JPH0254161B2 - - Google Patents

Info

Publication number
JPH0254161B2
JPH0254161B2 JP187185A JP187185A JPH0254161B2 JP H0254161 B2 JPH0254161 B2 JP H0254161B2 JP 187185 A JP187185 A JP 187185A JP 187185 A JP187185 A JP 187185A JP H0254161 B2 JPH0254161 B2 JP H0254161B2
Authority
JP
Japan
Prior art keywords
rolling
width
slab
horizontal
rolling mill
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP187185A
Other languages
Japanese (ja)
Other versions
JPS61162201A (en
Inventor
Minoru Hirose
Katsumi Takada
Hajime Hashimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP187185A priority Critical patent/JPS61162201A/en
Publication of JPS61162201A publication Critical patent/JPS61162201A/en
Publication of JPH0254161B2 publication Critical patent/JPH0254161B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/02Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling heavy work, e.g. ingots, slabs, blooms, or billets, in which the cross-sectional form is unimportant ; Rolling combined with forging or pressing
    • B21B1/04Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling heavy work, e.g. ingots, slabs, blooms, or billets, in which the cross-sectional form is unimportant ; Rolling combined with forging or pressing in a continuous process

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metal Rolling (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(a) 産業上の利用分野 本発明は孔型ロールを有する竪型圧延機で金属
スラブを幅方向に圧延する熱間圧延方法に関する
もので、更に詳しくは金属スラブの熱間幅圧延時
に発生する局部的板厚増大部の水平圧延方法に関
するものである。 (b) 従来の技術 連続鋳造スラブの保有顕熱を利用し得る連続鋳
造工程と製品形状を作り出す圧延工程を直結する
プロセスを実現するためには、連続鋳造スラブの
幅と圧延工程が所望する鋼板の幅との差を一定の
範囲内に押えねばならないという基本的な問題が
ある。このため、連続鋳造スラブを幅方向に圧延
し、スラブ幅を変更することが行なわれている。 この金属スラブの幅方向圧延は孔型を有する竪
型圧延機でなされているが、幅方向圧下量を大き
くとつて幅変更量を大きくすると、鋳片断面はド
ツグボーンと呼ばれる局部的板厚増大部が発生す
る。この局部的板厚増大部が大きくなると、孔型
よりこの噛出しによる表面疵の発生や幅方向圧延
における圧延動力の増大を招く。このための熱間
幅圧下圧延法として、例えば特開昭55−117501号
公報に提示されている、幅圧延によつて生じた板
厚の局部的増大部のみを水平圧下圧延し、供給さ
れた金属スラブ厚と同じ厚さにし、再度孔型ロー
ルによる幅圧延を繰返し行なう金属スラブの幅圧
延方法がある。 (c) 発明が解決しようとする問題点 前記金属スラブの熱間幅圧延方法の特徴は、従
来の鋼塊を対象した分塊圧延法と異なり連続鋳造
スラブを対象としており、圧延時のロール接触弧
長と平均板幅の比、即ちロール間隙形状比が0.1
〜0.2と小さいこと、一回当りの繰返し幅圧下量
が200〜300mmと大きいことである。このため、幅
圧延時の竪ロールによる幅圧下力が幅中央部まで
伝播しないため、板幅両側端部に局部的な板厚増
大部が生じる。従来技術で提示されている様に、
該板厚増大部を金属スラブの元厚まで水平圧延す
る、いわゆるドツグボーンならし圧延を実施する
と該板厚増大部が板幅両側端部に発生しているた
め、一部は長手方向に延伸されるが一部は拘束さ
れない板幅方向に拡がる幅戻り現象が発生する。
従がつて、幅変更量は幅圧下量よりドツグボーン
ならし圧延による幅戻り量を差引いたものとな
り、幅変更効率、即ち幅変更量と圧下量の比は60
〜80%となる。また金属スラブの元幅から目標ス
ラブ幅の差である総幅圧下量に対して、ドツグボ
ーンならし圧延時の幅戻り量を考慮した実質の総
幅圧下量は1.3〜1.5倍になる。 更に、水平圧延機によるドツグボーンならし圧
延は同面積を有する矩形平板の圧延に比較して、
単に局部的な変形部分のみならず幅方向の中央部
位にまで大きな内部摩擦が発生するため2〜4倍
の大きな圧延負荷を必要とすること、また板幅両
側端部の板厚増大部位が長手方向に延伸する際に
幅方向の中央部位も長手方向に引張られる肉引け
現象により幅中央部に10〜20mm深さの窪みが発生
する。この窪み部位は圧延による圧縮応力は作用
せず、単なる引張り現象であるため、内部品質は
板幅両側端部の局部的な変形部位とは異なり内部
凝固組織は圧延による塑性加工を受けることなく
材質的に劣つたものとなる。 このため従来より連続鋳造工程と熱間圧延工程
を直結している幅圧延工程においては圧延能率を
阻害しないで、圧延負荷を軽減し、幅圧延時の中
央部位の窪みを小さくする金属スラブの熱間幅圧
延方法が強く望まれた。 本発明は上記問題点を解決する効果的な金属ス
ラブの熱間幅圧延方法を提供するものである。 (d) 問題点を解決するための手段 本発明の要旨とするところは水平圧延機の入出
側に竪型圧延機が串型に配設された熱間可逆式圧
延機において、竪型圧延機には孔型形状を有する
ロールを用い、水平圧延機にはフラツトロールを
用いて、被圧延材である金属スラブを目標厚・幅
寸法まで圧延するに際して、幅方向圧延によつて
発生した局部的板厚増大部位の水平圧下圧延時
に、該板厚増大部位の一部のみを圧延し、再度孔
型ロールによる幅方向圧延を繰返し行ない目標の
幅寸法を得た後、水平圧延機により目標の厚寸法
まで圧延することを特徴とする金属スラブの熱間
幅圧延方法にある。 (e) 作用 以下、本発明の作用を図面に依り説明する。第
2図aは幅圧下圧延機V1,V2のスタンド構成の
一例でカリバー付竪型ロール2と4のスタンド間
に水平ロール3が配設されている。金属スラブ1
は各ロール2,3,4間で可逆圧延される。第2
図b,c,dは圧延過程のスラブ断面形状を図示
したものである。即ち、第2図bに示す幅w0
厚h0の矩形断面形状を有する連続鋳造スラブは、
カリバー付竪型ロール2,4により、第2図cに
示すように板幅方向に圧下量Δw1の圧延を行なう
と、金属スラブの幅両側端部に局部的な板厚増大
部、いわゆるドツグボーン5が発生する。この局
部的板厚増大部が大きくなると、竪ロールの孔型
よりの噛出しによる表面疵の発生や幅方向圧延に
よる圧延動力の増大を招く。これらの要因が幅圧
延可能量を規制するため、第2図dに示す如く、
水平圧延機Hで局部的板厚増大部を水平圧下し、
該板厚h0+h+を他の板厚と同じ板厚h0まで至ら
しめ、再び板幅方向の幅圧延を行なつて板幅を減
少せしめていく、いわゆる第2図cと第2図dの
圧延過程を繰返す。この場合、第2図dに示す如
く金属スラブは板幅中央部に肉引け現象による窪
みを生じ板幅中央部が板幅端部よりh−薄い断面
形状となる。また、ドツグボーン部が幅方向に
Δw2拡がる、いわゆる幅戻り現象が生じる。尚、
この場合の幅変更率は(w0−w2)/(w0−w1
または(Δw1−Δw2)/Δw1となる。 本発明者等は上記の幅圧延法に対して、第2図
aに示すカリバー付竪型ロール2,4と水平ロー
ル3による構成下に於いて、幅方向圧延によつて
生じる局部的板厚増大部の尖頭部位のみを水平圧
延機により圧延し、これを繰返すことにより目標
の金属スラブ幅を得たのち、局部的板厚増大部位
を含む板厚方向の圧延を行ない所定の形状を得る
圧延法により、連続鋳造スラブ幅1800mm、厚280
mmの一定サイズよりスラブ幅(750〜1800)mm、
厚250mmの各種スラブ幅サイズを圧延した結果、
以下の知見を得た。 即ち、カリバー付竪型ロールの孔型よりの噛出
しによる金属スラブ表面疵は局部的板厚増大部位
の尖頭部のみを水平圧延機により圧延すれば噛出
し疵にならないこと、カリバー付竪型圧延機と水
平圧延機の圧延動力について調査した結果、竪型
圧延機の圧延動力は大差なく水平圧延機の圧延動
力は大幅に減少すること、また幅中央部の窪み深
さは幅方向圧延を完了して後の局部的板厚増大部
を含め厚み方向圧下することにより大幅に改善で
きることなどである。 第3図は幅方向圧延によつて生じる局部的板厚
増大部位を水平ロールで元厚まで厚み方向に圧下
せず、尖頭部位のみ圧下して、次パスの幅方向圧
下時の噛出し疵の発生の有無について調査したも
のである。即ち、水平ロールによる局部的板厚増
大部圧下量と次パスの幅方向圧下量は第3図に示
す噛出し疵の無発生領域内に設定し圧延をおこな
えばよい。 第4図はカリバー付竪型圧延機と水平圧延機の
