JPH0254141B2 - - Google Patents

Info

Publication number
JPH0254141B2
JPH0254141B2 JP60130264A JP13026485A JPH0254141B2 JP H0254141 B2 JPH0254141 B2 JP H0254141B2 JP 60130264 A JP60130264 A JP 60130264A JP 13026485 A JP13026485 A JP 13026485A JP H0254141 B2 JPH0254141 B2 JP H0254141B2
Authority
JP
Japan
Prior art keywords
adsorption
adsorbed
gas
adsorbent
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60130264A
Other languages
Japanese (ja)
Other versions
JPS61287445A (en
Inventor
Koichi Oohashi
Terusato Nakano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TAIYO ENU PII ESU KK
Original Assignee
TAIYO ENU PII ESU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TAIYO ENU PII ESU KK filed Critical TAIYO ENU PII ESU KK
Priority to JP60130264A priority Critical patent/JPS61287445A/en
Publication of JPS61287445A publication Critical patent/JPS61287445A/en
Publication of JPH0254141B2 publication Critical patent/JPH0254141B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Separation Of Gases By Adsorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は吸着装置の加熱再生方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for heating and regenerating an adsorption device.

〔従来の技術〕[Conventional technology]

従来、気体または液体中に含まれている不純物
を取り除くために吸着剤を充填した装置(吸着装
置)が利用されることはよく知られている。そし
てこのような吸着装置の多くは複数基の吸着剤充
填塔で構成され、精製(吸着)工程と再生(脱
着)工程とが交互に繰り返えされながら運転され
ている。また、再生(脱着)工程において被吸着
物質を脱着させる方法として減圧法および加熱法
を挙げることができるが、加熱法は吸着剤を加熱
して高温下で被吸着物質を脱着させる方式である
から脱着終了後には吸着最適温度にまで冷却する
必要がある。この冷却には、折角脱着させた被吸
着物質を冷却工程中に再度吸着剤に吸着させない
ように、通常の場合、被吸着物質を取り除いた精
製ガス(製品ガス)が用いられている。しかし、
冷却の全工程を精製ガスで処理することはコスト
高となることから、精製ガスの一部を未精製の原
料ガスに置き換える方法も一部で実施されている
が、その際の未精製の原料ガスの流れは、吸着工
程におけるガスの流れの逆方向では吸着工程時の
出口側の吸着剤に被吸着物質が大量吸着され、そ
の被吸着物質が吸着工程の最終段階において精製
ガス中に離脱混入して折角の精製ガスの純度を低
下させるという考えから、ほとんどの場合吸着工
程時のガスの流れと同一方向である。しかも、冷
却時に使用する未精製ガス中の被吸着物質が吸着
剤に吸着され、これが吸着工程中に脱着して精製
ガスの純度を低下させることのないように過剰の
吸着剤を使用する例が多い。
It is well known that devices filled with adsorbents (adsorption devices) are conventionally used to remove impurities contained in gases or liquids. Most of these adsorption apparatuses are composed of a plurality of adsorbent-packed columns, and are operated while a purification (adsorption) process and a regeneration (desorption) process are alternately repeated. In addition, methods for desorbing the adsorbed substance in the regeneration (desorption) process include a reduced pressure method and a heating method, but the heating method is a method in which the adsorbent is heated and the adsorbed substance is desorbed at high temperature. After desorption is completed, it is necessary to cool down to the optimum temperature for adsorption. For this cooling, purified gas (product gas) from which the adsorbed substance has been removed is usually used so that the adsorbed substance, which has been desorbed at great length, is not adsorbed onto the adsorbent again during the cooling process. but,
Since it is costly to process the entire cooling process with purified gas, some methods are being implemented to replace part of the purified gas with unrefined raw material gas; In the opposite direction of the gas flow in the adsorption process, a large amount of the adsorbed substance is adsorbed on the adsorbent on the outlet side during the adsorption process, and the adsorbed substance is separated and mixed into the purified gas in the final stage of the adsorption process. In most cases, the flow is in the same direction as the gas flow during the adsorption step, considering that the purity of the purified gas should be lowered. Moreover, in order to prevent adsorbed substances in the unpurified gas used during cooling from being adsorbed by the adsorbent and desorbing it during the adsorption process and reducing the purity of the purified gas, there are cases in which an excess amount of adsorbent is used. many.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

したがつて、吸着装置の加熱再生方法におい
て、加熱によつて被吸着物質を脱着し再生された
高温の吸着剤を冷却する従来の技術には、過剰の
吸着剤とともに大量の精製ガス(製品ガス)を必
要とし、コスト的に好ましくないという解決すべ
き問題点がある。
Therefore, in the heating regeneration method of an adsorption device, the conventional technique of desorbing the adsorbed substance by heating and cooling the regenerated high-temperature adsorbent has the disadvantage of using a large amount of purified gas (product gas) along with an excess amount of adsorbent. ), which is unfavorable in terms of cost, which is a problem to be solved.

