JPH025426B2 - - Google Patents

Info

Publication number
JPH025426B2
JPH025426B2 JP56173638A JP17363881A JPH025426B2 JP H025426 B2 JPH025426 B2 JP H025426B2 JP 56173638 A JP56173638 A JP 56173638A JP 17363881 A JP17363881 A JP 17363881A JP H025426 B2 JPH025426 B2 JP H025426B2
Authority
JP
Japan
Prior art keywords
tube
weight
styrene
chlorinated polyethylene
thermoplastic resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56173638A
Other languages
Japanese (ja)
Other versions
JPS5875554A (en
Inventor
Toshiaki Nakamaru
Shunji Ichikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Terumo Corp
Original Assignee
Terumo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Terumo Corp filed Critical Terumo Corp
Priority to JP56173638A priority Critical patent/JPS5875554A/en
Publication of JPS5875554A publication Critical patent/JPS5875554A/en
Publication of JPH025426B2 publication Critical patent/JPH025426B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Materials For Medical Uses (AREA)

Description

【発明の詳现な説明】 発明の背景 技術分野 本発明は、医甚チナヌブに関する。さらに詳し
くは、各皮医療甚具に甚いられるチナヌブの改良
に関する。 先行技術ずその問題点 埓来、医甚チナヌブずしおは、軟質ポリ塩化ビ
ニル補のものが汎甚されおおり、茞液、茞血管、
人工腎臓甚回路、カテヌテル等皮々の医療甚具に
甚いられおいる。 これは軟質ポリ塩化ビニルが、加工性、接着性
にすぐれ、医療甚具を組立おる䞊で取り扱いやす
い䞊、可塑剀を任意に配合できるため可ずう性の
調敎が容易であるからである。 しかし、軟質ポリ塩化ビニルに、可塑剀を含有
させ、これを医甚チナヌブに甚いるず、血液、薬
液等に可塑剀が溶出、移行する危険性がある。 埓来、可塑剀の移行防止のために、ポリ塩化ビ
ニルシヌトにプラズマ凊理を斜す技術が知られお
いる。しかし、このような技術は、チナヌブの内
面には、実甚的に適甚できない。 このため、医甚チナヌブを圢成する材質は、可
塑剀を含たないものにかえる必芁がある。 この堎合、可ずう性に富み、可塑剀を必芁ずし
ない材質ずしお、シリコヌンチナヌブ等のすぐれ
たもにが知られおいる。しかし、これらは、いず
れも抌出加工ができず、管状に圢成する䞊でコス
トが高くなり、たた、接着剀や高呚波溶融等によ
る接着ができず、二次加工もできず、各皮医療甚
具ぞの組立おがきわめお困難である。加えお、高
䟡である。 これに察し、各皮オレフむン系ポリマヌ補のチ
ナヌブも知られおいるが、これを医甚チナヌブず
しお甚いるずきには、やはり接着性に欠ける他、
可ずう性に劣り、曲がりぐせがずれず、たたチナ
ヌブ自䜓が屈曲に際し折れおしたい、液などの閉
塞が起぀おしたう。 発明の目的 本発明は、このような実状に鑑みなされたもの
であ぀お、その䞻たる目的は、埓来の軟質ポリ塩
化ビニル補の医甚チナヌブの特性、特に可ずう性
あるいは加工性、接着性等を同等以䞊なものずし
ながら、溶出物のない医甚チナヌブを提䟛するこ
ずにある。より具䜓的には、可塑剀等の添加剀を
含たず、溶出物がなく、しかも可ずう性にすぐ
れ、チナヌブ折れがきわめお少なく、倉圢埌の埩
元性にすぐれ、さらに抌出し加工可胜で、接着性
や二次加工性にもすぐれ、透明性も良奜である等
の、総合的にみおきわめお良奜な特性をも぀医甚
チナヌブを提䟛するこずである。 本発明者らは、このような目的に぀き鋭意研究
をくりかえした結果、本発明をなすに至぀たもの
である。 すなわち本発明は、塩玠含量が重量比で25〜45
の塩玠化ポリ゚チレンず、䜎密床ポリ゚チレ
ン、スチレン−ブタゞ゚ンランダム共重合䜓、ス
チレン−ブタゞ゚ンブロツク共重合䜓、スチレン
−ブタゞ゚ンテレブロツク共重合䜓および酢酞ビ
ニル含有量30wt以䞋の゚チレン−酢酞ビニル
共重合䜓から遞ばれた少なくずも぀の熱可塑性
暹脂ずのブレンドポリマヌを管状に成圢しおなる
医甚チナヌブであ぀お、 塩玠化ポリ゚チレン100重量郚あたり10〜50重
量郚の前蚘熱可塑性暹脂を配合しおなり、実質的
に添加剀を含たず、しかも初期匟性率がKgmm2
以䞋で、か぀垞枩に比しお℃での折れの生ずる
曲率が倉化しない物性であるこずを特城ずする医
甚チナヌブである。 発明の具䜓的構成 以䞋、本発明の具䜓的構成に぀いお詳现に説明
する。 本発明の医甚チナヌブは塩玠化ポリ゚チレンず
その他の熱可塑性暹脂ずのブレンドポリマヌから
なる。 ブレンドに甚いる塩玠化ポリ゚チレンは、特
に、䞭密床ないし高密床のポリ゚チレンを垞法に
埓い塩玠化したものであり、塩玠は、ポリ゚チレ
ン鎖䞊にランダムに結合し、その塩玠化床、すな
わち塩玠含量ずしおは、重量比で、25〜45、よ
り奜たしくは30〜40である。 このような塩玠含量では、軟質ポリ塩化ビニル
ず比范しお、可ずう性が䞀局向䞊し、チナヌブ折
れが栌段ず枛少し、たた倉圢埌の埩元性が栌段ず
向䞊する。たた、䜎枩での可ずう性や耐衝撃性も
軟質ポリ塩化ビニルず比范しお栌段ず向䞊する。 たた、甚いる塩玠化ポリ゚チレンの分子量ずし
おは、特に制限はないが、数平均分子量で、抂ね
䞇〜30䞇皋床のものを甚いればよい。 たた、その分垃にも特に制限はない。 さらに、密床ずしおは、通垞、1.00〜1.25皋床
のものを甚いればよい。 他方、ブレンドに甚いる塩玠化ポリ゚チレン以
倖の他の熱可塑性暹脂ずしおは、皮々のものを
皮たたはそれ以䞊甚いるこずができる。 このうち、ポリオレフむン、オレフむン共重合
䜓およびスチレン共重合䜓は、ここにいう、他の
熱可塑性暹脂ずしお、特に奜適である。これは、
これらの皮たたはそれ以䞊を、前蚘塩玠化ポリ
゚チレンずブレンドしたずき、可ずう性および透
明性の点で、きわめお奜たしい特性が埗られるか
らである。 このような暹脂のうち、特に奜適な具䜓䟋を瀺
せば、以䞋のようなものがある。 (A) 䜎密床ポリ゚チレン、このうち特にリニダ䜎
密床ポリ゚チレンLLDPE。 密床は0.915〜0.940、ASTM −1238にも
ずづくメルト・むンデツクス10分以䞋の
ものは特に奜たしい。 (B) ゚チレン−酢酞ビニル共重合䜓EVA 酢酞ビニルVA含有量30wt以䞋、特に
〜25wt、密床0.915〜0.95、数平均分子量
䞇〜20䞇、メルト・むンデツクス10分
以䞋のものが特に奜たしい。 (C) スチレン共重合䜓、特にスチレン−ブタゞ゚
ン共重合䜓  スチレン−ブタゞ゚ンランダム共重合䜓
SBR スチレン含有量20〜40皋床、数平均分子
量20䞇皋床、ムヌニヌ粘床20〜60皋床のもの
が特に奜たしい。  スチレン−ブタゞ゚ンブロツク共重合䜓
SB ゜フトセグメントずしお、ポリブタゞ゚ン
およびポリむ゜プレンからなり、これずブロ
ツク共重合し、しかも末端に存圚するポリス
チレンハヌドセグメントからなるもの。 この堎合、密床0.94〜0.95、メルト・むン
デツクス10分以䞋のものが奜たしい。  スチレン−ブタゞ゚ンテレブロツク共重合
䜓SBS ゜フトセグメントずしお、ポリブタゞ゚
ン、ポリむ゜プレンおよびポリオレフむンか
らなり、これずブロツク共重合し、しかも䞡
末端に存圚するポリスチレンハヌドセグメン
トからなるもの。この堎合、密床0.90〜
0.94、メルト・むンデツクス1010分以䞋
のものが奜たしい。 このようなブレンドされる塩玠化ポリ゚チレン
以倖の他の熱可塑性暹脂は、ブレンドポリマヌの
透明性の点から、その屈折率が抂ね1.48〜1.52繋
床であるこずが奜たしい。このような塩玠化ポリ
゚チレンず、他の熱可塑性暹脂ずのブレンド配合
比は、塩玠化ポリ゚チレン100重量郚あたり、熱
可塑性暹脂10〜50重量郚ずするこずが奜たしい。 10〜50重量郚ずなるず、可ずう性や䜎枩特性が
良奜ずなる。 この堎合、配合比が、塩玠化ポリ゚チレン100
重量郚あたり、〜100重量郚、より奜たしくは
10〜50重量郚ずなるず、可ずう性や䜎枩特性はさ
らに良奜ずなる。 そしお、このような配合比で、垞法に埓いブレ
ンドされお、ブレンドポリマヌずされる。 このような塩玠化ポリ゚チレンず、その他の熱
可塑性暹脂からなるブレンドポリマヌは、成圢さ
れお管状のチナヌブをなす。 この堎合、成圢されたチナヌブの初期匟性率は
Kgmm2以䞋である。 ここに、初期匟性率は、倉圢−応力曲線の倉
圢量埮小範囲の立䞊り郚においお、JIS  7113
に埓い、・△・〔ここに、は印
加荷重Kg、は圓初の長さmm、△は䌞び
mm、は断面積mm2である〕によ぀お算出さ
れる。 そしお、初期匟性率がKgmm2以䞋ずなるず、
可ずう性が栌段ず向䞊し、チナヌブ折れが枛少
し、埩元性が向䞊する。たた、䜎枩特性、特に䜎
枩での可ずう性ず耐衝撃性が向䞊する。この堎
合、初期匟性率は0.1〜4.0Kgmm2の範囲であるこ
ずが、可ずう性等の点でも぀ずも奜適である。 なお、Kgmm2以䞋の初期匟性率に調敎するに
は、塩玠化ポリ゚チレンの塩玠含有量や分子量や
結晶性、あるいは他の熱可塑性暹脂の皮類や配合
比等をかえ、容易にその条件を実隓的に求めるこ
ずができる。 さらに、チナヌブは透明性の点で、mm厚あた
り、500nにおける吞光床が、0.18〜0.65である
こずが奜たしい。 䞀方、成圢に際しおは、䞊蚘ブレンドポリマヌ
には、可塑剀等の添加剀を添加する必芁がない。
このため、チナヌブ内壁からの溶出はほずんどな
い。 他方、成圢は、通垞の抌出し加工によ぀お行う
こずができる。このため、成圢加工はきわめお容
易ずなり、コストは䜎くなる。この堎合、抌出し
成圢機䞭のスクリナヌでドラむブレンドを行え
ば、補造はより容易ずなる。 このように成圢されるチナヌブは、通垞、内埄
〜20mm皋床、たた肉厚0.3〜3.5mm皋床ずされ
る。そしお、このような寞法においお、きわめお
良奜な可ずう性を瀺すものである。 なお、その断面圢状、寞法等は皮々のものずす
るこずができる。 このような本発明の医甚チナヌブは、茞液セツ
トや茞血セツト等の連結管、透析装眮や人工腎臓
等の各皮䜓倖埪環回路䞭の䜓液ないし血液回路甚
チナヌブ、各皮留眮針甚チナヌブ、各皮カテヌテ
ル等、さらには呌吞回路甚チナヌブ等ずしお甚い
られる。 そしお、これらの各皮医療甚具は、本発明の医
甚チナヌブを所定の配眮で他の構成郚品ず高呚波
接着したりしお、たたその他の所望の次加工を
したりしお、組立おられる。 発明の具䜓的効果 本発明の医甚チナヌブは、塩玠化ポリ゚チレン
ず、他の熱可塑性暹脂ずのブレンドポリマヌから
なり、ポリ塩化ビニルのように可塑剀等の添加剀
の添加を必芁ずしないので、内壁から䜓液、血
液、薬液等ぞの溶出がきわめお少ない。 たた、軟質ポリ塩化ビニルよりもすぐれた可ず
う性を瀺す。すなわち、チナヌブ折れはきわめお
少なく、チナヌブ折れの生じる曲げ曲率半埄はポ
リ塩化ビニルず比范しおきわめお小さい。たた、
倉圢に察する埩元性も良奜で、䟋えば、クレンメ