圧延動力を連続鋳造スラブ幅から幅圧延仕上目標
スラブ幅を得る総幅圧下量との関係について図示
したものである。カリバー付竪型圧延機の圧延動
力は水平圧延機によるドツグボーンならしによつ
て発生する幅戻り量を再度幅方向に圧延するのに
要する圧延動力とドツグボーンならし圧延を実施
せずドツグボーン尖頭部位のみを圧延し、幅戻り
量を発生させず常にドツグボーン発生状態で圧延
することによる竪型ロールの孔型側壁への金属ス
ラブの接触による圧延動力の増加量は両者間で大
差のないこと、更に水平圧延機の圧延動力はドツ
グボーン尖頭部位のみ圧延し幅圧延完了後ドツグ
ボーン圧延を実施する場合、ドツグボーンならし
圧延に比較して大幅に軽減される。従がつて、カ
リバー付竪型圧延機と水平圧延機の両者の圧延動
力も改善される。 第5図は幅圧延によつてスラブ幅方向中央部に
発生する窪み深さを、連続鋳造スラブ幅から幅圧
延仕上目標スラブ幅を得る総幅圧下量との関係に
ついて図示したものである。水平圧延機によるド
ツグボーン尖頭部の圧延は幅中央部に肉引け現象
を発生させず、幅圧延完了後ドツグボーンを含む
厚み圧下を実施するため、幅圧延毎にドツグボー
ンならし圧延する場合に比較して幅中央部の窪み
は大幅に改善される。 本発明者等は、これらの知見により第2図aに
示すカリバー付竪型ロール2,4と水平ロール3
による構成下に於いて第1図aに示す如く幅圧下
量Δw1により発生する局部的板厚増大部位5を水
平ロールにより金属スラブの元厚h0まで厚み方向
に圧延せずに、第1図bに示す如く局部的板厚増
大部位の尖頭部位7にのみ水平圧下量Δh+を第
1図cに示す次パス幅圧下Δw3にて噛出し疵が発
生しない領域で加え、以後、第1図b,cの圧延
過程を繰返すことにより目標の板幅まで幅変更を
おこない、しかる後、水平圧延機により目標の厚
み寸法まで圧延する熱間幅圧延法を提案するもの
である。 (f) 実施例 次に本発明法の一実施例を示す。圧延条件は表
1に示す通りであり、V1−H−V2の3スタンド
リバース圧延方式で連続鋳造スラブ幅1800mm、厚
280mmから目標スラブ寸法750mm、厚250mmを製造
した例を以下に示す。
(a) Field of Industrial Application The present invention relates to a hot rolling method for rolling a metal slab in the width direction with a vertical rolling mill having slotted rolls. The present invention relates to a horizontal rolling method for a locally increased thickness section. (b) Conventional technology In order to realize a process that directly connects the continuous casting process that can utilize the sensible heat retained by the continuous casting slab to the rolling process that creates the product shape, it is necessary to adjust the width of the continuous casting slab and the rolling process to the desired steel plate. The basic problem is that the difference between the width of the For this reason, continuous casting slabs are rolled in the width direction to change the slab width. The rolling of this metal slab in the width direction is carried out using a vertical rolling mill with grooves, but when the amount of reduction in the width direction is increased and the amount of width change is increased, the cross section of the slab changes to a localized thickened area called a dog bone. occurs. When this locally increased thickness increases, surface flaws occur due to the bite from the hole and the rolling power increases during widthwise rolling. As a hot width reduction rolling method for this purpose, for example, as disclosed in JP-A-55-117501, only the locally increased part of the plate thickness caused by width rolling is horizontally reduced and supplied. There is a method of width rolling a metal slab in which the width is rolled to the same thickness as the metal slab and the width rolling is repeated again using grooved rolls. (c) Problems to be Solved by the Invention The feature of the hot width rolling method for metal slabs is that, unlike the conventional blooming method for steel ingots, it targets continuously cast slabs, and roll contact during rolling is The ratio of arc length to average plate width, that is, the roll gap shape ratio is 0.1
It is small at ~0.2, and the amount of repeated width reduction per one time is large at 200 to 300 mm. For this reason, the width reduction force by the vertical rolls during width rolling does not propagate to the center of the width, resulting in localized plate thickness increase portions at both ends of the plate width. As presented in the prior art,
When this thickened part is horizontally rolled to the original thickness of the metal slab, so-called dog-bone leveling rolling, the thickened part occurs at both ends of the plate width, so a part of it is stretched in the longitudinal direction. However, a width return phenomenon that spreads in the width direction of the plate occurs where some parts are not restrained.
Therefore, the width change amount is the width reduction amount minus the width return amount due to dogbone leveling rolling, and the width change efficiency, that is, the ratio of the width change amount and the reduction amount, is 60.
~80%. In addition, the actual total width reduction amount, which is the difference between the original width of the metal slab and the target slab width, is 1.3 to 1.5 times the actual total width reduction amount, taking into account the amount of width return during dogbone leveling rolling. Furthermore, dog-bone leveling rolling using a horizontal rolling mill is compared to rolling a rectangular flat plate with the same area.