〔問題を解決するための手段〕[Means to solve the problem]

上記の問題点を解決するために、この発明は、
吸着工程中に吸着剤が吸着した物質(被吸着物
質)を、吸着時のガス流の逆方向の流れの加熱ガ
スによつて脱着させた後、加熱された吸着剤を加
熱ガス流と同一方向の流れの未精製ガスによつて
被吸着物質の吸着開始温度付近まで冷却し、その
後精製ガスに切り換えてさらに冷却するという手
段を採用したものである。
In order to solve the above problems, this invention
The substance adsorbed by the adsorbent during the adsorption process (adsorbed substance) is desorbed by heated gas flowing in the opposite direction of the gas flow during adsorption, and then the heated adsorbent is heated in the same direction as the heated gas flow. This method employs a method of cooling the substance to be adsorbed with a flow of unpurified gas to around the adsorption starting temperature, and then switching to purified gas for further cooling.

〔作用〕[Effect]

いま吸着工程における原料ガスが吸着装置の下
から上の方向へ流れるとすれば、再生のための加
熱ガスは上から下に流れることになるので、加熱
再生直後においては吸着剤層の最上部の温度が最
も高く、ついで中間部であり、下部は最も低い。
このような吸着剤層に冷却用のガスを上から下へ
流すと、冷却効果の最も大きい最上部の温度は急
速に低下するが、中間部および下部の温度低下は
緩慢であり、ある時点で温度勾配が逆転し、下部
が最も高くなる。したがつて、冷却工程の当初に
おいては、被吸着物質を含む未精製ガスを使用し
ても吸着剤温度が高いために吸着現象は起こら
ず、冷却の進行とともに温度が低下すれば最上層
から被吸着物質の吸着が起こり始まる。しかし、
この時点では中間部および下部の吸着剤は被吸着
物質を吸着する温度にまでは低下していないの
で、たとえ最上層部で一部吸着が起こり始めて
も、未精製ガスから被吸着物質を含まない精製ガ
スに切り換えることによつて既に吸着した被吸着
物質も分圧の低下で脱着し、脱着した被吸着物質
は精製ガス中に混入したままより高温の中間部お
よび下部の吸着剤に吸着されることなく通過し
て、精製ガスと共に系外に排出され、中間部およ
び下部の吸着剤も次第に冷却され、被吸着物質へ
の吸着能が現われる頃には最上層部に吸着してい
た被吸着物質も脱着し終わつて、精製ガスのみに
よる冷却が継続される。
If the raw material gas in the adsorption process flows from the bottom to the top of the adsorption device, the heated gas for regeneration will flow from the top to the bottom, so immediately after heating and regeneration, the top of the adsorbent layer The temperature is the highest, followed by the middle, and the lowest at the bottom.
When cooling gas flows from top to bottom through such an adsorbent layer, the temperature at the top, where the cooling effect is greatest, decreases rapidly, but the temperature decreases slowly at the middle and bottom, and at some point the temperature decreases slowly. The temperature gradient is reversed and is highest at the bottom. Therefore, at the beginning of the cooling process, even if unpurified gas containing the substance to be adsorbed is used, the adsorption phenomenon will not occur because the adsorbent temperature is high, and as the temperature decreases as cooling progresses, the adsorption phenomenon will occur from the top layer. Adsorption of the adsorbate begins to occur. but,
At this point, the temperature of the adsorbent in the middle and lower parts has not dropped to the point where it can adsorb the adsorbed substance, so even if some adsorption begins to occur in the top layer, the unpurified gas will not contain the adsorbed substance. By switching to purified gas, the adsorbed substances that have already been adsorbed are also desorbed due to a decrease in partial pressure, and the desorbed substances remain mixed in the purified gas and are adsorbed by the higher-temperature middle and lower adsorbents. The adsorbent in the middle and lower parts is also gradually cooled down, and by the time it reaches the adsorption capacity for the adsorbed material, the adsorbed material that has been adsorbed in the top layer is removed. After desorption of the purified gas, cooling continues using only purified gas.