で挟窄したようなずき、挟窄開陀埌、盎ちに埩元
し、たた挟窄に察する远随性、抵抗性ずも良奜
で、ポリ塩化ビニルず比范しお、定流量性にすぐ
れおいる。 さらには、䜎枩にお、長期間保存したようなず
き、あるいは䜎枩時においお、ポリ塩化ビニルは
可ずう性が䜎䞋するが、本発明のチナヌブは、折
れも少なく、定流量性も良奜であり、たた耐衝撃
性も高い。 そしお、このような可ずう性および䜎枩特性
は、塩玠化ポリ゚チレン単独䜓よりも良奜であ
る。 加えお、滅菌凊理ずしお、゚チレンオキサむド
ガス滅菌を行぀たずき、可塑剀等の添加剀を含た
ないこずから、滅菌埌吞着された゚チレンオキサ
むドガスの脱ガス速床が、軟質ポリ塩化ビニルに
比范しお速い。 たた、γ−線滅菌に察しお、抵抗性があり、そ
の物性に倉化はない。 さらに、抌し出し加工を良奜に行うこずがで
き、補造が容易であり、しかも高呚波誘電加熱や
接着剀による接着が可胜で、接着加工が容易であ
り、加えお医療甚具に組立おる際の各皮次加工
も容易に行うこずができる。 そしお、塩玠含量30〜40の塩玠化ポリ゚チレ
ンを甚いれば、䞊蚘の可ずう性はより䞀局良奜ず
なる。 ブレンドされる他の熱可塑性暹脂の屈折率が
1.48〜1.52皋床であり、チナヌブの500nにおけ
る吞光床が、mm厚あたり、0.18〜0.65ずなるた
め、血液チナヌブずしお取り扱う堎合透明性が良
奜である。 さらに、チナヌブ内埄〜15mmにおいおは、折
れおよび定流量性の改善効果が顕著である。 本発明者らは、本発明の効果を確認するため、
皮々実隓を行぀た。以䞋にその䟋を瀺す。 実隓䟋  数平均分子量10䞇、密床0.95の高密床ポリ゚チ
レンの塩玠化を行い、塩玠含量30、密床1.13の
塩玠化ポリ゚チレンPE−Clを埗た。 他方、他の熱可塑性暹脂ずしおは、前蚘SBS
゜フトセグメントポリブタゞ゚ン、ポリむ゜
プレン、ポリオレフむン、ハヌドセグメントポ
リスチレン、密床0.93、メルト・むンデツクス10
10分、を甚い、このPE−Cl察SBSの重量比
が8020になるように配合しお、抌し出し加工機
のホツパヌに投入し、スクリナヌシリンダヌ内で
130〜190℃におブレンドした埌、ダむから190℃
にお、内埄mm、倖埄mmの連続管状に抌し出
し、本発明のチナヌブを䜜補した。 これずは別に、先のPE−Cl単独から、同様に
同䞀寞法のチナヌブを䜜補した。 さらに、可塑剀、安定剀を含む軟質ポリ塩化ビ
ニルPVC日本れオン瀟補 103EPから、
同じく抌し出し加工により、同䞀寞法のチナヌブ
を䜜補した。 たた、酢酞ビニル含有量15wtの゚チレン−
酢酞ビニル共重合䜓EVA東掋曹達工業瀟補
UE−630から、同様に、同䞀寞法のチナヌブを
䜜成した。 これら皮のチナヌブに぀き、JIS  7113に
埓い、初期匟性率を枬定した。結果を衚に瀺
す。 なお、衚䞭には、皮のチナヌブの500n
における、mm厚の吞光床が瀺される。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to medical tubes. More specifically, the present invention relates to improvements in tubes used in various medical devices. Prior art and its problems Traditionally, medical tubes made of soft polyvinyl chloride have been widely used, and are used for infusions, transfusion vessels,
It is used in various medical devices such as artificial kidney circuits and catheters. This is because soft polyvinyl chloride has excellent processability and adhesive properties, is easy to handle when assembling medical devices, and can be mixed with a plasticizer arbitrarily, making it easy to adjust flexibility. However, if soft polyvinyl chloride contains a plasticizer and is used in a medical tube, there is a risk that the plasticizer will elute and migrate into blood, medical solutions, and the like. Conventionally, a technique is known in which a polyvinyl chloride sheet is subjected to plasma treatment in order to prevent plasticizer migration. However, such techniques cannot be practically applied to the inner surface of the tube. Therefore, the material forming the medical tube must be changed to one that does not contain plasticizers. In this case, excellent materials such as silicone tubes are known as materials that are highly flexible and do not require plasticizers. However, none of these materials can be extruded, resulting in high costs when formed into a tubular shape. Furthermore, they cannot be bonded with adhesives or high-frequency melting, and cannot be subjected to secondary processing, making them difficult to manufacture into various medical devices. Extremely difficult to assemble. In addition, it is expensive. On the other hand, tubes made of various olefin polymers are also known, but when used as medical tubes, they still lack adhesive properties and
It has poor flexibility and cannot be bent easily, and the tube itself may break when bent, resulting in blockage of liquid or the like. Purpose of the Invention The present invention was made in view of the above-mentioned circumstances, and its main purpose is to improve the characteristics of conventional medical tubes made of flexible polyvinyl chloride, particularly flexibility, workability, adhesiveness, etc. The object of the present invention is to provide a medical tube that is equivalent to or better than that and is free from eluates. More specifically, it does not contain additives such as plasticizers, has no eluates, has excellent flexibility, has very little tube bending, has excellent recovery properties after deformation, can be extruded, and has good adhesive properties. It is an object of the present invention to provide a medical tube having extremely good properties overall, such as excellent secondary processability and good transparency. The inventors of the present invention have repeatedly and diligently researched for this purpose, and as a result, they have arrived at the present invention. That is, in the present invention, the chlorine content is 25 to 45 by weight.
% chlorinated polyethylene, low density polyethylene, styrene-butadiene random copolymer, styrene-butadiene block copolymer, styrene-butadiene teleblock copolymer, and ethylene-vinyl acetate copolymer with a vinyl acetate content of 30 wt% or less A medical tube formed by molding a blended polymer with at least one thermoplastic resin selected from the above into a tubular shape, wherein the thermoplastic resin is blended in an amount of 10 to 50 parts by weight per 100 parts by weight of chlorinated polyethylene. , contains virtually no additives, and has an initial elastic modulus of 5Kg/mm 2