Large internal friction occurs not only in locally deformed parts but also in the central part in the width direction, which requires a rolling load that is 2 to 4 times larger, and in addition, the parts where the plate thickness increases at both ends of the plate width are longitudinal. Due to the shrinkage phenomenon in which the center portion in the width direction is also pulled in the longitudinal direction when stretched in the width direction, a depression with a depth of 10 to 20 mm is generated in the center width portion. Compressive stress due to rolling does not act on this concave area, but is simply a tensile phenomenon, so the internal quality is different from local deformation areas at both ends of the plate width. It becomes inferior in quality. For this reason, conventionally, in the width rolling process where the continuous casting process and the hot rolling process are directly connected, the heat applied to the metal slab reduces the rolling load and reduces the depression in the center area during width rolling without impeding rolling efficiency. A width rolling method was strongly desired. The present invention provides an effective method for hot width rolling of metal slabs that solves the above problems. (d) Means for Solving Problems The gist of the present invention is to provide a hot reversible rolling mill in which a vertical rolling mill is arranged in a skewer shape on the entry and exit sides of a horizontal rolling mill. Rolls with a groove shape are used in the rolling mill, and flat rolls are used in the horizontal rolling mill to roll the metal slab, which is the material to be rolled, to the target thickness and width dimensions. During horizontal reduction rolling of the increased plate thickness area, only a part of the increased plate thickness area is rolled, and the target width is obtained by repeatedly rolling the area in the width direction using grooved rolls, and then the target thickness is reduced using a horizontal rolling machine. A method for hot width rolling of a metal slab characterized by rolling it to a dimension. (e) Effects The effects of the present invention will be explained below with reference to the drawings. FIG. 2a shows an example of the stand structure of the width reduction mills V 1 and V 2 , in which a horizontal roll 3 is disposed between the stands of vertical rolls 2 and 4 with calibers. metal slab 1
is reversibly rolled between each roll 2, 3, and 4. Second
Figures b, c, and d illustrate the cross-sectional shape of the slab during the rolling process. That is, the width w 0 shown in FIG. 2b,
A continuous casting slab with a rectangular cross-sectional shape of thickness h 0 is
When the vertical rolls 2 and 4 with calibers perform rolling with a reduction amount Δw 1 in the width direction of the metal slab as shown in FIG. 5 occurs. If this locally increased thickness increases, surface flaws may occur due to bite from the holes of the vertical rolls, and rolling power may increase due to width direction rolling. Since these factors regulate the width rolling amount, as shown in Fig. 2d,
Horizontally roll down the locally increased plate thickness using a horizontal rolling mill H,
The plate thickness h 0 +h+ is brought to the same plate thickness h 0 as the other plate thicknesses, and width rolling in the plate width direction is performed again to reduce the plate width, so-called Fig. 2 c and Fig. 2 d. Repeat the rolling process. In this case, as shown in FIG. 2d, the metal slab has a depression at the center of the width of the plate due to the shrinkage phenomenon, and the center of the width of the plate has a cross-sectional shape h-thinner than the ends of the width of the plate. Furthermore, a so-called width return phenomenon occurs in which the dogbone portion expands by Δw2 in the width direction. still,
In this case, the width change rate is (w 0 −w 2 )/(w 0 −w 1 )
Or (Δw 1 −Δw 2 )/Δw 1 . The present inventors have developed a method for the above-mentioned width rolling method, in which the local plate thickness caused by the width direction rolling is determined by the configuration of the vertical rolls 2 and 4 with calibers and the horizontal roll 3 shown in FIG. 2a. Only the peak portion of the increased portion is rolled using a horizontal rolling mill, and this process is repeated to obtain the target metal slab width. After that, rolling is performed in the thickness direction including the locally increased thickness portion to obtain the predetermined shape. Continuously cast slab width 1800mm, thickness 280mm by rolling method