〔実施例〕〔Example〕

以下、この発明の詳細を図面を用いながら説明
する。なお、この発明の方法はいかなるガスに対
しても適用することができるが、空気の除湿装置
の事例を挙げることにする。
The details of this invention will be explained below with reference to the drawings. Although the method of the present invention can be applied to any gas, an example of an air dehumidifier will be given.

いま、吸着剤(たとえばシリカゲル、活性アル
ミナ、合成ゼオライト、活性炭など)を充填した
2基の吸着塔AおよびBからなる図のような吸着
装置において、入口1から原料ガス(生空気)を
送入すると、そのガスはバルブV1、四方コツク
2を経て吸着塔Aに入り、ここで不純物(主とし
て水分)が吸着除去され逆止弁CV1およびバルブ
V2を経て出口3から精製ガス(乾燥空気)が排
出される。一方、吸着塔Bに対しては吸着剤の再
生(活性化)のためにブロワー4によつて原料ガ
ス(生空気)が加熱器5および逆止弁CV2を経て
塔頂から吸着塔Bに送られ、吸着剤を加熱し昇温
させて吸着工程で吸着剤に吸着した不純物を脱着
させながら四方コツク2を経て系外に放出され
る。このような再生工程の途中で不純物(被吸着
物質)を含まない精製ガスを使用するときは、精
製ガス(製品ガス)の貯蔵容器等から二方ピスト
ン弁6およびニードルバルブ7を経由して導入す
る。
Now, in an adsorption apparatus as shown in the figure consisting of two adsorption towers A and B filled with adsorbent (for example, silica gel, activated alumina, synthetic zeolite, activated carbon, etc.), feed gas (raw air) is fed from inlet 1. Then, the gas enters the adsorption tower A via the valve V 1 and the four-way tank 2, where impurities (mainly water) are adsorbed and removed and passed through the check valve CV 1 and the valve
Purified gas (dry air) is discharged from outlet 3 via V 2 . On the other hand, in order to regenerate (activate) the adsorbent, feed gas (raw air) is supplied to adsorption tower B from the top of the tower through blower 4 and through heater 5 and check valve CV 2 . The adsorbent is heated to raise its temperature, and the impurities adsorbed to the adsorbent in the adsorption process are desorbed and discharged to the outside of the system through the four-way tank 2. When using purified gas that does not contain impurities (adsorbed substances) during such a regeneration process, it is introduced from the purified gas (product gas) storage container etc. via the two-way piston valve 6 and needle valve 7. do.

ここで、吸着塔AおよびBを内径600mm(約
0.28m3)、吸着剤層高1430mmの同形状の塔とし、
つぎの操業条件で圧縮空気の除湿および除湿剤
(吸着剤)の再生を試みた。
Here, adsorption towers A and B have an inner diameter of 600 mm (approximately
0.28m 3 ) and a tower of the same shape with an adsorbent layer height of 1430mm,
We attempted to dehumidify compressed air and regenerate the dehumidifier (adsorbent) under the following operating conditions.

入口風量 1000Nm3/時 入口圧力 7Kg/cm2(ゲージ圧) 入口温度 40℃ 出口露点(1気圧下) −35℃ 加熱再生風量 (ブロワーによる送風大気量) 300Nm3/時 冷却再生風量 (製品ガスのみの場合) 70Nm3/時 (大気を用いたとき) 30Nm3/時 加熱時間 4h 冷却時間 4h 塔切換え時間 8h 大気温度および相対湿度 30℃、RH80% 吸着塔Bを再生するに当つて加熱工程を完了し
た時の吸着剤層の最上層部は約180℃になつてお
り、そこへ30℃の大気をブロワーで送り始めた。
当初は大気中の水分は全く吸着されないが、吸着
剤層の冷却が進行して温度が降下するにつれて最
上層部に近い部分から吸着が起こり始め、冷却時
間の経過とともに吸着剤の吸着能は急上昇する。
Inlet air volume 1000Nm 3 /hour Inlet pressure 7Kg/cm 2 (gauge pressure) Inlet temperature 40℃ Outlet dew point (below 1 atm) -35℃ Heating regeneration air volume (air volume blown by blower) 300Nm 3 /hour Cooling regeneration air volume (product gas 70Nm 3 /hour (when using air) 30Nm 3 /hour Heating time 4h Cooling time 4h Tower switching time 8h Atmospheric temperature and relative humidity 30℃, RH80% Heating process for regenerating adsorption tower B When this process was completed, the temperature of the top layer of the adsorbent layer was approximately 180°C, and air at 30°C was then started to be sent there using a blower.
Initially, no moisture in the atmosphere is adsorbed at all, but as the adsorbent layer continues to cool and the temperature drops, adsorption begins to occur from near the top layer, and as the cooling time progresses, the adsorption capacity of the adsorbent rapidly increases. do.