The medical tube is characterized in that the curvature at which bending occurs at 0° C. does not change compared to room temperature. Specific Configuration of the Invention The specific configuration of the present invention will be described in detail below. The medical tube of the present invention is made of a polymer blend of chlorinated polyethylene and other thermoplastic resins. The chlorinated polyethylene used in the blend is particularly medium-density to high-density polyethylene that has been chlorinated according to a conventional method. Chlorine is bonded randomly on the polyethylene chain, and the degree of chlorination, that is, the chlorine content, is , in terms of weight ratio, is 25 to 45%, more preferably 30 to 40%. With such a chlorine content, compared to soft polyvinyl chloride, flexibility is further improved, tube bending is significantly reduced, and recovery after deformation is significantly improved. Furthermore, the flexibility and impact resistance at low temperatures are significantly improved compared to soft polyvinyl chloride. The molecular weight of the chlorinated polyethylene used is not particularly limited, but a number average molecular weight of approximately 40,000 to 300,000 may be used. Moreover, there is no particular restriction on its distribution. Further, the density may normally be about 1.00 to 1.25. On the other hand, various thermoplastic resins other than chlorinated polyethylene can be used for blending.
Seeds or more can be used. Among these, polyolefins, olefin copolymers, and styrene copolymers are particularly suitable as the other thermoplastic resins referred to herein. this is,
This is because when one or more of these is blended with the chlorinated polyethylene, extremely favorable properties can be obtained in terms of flexibility and transparency. Among these resins, particularly preferred specific examples include the following. (A) Low-density polyethylene, especially linear low-density polyethylene (LLDPE). Particularly preferred are those having a density of 0.915 to 0.940 and a melt index of 5 g/10 minutes or less based on ASTM D-1238. (B) Ethylene-vinyl acetate copolymer (EVA) Vinyl acetate (VA) content 30wt% or less, especially 5-25wt%, density 0.915-0.95, number average molecular weight 50,000-200,000, melt index 7g/10 Particularly preferred are those of less than 1 minute. (C) Styrene copolymer, especially styrene-butadiene copolymer 1 Styrene-butadiene random copolymer (SBR) Styrene content of about 20-40%, number average molecular weight of about 200,000, Mooney viscosity of about 20-60 is particularly preferred. 2. Styrene-butadiene block copolymer (SB) A soft segment consisting of polybutadiene and polyisoprene, which is block copolymerized with the polybutadiene and a polystyrene hard segment present at the end. In this case, it is preferable to have a density of 0.94 to 0.95 and a melt index of 5 g/10 minutes or less. 3 Styrene-butadiene teleblock copolymer (SBS) A soft segment consisting of polybutadiene, polyisoprene and polyolefin, block copolymerized with these, and polystyrene hard segments present at both ends. In this case, density 0.90 ~
0.94, a melt index of 10 g/10 minutes or less is preferred. The thermoplastic resin other than the chlorinated polyethylene to be blended preferably has a refractive index of about 1.48 to 1.52 from the viewpoint of transparency of the blended polymer. The blending ratio of such chlorinated polyethylene and other thermoplastic resin is preferably 10 to 50 parts by weight of the thermoplastic resin per 100 parts by weight of the chlorinated polyethylene. When the amount is 10 to 50 parts by weight, flexibility and low-temperature properties will be good. In this case, the blending ratio is 100% chlorinated polyethylene
per part by weight, 1 to 100 parts by weight, more preferably
When the amount is 10 to 50 parts by weight, the flexibility and low-temperature properties become even better. Then, they are blended according to a conventional method at such a blending ratio to form a blended polymer. A blended polymer made of such chlorinated polyethylene and other thermoplastic resin is molded into a tubular tube. In this case, the initial elastic modulus of the molded tube is 5 Kg/mm 2 or less. Here, the initial elastic modulus G is determined by JIS K 7113 at the rising edge of the deformation-stress curve in the small deformation range.
Accordingly, G = W・l/△l・A [where W is the applied load (Kg), l is the initial length (mm), △l is the elongation (mm), and A is the cross-sectional area (mm 2 ) ]. And when the initial elastic modulus is 5Kg/ mm2 or less,
Flexibility is greatly improved, tube bending is reduced, and recovery is improved. In addition, low-temperature properties, especially flexibility and impact resistance at low temperatures, are improved. In this case, it is preferable that the initial elastic modulus is in the range of 0.1 to 4.0 Kg/mm 2 from the viewpoint of flexibility and the like. In addition, in order to adjust the initial elastic modulus to 5 kg/mm2 or less , the conditions can be easily adjusted by changing the chlorine content, molecular weight, crystallinity of chlorinated polyethylene, or the type and blending ratio of other thermoplastic resins. It can be determined experimentally. Furthermore, from the viewpoint of transparency, the tube preferably has an absorbance of 0.18 to 0.65 at 500 nm per 1 mm thickness. On the other hand, during molding, there is no need to add additives such as plasticizers to the blended polymer.