Slab width (750~1800) mm, from a fixed size of mm,
As a result of rolling various slab width sizes with a thickness of 250 mm,
The following findings were obtained. In other words, metal slab surface flaws due to bite from the holes of a vertical roll with a caliber will not become bite defects if only the point at the locally increased thickness area is rolled using a horizontal rolling mill. As a result of investigating the rolling power of rolling mills and horizontal rolling mills, we found that the rolling power of vertical rolling mills is not much different, but the rolling power of horizontal rolling mills is significantly reduced. This can be significantly improved by reducing the thickness in the thickness direction, including the locally increased thickness area, after completion of the process. Figure 3 shows that the locally increased thickness caused by rolling in the width direction is not rolled down in the thickness direction to the original thickness with horizontal rolls, but only the pointed parts are rolled down, resulting in bite-out defects during rolling in the width direction in the next pass. This study investigated whether or not this occurs. That is, rolling can be carried out by setting the amount of reduction of the local thickness increase portion by the horizontal rolls and the amount of reduction in the width direction of the next pass within the area where no bite flaws occur as shown in FIG. FIG. 4 shows the relationship between the rolling power of the vertical rolling mill with a caliber and the horizontal rolling mill and the total width reduction amount for obtaining the width-rolled finished target slab width from the continuous casting slab width. The rolling power of a vertical rolling mill with a caliber is the rolling power required to re-roll in the width direction the amount of width return that occurs due to dogbone leveling by a horizontal rolling mill, and the rolling power required to roll again in the width direction due to dogbone leveling by a horizontal rolling mill. The amount of increase in rolling power due to the contact of the metal slab with the groove side wall of the vertical roll is not significantly different between the two, by rolling only with the dogbone generated without generating width return. The rolling power of the horizontal rolling mill is significantly reduced compared to dogbone leveling rolling when only the dogbone tip portion is rolled and dogbone rolling is performed after width rolling is completed. Accordingly, the rolling power of both the caliber-equipped vertical rolling mill and the horizontal rolling mill is improved. FIG. 5 illustrates the relationship between the depth of the depression generated in the central part of the slab in the width direction due to width rolling and the total width reduction amount for obtaining the target slab width after width rolling from the continuous casting slab width. Rolling of the dog bone point using a horizontal rolling mill does not cause thinning at the center of the width, and the thickness reduction including the dog bone is performed after width rolling is completed, compared to the case where dog bone leveling is performed after each width rolling. As a result, the depression at the center of the width is greatly improved. Based on these findings, the present inventors have developed the vertical rolls 2 and 4 with calibers and the horizontal roll 3 shown in FIG. 2a.
As shown in FIG . 1a , under the structure shown in FIG. As shown in Figure b, the horizontal reduction amount Δh+ is applied only to the peak part 7 of the locally increased thickness area in the area where bite-out flaws do not occur at the next pass width reduction Δw 3 shown in Figure 1c. We propose a hot width rolling method in which the width is changed to the target strip width by repeating the rolling processes shown in Figures 1b and 1c, and then the strip is rolled to the target thickness using a horizontal rolling mill. (f) Example Next, an example of the method of the present invention will be shown. The rolling conditions are as shown in Table 1, and the continuous casting slab was 1800 mm wide and thick using the 3-stand reverse rolling method of V 1 - H - V 2.
An example of manufacturing a target slab size of 750 mm and thickness of 250 mm from 280 mm is shown below.

