアンモニアガスを検出す
るもので、アンモニアガス以外の塩基性ガスにつ
いても検出素子として働く。
The present invention eliminates such drawbacks, and its purpose is to detect ammonia gas in an extremely simple manner, and also works as a detection element for basic gases other than ammonia gas.

ランタニドジフタロシアニン錯体が塩基性ガス
に鋭敏に反応して、色調の変化を起こすことを見
出したものであり、ランタニドジフタロシアニン
錯体の製造は、 フタロシアニンの溶液に、ランタニドの金属の
硝酸塩、塩化物などを加え、反応させると可能で
ある。それを抽出や昇華などの公知の方法で精製
する。
It was discovered that the lanthanide diphthalocyanine complex reacts sensitively to basic gases, causing a change in color tone.The production of the lanthanide diphthalocyanine complex involves adding a lanthanide metal nitrate, chloride, etc. to a phthalocyanine solution. This is possible by adding and reacting. It is purified by known methods such as extraction and sublimation.

以下、実施例に基づいて本発明を詳しく説明す
る。
Hereinafter, the present invention will be explained in detail based on Examples.

第1図は本発明の塩基性ガス検出素子の断面図
である。
FIG. 1 is a sectional view of the basic gas detection element of the present invention.

1は基板 2は担体 3はランタニドジフタロシアニン錯体のスポツ
ト である。
1 is a substrate, 2 is a carrier, and 3 is a spot of a lanthanide diphthalocyanine complex.

基体1は担体2を定まつた場所、状態に保持す
るためのもので、金属板、あるいはガラス板、あ
るいはフイルムよりできている。
The base 1 is for holding the carrier 2 in a fixed position and state, and is made of a metal plate, a glass plate, or a film.

担体2はランタニドジフタロシアニン錯体を保
持し、さらに弱酸性のふん囲気をつくるためのも
ので、多孔質のたとえば酸性シリカゲル層よりな
る。
The carrier 2 is for holding the lanthanide diphthalocyanine complex and creating a weakly acidic atmosphere, and is made of a porous layer of, for example, acidic silica gel.

ランタニドジフタロシアニン錯体3は担体2の
内部に保持される。製法としては、ランタニドジ
フタロシアニン錯体(中心金属として、ユーロピ
ウム、ルテチウム、イツテルビウムなどの原子番
号58〜71のランタニドが選ばれる。)のたとえば
クロロホルム溶液を担体2に滴下し、乾燥させる
ことによつて作られる。また別の製法として、第
2図で説明されている方法に従つて作られてもよ
い。すなわち前記の説明で作られたランタニドジ
フタロシアニン錯体のスポツトをたとえばクロロ
ホルムで展開し、展開されたランタニドジフタロ
シアニン錯体の部分を塩基性ガス検出素子とす
る。製作直後のランタニドジフタロシアニン錯体
のスポツトの色はクロロホルム溶液の色と同じ縁
であるが、酸性ふん囲気下のもとですみやかに赤
く変色し、後大気中で赤色のまま安定である。
The lanthanide diphthalocyanine complex 3 is retained inside the carrier 2. As a manufacturing method, for example, a chloroform solution of a lanthanide diphthalocyanine complex (a lanthanide having an atomic number of 58 to 71, such as europium, lutetium, or ytterbium is selected as the central metal) is dropped onto the carrier 2 and dried. Made. Alternatively, it may be made according to the method illustrated in FIG. That is, the spot of the lanthanide diphthalocyanine complex prepared as described above is developed with, for example, chloroform, and the developed part of the lanthanide diphthalocyanine complex is used as a basic gas detection element. The spot color of the lanthanide diphthalocyanine complex immediately after production is similar to the color of the chloroform solution, but it quickly turns red under an acidic atmosphere and remains stable as red in the atmosphere.

これらの塩基性ガス検出素子は大気中で赤色を
呈しているが、塩基性ガスに触れるとランタニド
ジフタロシアニン錯体の酸化体が還元されること
によつて緑に変色し、人間の眼で容易に識別でき
る。(この色変化は第2図で説明した方法に従つ
て作られた素子の方がすみやかに起こつた。)さ
らに、1度緑に変色した素子でも、それと塩化水
素ガスに触れさせることにより赤色の状態にもど
すことができ、再び塩基性ガス検出素子として使
用できる。また緑色をした素子を大気中に放置し
ておくだけでも赤色の状態にもどる。
These basic gas detection elements exhibit a red color in the atmosphere, but when exposed to basic gas, the oxidized form of the lanthanide diphthalocyanine complex is reduced, turning the color green, making it easily visible to the human eye. Can be identified. (This color change occurred more quickly in the element made according to the method explained in Figure 2.) Furthermore, even if the element had once turned green, it could be changed to red by contacting it with hydrogen chloride gas. It can be returned to its original state and used again as a basic gas detection element. Also, if a green element is left in the atmosphere, it will return to its red state.