Therefore, there is almost no elution from the inner wall of the tube. On the other hand, shaping can be carried out by conventional extrusion processing. Therefore, the molding process becomes extremely easy and the cost becomes low. In this case, production becomes easier if dry blending is performed using a screw in an extruder. The tube formed in this way usually has an inner diameter of about 1 to 20 mm and a wall thickness of about 0.3 to 3.5 mm. In addition, it exhibits extremely good flexibility in such dimensions. Note that its cross-sectional shape, dimensions, etc. can be varied. Such medical tubes of the present invention can be used for connection tubes such as infusion sets and blood transfusion sets, tubes for body fluids or blood circuits in various extracorporeal circulation circuits such as dialysis machines and artificial kidneys, tubes for various indwelling needles, various catheters, etc. Furthermore, it is used as a tube for a breathing circuit, etc. These various medical devices are assembled by high-frequency bonding the medical tube of the present invention to other components in a predetermined arrangement, or by performing other desired secondary processing. Specific Effects of the Invention The medical tube of the present invention is made of a blend polymer of chlorinated polyethylene and other thermoplastic resin, and unlike polyvinyl chloride, it does not require the addition of additives such as plasticizers. Very little elution into body fluids, blood, drug solutions, etc. It also exhibits better flexibility than soft polyvinyl chloride. That is, tube bending is extremely rare, and the bending radius of curvature at which tube bending occurs is extremely small compared to polyvinyl chloride. Also,
Restoration properties against deformation are also good; for example, when an incision is caused by a crevice, it restores immediately after the incision is removed, and it also has good followability and resistance to incision, and is more stable than polyvinyl chloride. Excellent flowability. Furthermore, when stored at low temperatures for a long period of time or at low temperatures, polyvinyl chloride loses its flexibility, but the tube of the present invention has less bending and has good constant flow properties. It also has high impact resistance. Such flexibility and low-temperature properties are better than that of chlorinated polyethylene alone. In addition, when performing ethylene oxide gas sterilization as a sterilization process, the degassing rate of the ethylene oxide gas adsorbed after sterilization is lower than that of soft polyvinyl chloride because it does not contain additives such as plasticizers. fast. Furthermore, it is resistant to γ-ray sterilization, and its physical properties remain unchanged. In addition, extrusion processing can be performed well, manufacturing is easy, high-frequency dielectric heating and adhesive bonding are possible, and bonding processing is easy.In addition, various secondary processing when assembling into medical devices is possible. can also be easily done. If chlorinated polyethylene with a chlorine content of 30 to 40% is used, the above flexibility will be even better. The refractive index of the other thermoplastic resin to be blended is
Since the absorbance of the tube at 500 nm is 0.18 to 0.65 per 1 mm thickness, the tube has good transparency when handled as a blood tube. Furthermore, when the tube inner diameter is 2 to 15 mm, the effect of improving bending and constant flow properties is remarkable. In order to confirm the effects of the present invention, the present inventors
Various experiments were conducted. An example is shown below. Experimental Example 1 High-density polyethylene with a number average molecular weight of 100,000 and a density of 0.95 was chlorinated to obtain chlorinated polyethylene (PE-Cl) with a chlorine content of 30% and a density of 1.13. On the other hand, as other thermoplastic resins, the above-mentioned SBS
(Soft segment: polybutadiene, polyisoprene, polyolefin, hard segment: polystyrene, density 0.93, melt index 10
g/10 minutes), the PE-Cl to SBS weight ratio was 80:20, and the mixture was put into the hopper of the extrusion machine and extruded in the screw cylinder.
After blending at 130-190℃, the temperature is 190℃ from the die.
The tube of the present invention was produced by extruding it into a continuous tube having an inner diameter of 3 mm and an outer diameter of 4 mm. Separately, a tube with the same dimensions was similarly prepared from PE-Cl alone. Furthermore, from soft polyvinyl chloride (PVC; Nippon Zeon Co., Ltd. 103EP) containing plasticizers and stabilizers,
Tubes with the same dimensions were also produced by extrusion. In addition, ethylene with a vinyl acetate content of 15wt%
Vinyl acetate copolymer (EVA; manufactured by Toyo Soda Kogyo Co., Ltd.)
Similarly, a tube with the same dimensions was made from UE-630). The initial elastic modulus G of these four types of tubes was measured according to JIS K 7113. The results are shown in Table 1. In addition, in Table 1, the 500 nm wavelength of four types of tubes is
The absorbance of 1 mm thickness is shown.