【表】 同時に比較例として行つた従来圧延法は表2a
に圧延スケジユールを示すように、前記特開昭55
−117501号公報記載通りに圧延を行なつた。
[Table] Table 2a shows the conventional rolling method used as a comparative example.
As shown in the rolling schedule,
- Rolling was performed as described in Publication No. 117501.

【表】 これに対して本発明は表2bに圧延スケジユー
ルを示すように、水平圧延機で幅方向圧延により
発生したドツグボーンならし圧延を実施せずドツ
グボーンの尖頭部のみ圧延機をおこなつた。尚、
表2の( )値は幅戻り及び局部的板厚増大部等
を考慮した実圧下量を示す。表3の従来法と本発
明法の比較例より明らかな様に、カリバー付竪型
圧延機の圧延動力は大略同程度であるが、水平圧
延機の圧延動力は本発明法が大幅に軽減され、且
つ幅中央部の窪みは幅に改善される。また、先後
端部に発生する異形部も大幅に改善された。
[Table] On the other hand, in the present invention, as shown in the rolling schedule in Table 2b, rolling is performed only on the point of the dog bone without performing the leveling rolling of the dog bone generated by rolling in the width direction in the horizontal rolling mill. . still,
The values in parentheses in Table 2 indicate the actual reduction amount taking into account width reversal, local thickness increases, etc. As is clear from the comparative example of the conventional method and the present invention method in Table 3, the rolling power of the vertical rolling mill with a caliber is approximately the same, but the rolling power of the horizontal rolling mill is significantly reduced by the present method. , and the recess at the center of the width is improved in width. In addition, the irregularities that occur at the leading and trailing ends have also been significantly improved.