冷却開始後30分間に流れた大気中の水分(計算
を簡略化するために、全送風量の80%の、さらに
その半分の大気が含有する全水分量であるとす
る)、すなわち 300(Nm3)×0.5(h)×0.8×0.5 ×30.39(g/m3)×0.8=1458(g) となる。ここで、30.39(g/m3)は30℃における
飽和水分量である。
Moisture in the atmosphere that flowed for 30 minutes after the start of cooling (to simplify calculations, it is assumed that the total amount of moisture contained in the atmosphere is 80% of the total air flow, and half of that amount), that is, 300 (Nm 3 ) x 0.5 (h) x 0.8 x 0.5 x 30.39 (g/m 3 ) x 0.8 = 1458 (g). Here, 30.39 (g/m 3 ) is the saturated moisture content at 30°C.

つぎに、冷却開始後30分間に吸着された上記
1458gの水分を脱着させるに必要な製品ガス(乾
燥空気)の風量(40℃として)は、 30(Nm3/時)×(273+40)/273≒34(m3/時) であり、40℃における飽和水分量は51.12g/m3
であるから、前記34m3の乾燥空気が40℃下飽和状
態で持ち去る水分量(安全係数を80%とする)
は、 51.12(g/m3)×34(m3/時) ×0.8=1390(g/時) となり、冷却開始後30分間に吸着される水分量
1458gとほぼ同程度の水分を約1時間前後で脱着
させる能力を有することが明らかである。実際は
乾燥空気のみによる冷却は余裕をみて3時間程度
連続して行なわれるので、水分の脱着は充分であ
る。
Next, the above adsorbed during 30 minutes after the start of cooling.
The volume of product gas (dry air) required to desorb 1458g of water (assuming 40℃) is 30 (Nm 3 /hour) x (273 + 40) / 273≒34 (m 3 /hour), which is 40℃. The saturated moisture content in is 51.12g/m 3
Therefore, the amount of moisture carried away by the above 34 m 3 of dry air under saturated conditions at 40°C (assuming the safety factor is 80%)
is 51.12 (g/m 3 ) x 34 (m 3 / hour) x 0.8 = 1390 (g/hour), which is the amount of water adsorbed in 30 minutes after the start of cooling.
It is clear that it has the ability to desorb almost the same amount of water as 1458g in about 1 hour. In reality, cooling using only dry air is carried out continuously for about 3 hours, allowing enough time for moisture to be desorbed.

また、冷却に必要な総風量は 70(Nm3/時)×3.5(時)=245(Nm3) であり、今未精製空気(大気)による冷却を
300Nm3/時で30分間行なえば、150Nm3であるか
ら、精製空気のみの冷却に必要な精製空気の風量
は245(Nm3)−150(Nm3)=95(Nm3)である。し
たがつて、この風量を毎時30(Nm3)とすれば
3.17時間流せばよいことになる。このような方法
によれば、未精製空気を利用することによつて精
製空気の使用量を40%以下に節約することができ
る。通常精製空気は7Kg/cm2(ゲージ圧)に圧縮
されているので、これを大気圧まで降圧して使用
することが多く、精製(吸着)工程に要するコス
トとともに圧縮のためのコストも加わつて、精製
空気はかなり高価なものである。
Also, the total air volume required for cooling is 70 (Nm 3 / hour) x 3.5 (hour) = 245 (Nm 3 ), and now cooling with unpurified air (atmosphere) is
If it is carried out for 30 minutes at 300Nm 3 /hour, the flow rate is 150Nm 3 , so the amount of purified air required to cool only purified air is 245 (Nm 3 ) - 150 (Nm 3 ) = 95 (Nm 3 ). Therefore, if this air volume is set to 30 (Nm 3 ) per hour,
3. All you have to do is run it for 17 hours. According to this method, by using unpurified air, the amount of purified air used can be reduced to 40% or less. Purified air is usually compressed to 7 kg/cm 2 (gauge pressure), so it is often used after reducing the pressure to atmospheric pressure, and the cost for compression is added to the cost required for the purification (adsorption) process. However, purified air is quite expensive.