【衚】 さらに、これら皮のチナヌブの溶出物詊隓を
行぀た。 すなわち、チナヌブ15をずり、现片ずし、氎
箄150mlで30分間煮沞したのち、氎を加えお150ml
ずし、これを詊隓液ずした。 この詊隓液10mlに、0.01N過マンガン酞カリり
ム液20mlず垌硫酞1.0mlを加え、分間煮沞埌冷
华し、これにペり化カリりム0.1ずデンプン詊
液滎ずを加え、0.01Nチオ硫酞ナトリりム液で
滎定した。 ブランク詊隓ずの過マンガン酞カリりム液の消
費量の差にお瀺す還元性物質溶出量△
KMnO4を衚に瀺す。 たた、詊隓液にKClを加え、局方に埓぀おPH枬
定を行぀たずころ、衚に瀺されるブランクずの
差△PHが埗られた。 さらに、これらチナヌブ0.5を甚い、ルヌプ
状ずし、牛血をみたし、時間振ずうし、溶血詊
隓を行぀た。溶血の発生を衚䞭および−で瀺
す。
[Table] Furthermore, eluate tests for these four tubes were conducted. In other words, take 15g of the tube, cut it into small pieces, boil it in about 150ml of water for 30 minutes, then add water to make 150ml.
This was used as the test solution. To 10 ml of this test solution, add 20 ml of 0.01N potassium permanganate solution and 1.0 ml of dilute sulfuric acid, boil for 3 minutes, cool, add 0.1 g of potassium iodide and 5 drops of starch test solution, and add 0.01N sodium thiosulfate. Titrated with liquid. The amount of reducing substances eluted (△
KMnO 4 ) is shown in Table 2. In addition, when KCl was added to the test solution and PH was measured according to the pharmacopoeia, the difference (△PH) from the blank shown in Table 2 was obtained. Furthermore, these 0.5 m tubes were made into a loop shape, filled with bovine blood, and shaken for 1 hour to perform a hemolysis test. The occurrence of hemolysis is indicated by + and - in the table.