以上の例にみられるように、本発明の塩基性ガ
ス検出素子は塩基性ガスの検出においてきわめて
簡単な手段を提供するものである。
As seen in the above examples, the basic gas detection element of the present invention provides an extremely simple means for detecting basic gases.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の塩基性ガス検出素子の断面
図、第2図は本発明の塩基性ガス検出素子の製造
方法の一例を示す図である。 1……基板、2……担体、3……ランタニドジ
フタロシアニン錯体、4……展開される前のスポ
ツト、5……展開されたあとのスポツト、6……
展開液。
FIG. 1 is a sectional view of a basic gas detection element of the present invention, and FIG. 2 is a diagram showing an example of a method for manufacturing the basic gas detection element of the present invention. 1... Substrate, 2... Carrier, 3... Lanthanide diphthalocyanine complex, 4... Spot before development, 5... Spot after development, 6...
Developing liquid.

Claims (1)

【特許請求の範囲】[Claims] 1 塩基性ガスの有無によつて色調が変化するラ
ンタニドジフタロシアニン錯体を酸性の担体に含
浸させてなることを特徴とする塩基性ガス検出素
子。
1. A basic gas detection element comprising an acidic carrier impregnated with a lanthanide diphthalocyanine complex whose color tone changes depending on the presence or absence of a basic gas.
JP17012280A 1980-12-02 1980-12-02 Detecting element for basic gas Granted JPS5793253A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17012280A JPS5793253A (en) 1980-12-02 1980-12-02 Detecting element for basic gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17012280A JPS5793253A (en) 1980-12-02 1980-12-02 Detecting element for basic gas

Publications (2)

Publication Number Publication Date
JPS5793253A JPS5793253A (en) 1982-06-10
JPH0254512B2 true JPH0254512B2 (en) 1990-11-21

Family

ID=15899043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17012280A Granted JPS5793253A (en) 1980-12-02 1980-12-02 Detecting element for basic gas

Country Status (1)

Country Link
JP (1) JPS5793253A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3506676A1 (en) * 1985-02-26 1986-08-28 Siemens AG, 1000 Berlin und 8000 München OPTICAL FILTER WITH REVERSIBLE COLOR CHANGE
DE3506686A1 (en) * 1985-02-26 1986-08-28 Siemens AG, 1000 Berlin und 8000 München CHEMICAL SENSITIVE COMPONENT
AU2924001A (en) * 1999-11-09 2001-06-06 Photonic Biosystems, Inc. Ammonia detection and measurement device
US7790113B2 (en) 2006-04-04 2010-09-07 Photonic Biosystems, Inc. Visual, continuous and simultaneous measurement of solution ammonia and hydrogen ion concentration

Also Published As

Publication number Publication date
JPS5793253A (en) 1982-06-10

Similar Documents

Publication Publication Date Title
Smichowski et al. Analytical methods for antimony speciation in waters at trace and ultratrace levels. A review
Custer et al. Spectrophotometric determination of microquantities of iodine
Kok et al. Chemiluminescent method for determination of hydrogen peroxide in the ambient atmosphere
Hammond et al. A diffusion monitor to measure exposure to passive smoking
Krochmal et al. A method of nitrogen dioxide and sulphur dioxide determination in ambient air by use of passive samplers and ion chromatography
US4772560A (en) Laminated wafer for sensing and monitoring exposure to gases
Altshuller et al. Spectrophotometric analysis of aldehydes in the Los Angeles atmosphere
Lipari et al. 2, 4-Dinitrophenylhydrazine-coated Florisil sampling cartridges for the determination of formaldehyde in air
Masi et al. Preconcentration and determination of Ce, La and Pr by X-ray fluorescence analysis, using Amberlite XAD resins loaded with 8-Quinolinol and 2-(2-(5 chloropyridylazo)-5-dimethylamino)-phenol
US3843325A (en) Indicator for the detection of metal ions
Riley et al. The determination of thallium in sediments and natural waters
JP3054850B2 (en) Humidity detection method
Lodge Analysis of micron-sized particles
US4157895A (en) RIA reagents and processes
Fujiwara et al. Gas phase chemiluminescence with ozone oxidation for the determination of arsenic, antimony, tin, and selenium
JPH0254512B2 (en)
Dadfarnia et al. Extraction and membrane transport of metal ions by some synthetic 9, 10-anthraquinone and 9-anthrone derivatives. A selective system for calcium transport
AU2347984A (en) Drug abuse test indicator device and method of making same
JPH0254513B2 (en)
Hanker et al. Fluorometric method for estimation of cyanide
Swinnerton et al. Determination of Argon and Oxygen by Gas Chromatography.
Yoshimura et al. Ion-exchanger colorimetry—VIII Microdetermination of copper in natural waters
El-Shahawi et al. Qualitative, semi-quantitative and spectrophotometric determination of ruthenium (III) by solid-phase extraction with 3-hydroxy-2-methyl-1, 4-naphthoquinone-4-oxime-loaded polyurethane foam columns
Schrøder Complex formation with trivalent iron and N, N′-ethylene bis [2 (o-hydroxyphenyl)] glycine
Penner et al. Determination of copper in high-purity niobium, tantalum, molybdenum and tungsten metals with bathocuproïne