【表】【table】

【表】 (g) 効果 連続鋳造工程と熱間圧延工程を直結するプロセ
ス下における金属スラブの幅方向圧延における従
来法の圧延方法は水平圧延機の圧延動力や幅中央
部の窪みが大きい。これに対して本発明法による
と圧延時間を阻害することなく水平圧延機の圧延
動力の軽減が図れ、且つ幅中央部の窪みの改善が
図れるため金属スラブの内部品質も向上するなど
工業上非常に有益な効果がもたらされる。
[Table] (g) Effects The conventional rolling method for rolling a metal slab in the width direction under a process that directly connects the continuous casting process and hot rolling process requires the rolling power of the horizontal rolling mill and the depression in the center of the width. On the other hand, according to the method of the present invention, it is possible to reduce the rolling power of the horizontal rolling mill without interfering with the rolling time, and also to improve the internal quality of the metal slab because it is possible to improve the depression in the center of the width. has a beneficial effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a,b,cは本発明方法による幅圧延過
程におけるスラブ幅方向断面の変化を示す説明
図、第2図aは本発明方法を実施する幅圧下圧延
機のスタンド構成の一例を示し、第2図b,c,
dは従来方法による幅圧延過程におけるスラブ幅
方向断面の変化を示す説明図、第3図は、本発明
方法を実施した際の噛出し疵の発生の有無を、幅
方向圧下量と水平ロール厚み設定量との関係で示
すグラフ、第4図はカリバー付竪型圧延機と水平
圧延機の圧延動力を、連続鋳造スラブ幅から幅圧
延仕上目標、スラブ幅を得る総幅圧下量との関係
について図示したグラフ、第5図は幅圧延によ
り、スラブの幅方向中央部に発生する窪み深さ
を、連続鋳造スラブ幅から幅圧延仕上目標スラブ
幅を得る総幅圧下量との関係について図示したグ
ラフである。
Figures 1a, b, and c are explanatory diagrams showing changes in the cross-section of the slab in the width direction during the width rolling process according to the method of the present invention, and Figure 2a shows an example of the stand configuration of a width reduction mill that implements the method of the present invention. , Figure 2 b, c,
d is an explanatory diagram showing changes in the cross section of the slab in the width direction during the width rolling process according to the conventional method, and FIG. The graph shown in Figure 4 shows the relationship between the rolling power of the vertical rolling mill with caliber and the horizontal rolling mill, and the relationship between the rolling power of the vertical rolling mill with a caliber and the horizontal rolling mill, and the width rolling finish target and the total width reduction amount to obtain the slab width from the continuous casting slab width. The illustrated graph, Figure 5, is a graph illustrating the relationship between the depth of the depression that occurs in the center of the width direction of the slab due to width rolling, and the total width reduction amount that obtains the width-rolled finished target slab width from the continuous casting slab width. It is.