【衚】 衚に瀺される結果から、本発明のチナヌブは
溶血量がきわめお少ないこずがわかる。 これずは別に、䞋蚘のような可ずう性詊隓を行
぀た。 たず、皮のチナヌブに぀き、これを各皮の埄
を有する円柱䞊に巻き぀け、折れの生じる曲率半
埄を枬定した。℃および20℃における枬定結果
を衚に瀺す。 たた、チナヌブを長ずし、䞀方端にチダン
バヌずびん針をずり぀け、他端にゎム管ずタコ管
ずを介し針をずり぀け、チナヌブ䞭倮にロヌラヌ
クレンメを付した。このチナヌブに、600mmH2O
にお、氎道氎を流し、ロヌラヌクレンメにより、
流量を玄ml分に調節し、流し始めの流量Q0
に察する、30分埌の流量Q1を枬定し、定流量性
を評䟡した。結果を衚に瀺す。
[Table] From the results shown in Table 2, it can be seen that the tube of the present invention has an extremely small amount of hemolysis. Separately, the following flexibility test was conducted. First, four types of tubes were wound around cylinders having various diameters, and the radius of curvature at which bending occurred was measured. Table 3 shows the measurement results at 0°C and 20°C. Further, the tube was made 1 m long, a chamber and a bottle needle were attached to one end, a needle was attached to the other end via a rubber tube and an octopus tube, and a roller crease was attached to the center of the tube. In this tube, 600mmH 2 O
, run tap water and use a roller cleanser.
Adjust the flow rate to approximately 5 ml/min, and set the flow rate at the beginning of the flow to Q 0.
Flow rate Q 1 after 30 minutes was measured to evaluate constant flow performance. The results are shown in Table 3.