〔効果〕〔effect〕

この発明の方法によれば、従来広く用いられて
いる吸着装置をほとんどそのままの状態で使用す
ることができるので、改造のための費用はほとん
ど不用であり、しかも吸着剤の再生工程中に使用
する高価な精製ガス(製品ガス)の量を著しく節
減することができる。したがつてこの発明の意義
はきわめて大きいと言える。
According to the method of this invention, adsorption equipment that has been widely used in the past can be used almost as is, so there is almost no need for modification, and moreover, it can be used during the adsorbent regeneration process. The amount of expensive purified gas (product gas) can be significantly reduced. Therefore, it can be said that the significance of this invention is extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

図はこの発明の加熱再生方法を説明するための
吸着装置の系統図である。 1……入口、2……四方コツク、3……出口、
4……ブロワー、5……加熱器、6……二方ピス
トン弁、7……ニードルバルブ、V1,V2……バ
ルブ、CV1,CV2……逆止弁、A,B……吸着
塔。
The figure is a system diagram of an adsorption device for explaining the heating regeneration method of the present invention. 1... Entrance, 2... Four directions, 3... Exit,
4...Blower, 5...Heater, 6...Two-way piston valve, 7...Needle valve, V1 , V2 ...Valve, CV1 , CV2 ...Check valve, A, B... adsorption tower.

Claims (1)

【特許請求の範囲】[Claims] 1 吸着工程中に吸着剤が吸着した物質(被吸着
物質)を、吸着時のガス流の逆方向の流れの加熱
ガスによつて脱着させた後、加熱された吸着剤を
加熱ガス流と同一方向の流れの未精製ガスによつ
て被吸着物質の吸着開始温度付近まで冷却し、そ
の後精製ガスによつてさらに冷却することを特徴
とする吸着装置の加熱再生方法。
1. After the substance adsorbed by the adsorbent during the adsorption process (adsorbed substance) is desorbed by heated gas flowing in the opposite direction of the gas flow during adsorption, the heated adsorbent is heated in the same direction as the heated gas flow. 1. A heating regeneration method for an adsorption device, which comprises cooling an adsorbed substance to around the adsorption starting temperature by unpurified gas flowing in the same direction, and then further cooling by purified gas.
JP60130264A 1985-06-13 1985-06-13 Heat-regeneration method for adsorption apparatus Granted JPS61287445A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60130264A JPS61287445A (en) 1985-06-13 1985-06-13 Heat-regeneration method for adsorption apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60130264A JPS61287445A (en) 1985-06-13 1985-06-13 Heat-regeneration method for adsorption apparatus

Publications (2)

Publication Number Publication Date
JPS61287445A JPS61287445A (en) 1986-12-17
JPH0254141B2 true JPH0254141B2 (en) 1990-11-20

Family

ID=15030114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60130264A Granted JPS61287445A (en) 1985-06-13 1985-06-13 Heat-regeneration method for adsorption apparatus

Country Status (1)

Country Link
JP (1) JPS61287445A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10032385B4 (en) * 2000-07-06 2005-07-14 M + W Zander Facility Engineering Gmbh Process for the regeneration of electrically conductive adsorbents loaded with organic substances

Also Published As

Publication number Publication date
JPS61287445A (en) 1986-12-17

Similar Documents

Publication Publication Date Title
JP3308248B2 (en) Purification of air
US4950311A (en) Heaterless adsorption system for combined purification and fractionation of air
US4614525A (en) Pressure swing process for the adsorptive separation of gaseous mixtures
US3957463A (en) Oxygen enrichment process
CN1044331C (en) Purification method and apparatus
KR100227060B1 (en) Process and apparatus for gas purification
US4971606A (en) Closed-loop thermal regeneration of adsorbents containing reactive adsorbates
US5181942A (en) Continuous method for removing oil vapor from feed gases containing water vapor
US6125655A (en) Process for purifying air by adsorbing CO2 and H2 O impurities on calcined alumina
JPH01297119A (en) Improved pressure swing adsorbing method and apparatus for gas separation
JPH0239294B2 (en)
JP2010029855A (en) Process and apparatus for nitrous oxide removal
EP0284850A2 (en) Improved adsorptive purification process
JP2002204917A (en) Method for separating raw material gas
US3279153A (en) Process for the separation of gases by adsorption
JPH11156137A (en) Method for removing carbon dioxide from gas flow
US3355859A (en) Selective adsorption of gases at low temperature
JPH11179136A (en) Method for removing carbon dioxide from gas by circulating type pressure swing adsorption process
GB2109266A (en) Pressure swing process for the separation of gas mixtures by adsorption
EP0332390B1 (en) Heaterless adsorption system for combined purification and fractionation of air
JPS63107720A (en) Method for separating and removing water content and carbon dioxide gas in air
JPH0254141B2 (en)
CA1182765A (en) Repressurization for pressure swing adsorption system
JPS621766B2 (en)
JPH0239293B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term