Claims (1)

【特許請求の範囲】[Claims] 1 水平圧延機の入出側に竪型圧延機が串型に配
設された熱間可逆式圧延機において、竪型圧延機
には孔型形状を有するロールを用い、水平圧延機
にはフラツトロールを用いて、被圧延材である金
属スラブを目標厚・幅寸法まで圧延するに際し
て、幅方向圧延によつて発生した局部的板厚増大
部位の水平圧下圧延時に、該板厚増大部位の一部
のみを圧延し、再度孔型ロールによる幅方向圧延
を繰返し行ない目標の幅寸法を得た後、水平圧延
機により目標の厚寸法まで圧延することを特徴と
する金属スラブの熱間幅圧延方法。
1. In a hot reversible rolling mill in which a vertical rolling mill is arranged in a skewer shape on the entry and exit sides of a horizontal rolling mill, rolls with a groove shape are used in the vertical rolling mill, and flat rolls are used in the horizontal rolling mill. When rolling a metal slab, which is the material to be rolled, to the target thickness and width dimensions, when horizontal reduction rolling is performed on a locally increased thickness area caused by rolling in the width direction, a part of the area with increased thickness is rolled. 1. A method for hot width rolling of a metal slab, which comprises rolling the slab, repeatedly rolling it in the width direction using slotted rolls to obtain the target width dimension, and then rolling the slab to the target thickness dimension using a horizontal rolling mill.
JP187185A 1985-01-09 1985-01-09 Hot edging method of metallic slab Granted JPS61162201A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP187185A JPS61162201A (en) 1985-01-09 1985-01-09 Hot edging method of metallic slab

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP187185A JPS61162201A (en) 1985-01-09 1985-01-09 Hot edging method of metallic slab

Publications (2)

Publication Number Publication Date
JPS61162201A JPS61162201A (en) 1986-07-22
JPH0254161B2 true JPH0254161B2 (en) 1990-11-20

Family

ID=11513615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP187185A Granted JPS61162201A (en) 1985-01-09 1985-01-09 Hot edging method of metallic slab

Country Status (1)

Country Link
JP (1) JPS61162201A (en)

Also Published As

Publication number Publication date
JPS61162201A (en) 1986-07-22

Similar Documents

Publication Publication Date Title
US4086801A (en) H-shape metallic material rolling process
US8381384B2 (en) Shaped direct chill aluminum ingot
JPH0254161B2 (en)
JP2003010902A (en) Method for rough rolling h-section steel
JP3430819B2 (en) Box-hole type roll and rolling method for section steel
JPH0675722B2 (en) Hot width rolling method for metal slabs
JPH0254162B2 (en)
US8381385B2 (en) Shaped direct chill aluminum ingot
JP2529493B2 (en) Method for producing rough billet for H-section steel
US4295354A (en) Method for producing beam blank for large size H-beam from flat slab
JPH0675726B2 (en) Rolling method of shaped steel by asymmetrical profile box hole die
JPH0314521B2 (en)
JP2502235B2 (en) Rolling method for extra-thick steel plates with excellent internal quality
JPH01228606A (en) Method for hot edging of metal slab
JPH10277602A (en) Rolling line for rolling flat bar
JPH06254601A (en) Method for rolling unequal angle steel
RU2064350C1 (en) Method for manufacturing large-size grooved section
JPS5835763B2 (en) Method for producing dog-bone type rough-shaped steel pieces from flat slabs
JPH0141402B2 (en)
JPS6195703A (en) Method for hot rolling metallic slab in its width direction
JPH0547281B2 (en)
JPS6023881B2 (en) Method of forming rough shaped steel pieces
JPH07265902A (en) Forming method for shaped bloom
JPS5865501A (en) Rolling method for rough shape steel ingot for u-shaped steel sheet pile
JPH02179303A (en) Manufacture of thick steel sheet having discontinuous projections in length direction