【衚】 衚の結果から、本発明のチナヌブは、きわめ
お可ずう性ず䜎枩特性にすぐれおいるこずがわか
る。 さらに、これらずは別に、゚チレンオキサむド
ガス滅菌を行い、滅菌埌の゚チレンオキサむド残
存量を、ガスクロマトグラフ法にお枬定した。 結果を衚に瀺す。 たた、γ−線滅菌を行い、滅菌埌の䞊蚘△PHの
倉化率、過マンガン酞消費詊隓倀△KMnO4
の倉化率およびシペアヌ硬床の倉化量を枬定し
た。 結果を衚に瀺す。
[Table] From the results in Table 3, it can be seen that the tube of the present invention has extremely excellent flexibility and low-temperature properties. Furthermore, apart from these, ethylene oxide gas sterilization was performed, and the residual amount of ethylene oxide after sterilization was measured by gas chromatography. The results are shown in Table 4. In addition, γ-ray sterilization was performed, and the rate of change in the above △PH after sterilization, permanganate consumption test value (△KMnO 4 )
The rate of change in Shore D hardness and the amount of change in Shore D hardness were measured. The results are shown in Table 4.

【衚】 衚に瀺される結果から、本発明のチナヌブ
は、゚チレンオキサむドガスおよびγ−線滅菌盞
方に察し、きわめお高い適合性ないし耐性をも぀
おいるこずがわかる。この堎合、特に゚チレンオ
キサむド残存量ず、γ−線滅菌埌の△PHの倉化
は、塩玠化ポリ゚チレンを単独で甚いるずきよ
り、栌段ず良奜な結果を瀺す。 なお、特開昭56−23959号公報には、本発明ず
異なり、添加剀を含む塩玠化ポリ゚チレンのチナ
ヌブが蚘茉されおいる。しかし、同公報蚘茉の実
斜䟋のものを高枩高湿䞋に保存したずころ、チ
ナヌブが倉色した。 これに察し、本発明のものは党く吞光床に倉化
がなか぀た。 なお、同公報実斜䟋のものは塩玠化ポリ゚チ
レンポリ゚チレン分子量16䞇および䞇、塩玠
含量34100重量郚に、ステアリン酞カルシり
ムずステアリン酞亜鉛重量郚、ポリ゚チレンワ
ツクス0.15重量郚、゚ポキシド化倧豆油重量郚
ずからなるものである。 実隓䟋  䞋蚘衚に瀺されるように、PE−Clの塩玠含
有量ず、熱可塑性暹脂の皮類ず、ブレンド配合比
ずをかえ、初期匟性率の異なる各チナヌブを、実
隓䟋ず同様に、それず同䞀寞法にお䜜補した。 これら各チナヌブの特性を衚に瀺す。 なお、甚いたPE−Clの数平均分子量は10䞇〜
30䞇皋床ずした。たた、甚いた熱可塑性暹脂は䞋
蚘のずおりである。 SBS前蚘実隓䟋のずおり EVAVA含有量25wt、密床0.95 メルト・む
ンデツクス10分、平均分子量玄10侇 LLDPE密床0.92 メルト・むンデツクス
10分 SBRスチレン量玄30wt ムヌニヌ粘床40 SB密床0.94 メルト・むンデツクス2.610
分 なお、各チナヌブずも、△KMnO4、△PH
ならびに、゚チレンオキサむドガスおよびγ−線
滅菌埌の詊隓結果は、実斜䟋におけるずほが同
等であ぀た。
[Table] From the results shown in Table 4, it can be seen that the tube of the present invention has extremely high compatibility or resistance to ethylene oxide gas and gamma ray sterilization partners. In this case, in particular, the residual amount of ethylene oxide and the change in ΔPH after γ-ray sterilization show much better results than when chlorinated polyethylene is used alone. Note that, unlike the present invention, JP-A-56-23959 describes a chlorinated polyethylene tube containing additives. However, when the tube of Example 1 described in the same publication was stored under high temperature and high humidity, the tube changed color. In contrast, in the case of the present invention, there was no change in absorbance at all. In addition, Example 1 of the same publication contains 100 parts by weight of chlorinated polyethylene (polyethylene molecular weight 160,000 and 30,000, chlorine content 34%), 2 parts by weight of calcium stearate and zinc stearate, 0.15 parts by weight of polyethylene wax, and epoxide. It consists of 5 parts by weight of hydrogenated soybean oil. Experimental Example 2 As shown in Table 5 below, the chlorine content of PE-Cl, the type of thermoplastic resin, and the blending ratio were changed, and tubes with different initial elastic moduli were prepared in the same manner as in Experimental Example 1. , was manufactured with the same dimensions as that. Table 5 shows the characteristics of each of these tubes. The number average molecular weight of PE-Cl used was 100,000~
It was set at around 300,000. Moreover, the thermoplastic resin used is as follows. SBS: As in Experimental Example 1 above EVA: VA content 25wt%, density 0.95 Melt index 2g/10 min, average molecular weight approximately 100,000 LLDPE; Density 0.92 Melt index 4
g/10 min SBR; Styrene amount approx. 30 wt% Mooney viscosity 40 SB; Density 0.94 Melt index 2.6 g/10
In addition, for each tube, △(KMnO 4 ), △PH
In addition, the test results after ethylene oxide gas and γ-ray sterilization were almost the same as in Example 1.

【衚】 衚に瀺される結果から、塩玠化ポリ゚チレン
の塩玠含有量が25〜45ずなり、初期匟性率が
Kgmm2以䞋ずなるず、きわめおすぐれた可ずう性
ず䜎枩特性ずが瀺されるこずがわかる。
[Table] From the results shown in Table 5, the chlorine content of chlorinated polyethylene is 25 to 45%, and the initial elastic modulus is 5.
It can be seen that when it is less than Kg/mm 2 , extremely excellent flexibility and low-temperature properties are exhibited.

Claims (1)

【特蚱請求の範囲】  塩玠含量が重量比で25〜45の塩玠化ポリ゚
チレンず、䜎密床ポリ゚チレン、スチレン−ブタ
ゞ゚ンランダム共重合䜓、スチレン−ブタゞ゚ン
ブロツク共重合䜓、スチレン−ブタゞ゚ンテレブ
ロツク共重合䜓および酢酞ビニル含有量30wt
以䞋の゚チレン−酢酞ビニル共重合䜓から遞ばれ
た少なくずも぀の熱可塑性暹脂ずのブレンドポ
リマヌを管状に成圢しおなる医甚チナヌブであ぀
お、 塩玠化ポリ゚チレン100重量郚あたり10〜50重
量郚の前蚘熱可塑性暹脂を配合しおなり、実質的
に添加剀を含たず、しかも初期匟性率がKgmm2
以䞋で、か぀垞枩に比しお℃での折れの生ずる
曲率が倉化しない物性であるこずを特城ずする医
甚チナヌブ。  熱可塑性暹脂の屈折率が1.48〜1.52である特
蚱請求の範囲第項に蚘茉の医甚チナヌブ。  チナヌブの500nにおける吞光床が、mm
あたり、0.18〜0.65である特蚱請求の範囲第項
たたは第項に蚘茉の医甚チナヌブ。  チナヌブ内埄が〜20mmである特蚱請求の範
囲第項ないし第項のいずれかに蚘茉の医甚チ
ナヌブ。
[Scope of Claims] 1. Chlorinated polyethylene with a chlorine content of 25 to 45% by weight, low density polyethylene, styrene-butadiene random copolymer, styrene-butadiene block copolymer, styrene-butadiene teleblock copolymer Combined and vinyl acetate content 30wt%
A medical tube formed by molding a blended polymer with at least one thermoplastic resin selected from the following ethylene-vinyl acetate copolymers into a tubular shape, comprising 10 to 50 parts by weight of the above per 100 parts by weight of chlorinated polyethylene. Contains thermoplastic resin, contains virtually no additives, and has an initial elastic modulus of 5Kg/mm 2
A medical tube characterized in that the curvature at which a bend occurs does not change at 0° C. compared to room temperature. 2. The medical tube according to claim 1, wherein the thermoplastic resin has a refractive index of 1.48 to 1.52. 3 The absorbance of the tube at 500nm is 1mm
2. The medical tube according to claim 1 or 2, wherein the average diameter is 0.18 to 0.65. 4. The medical tube according to any one of claims 1 to 3, wherein the tube has an inner diameter of 1 to 20 mm.
JP56173638A 1981-10-29 1981-10-29 Medical tube Granted JPS5875554A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56173638A JPS5875554A (en) 1981-10-29 1981-10-29 Medical tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56173638A JPS5875554A (en) 1981-10-29 1981-10-29 Medical tube

Publications (2)

Publication Number Publication Date
JPS5875554A JPS5875554A (en) 1983-05-07
JPH025426B2 true JPH025426B2 (en) 1990-02-02

Family

ID=15964311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56173638A Granted JPS5875554A (en) 1981-10-29 1981-10-29 Medical tube

Country Status (1)

Country Link
JP (1) JPS5875554A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5623959A (en) * 1979-04-10 1981-03-06 Hoechst Ag Therapeutic device for liquid of extraaintestine
JPS573653A (en) * 1980-06-09 1982-01-09 Sumitomo Bakelite Co Medical tool in vinyl chloride group resin

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5623959A (en) * 1979-04-10 1981-03-06 Hoechst Ag Therapeutic device for liquid of extraaintestine
JPS573653A (en) * 1980-06-09 1982-01-09 Sumitomo Bakelite Co Medical tool in vinyl chloride group resin

Also Published As

Publication number Publication date
JPS5875554A (en) 1983-05-07

Similar Documents

Publication Publication Date Title
CA1155578A (en) Thermoplastic elastomeric block copolymer balloon-type catheters
JP5338315B2 (en) Catheter tube and catheter comprising the same
US6977105B1 (en) Multilayered tube and medical supply comprising multilayered tube
JP2550256B2 (en) Medical bag
JP5632226B2 (en) Medical multilayer tube and medical infusion bag
JPS5974153A (en) Resin composition
EP0969884B1 (en) Low modulus and autoclavable monolayer medical tubing
JPH11505188A (en) Medical tubes and assemblies
JPWO2009054524A1 (en) Balloon resin composition and balloon comprising the same
JPH025426B2 (en)
JP2005198858A (en) Multilayer tube for medical treatment
JPS5829338B2 (en) Resin composition for medical equipment construction
JP6106156B2 (en) Manufacturing method of medical multilayer tube
JP2003205033A (en) Base material for conveyance and preservation of medical solution
JP2007236782A (en) Medical tube
JPS5875553A (en) Medical tube
JP4754180B2 (en) Medical tube
JP2894793B2 (en) Platelet storage bag
JP3328367B2 (en) Antithrombotic catheter
JP2001252348A (en) Tube for medical treatment
JPH1170162A (en) Polymer material for production of medical equipment
JPS6254348B2 (en)
JPS5968362A (en) Thermoplastic resin composition
JPH02231139A (en) Composite film
KR20150136362A (en) Non-pvc hose for medical solution set