JPH0254008B2 - - Google Patents

Info

Publication number
JPH0254008B2
JPH0254008B2 JP58048770A JP4877083A JPH0254008B2 JP H0254008 B2 JPH0254008 B2 JP H0254008B2 JP 58048770 A JP58048770 A JP 58048770A JP 4877083 A JP4877083 A JP 4877083A JP H0254008 B2 JPH0254008 B2 JP H0254008B2
Authority
JP
Japan
Prior art keywords
memory alloy
shape memory
overhead
magnetic element
snow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58048770A
Other languages
Japanese (ja)
Other versions
JPS59175321A (en
Inventor
Hiroshi Sasaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP58048770A priority Critical patent/JPS59175321A/en
Publication of JPS59175321A publication Critical patent/JPS59175321A/en
Publication of JPH0254008B2 publication Critical patent/JPH0254008B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/14Extreme weather resilient electric power supply systems, e.g. strengthening power lines or underground power cables

Landscapes

  • Non-Insulated Conductors (AREA)
  • Insulated Conductors (AREA)
  • Suspension Of Electric Lines Or Cables (AREA)

Description

【発明の詳細な説明】 この発明は寒冷地域で使用される架空送配電線
の改良に係り、特に着雪、着氷を融解し得るよう
にした架空電線の融雪システムに係るもである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to improvements in overhead power transmission and distribution lines used in cold regions, and particularly to a snow melting system for overhead power lines capable of melting accumulated snow and ice.

寒冷地域例えば北日本、裏日本では、冬期架空
送・配電線に着雪・着氷を来たし、これが成長し
てかなりの大きさとなり、鉄塔径間における電線
重量の増大や風圧荷重の増大を招き、電線の弛度
の増大や、過大張力による電線の破断、更には鉄
塔の倒壊などの事故を発生するに至る原因となる
場合が多い。又、着氷雪がブロツク状となり落下
すると、架空線下を通行する人間に対する危険が
ある外、架空線下が農地であつても作物やビニル
ハウス等に損傷を与えるおそれがあり、大きな社
会問題を発生するため、この問題の解決が要望さ
れている。
In cold regions such as Northern Japan and Ura Japan, snow and ice accumulate on overhead transmission and distribution lines during the winter, and this grows to a considerable size, leading to an increase in the weight of the wires and wind pressure loads between the tower spans. This often leads to accidents such as increased slack in the wires, breakage of the wires due to excessive tension, and even the collapse of the steel tower. In addition, if ice and snow fall in the form of blocks, it not only poses a danger to people passing under the overhead wires, but even if the area under the overhead wires is agricultural land, it may cause damage to crops, vinyl houses, etc., causing a major social problem. Therefore, a solution to this problem is desired.

このため、これまで着雪防止対策として知られ
ているものは、一時的な大電流送電により、導体
のジユール熱により融解する方法、リング状のも
のを送電線に取りつけて、着雪塊を落下させる方
法等があるが、前者の方法は電力系統運用上制限
を受けるので自由に実施することはできず、又、
後者の方法は送電線に付着する着氷雪の種類によ
つて効果に差があり、更に、成長した氷雪塊を単
に落下させると、その落下地点によつては、2次
災害の発生の余地なしとしない。
For this reason, the methods known to date to prevent snow buildup are methods such as temporarily transmitting large currents to melt the snow by the heat of the conductor, and attaching ring-shaped objects to power transmission lines to allow snow to fall off. However, the former method is subject to restrictions on power system operation and cannot be implemented freely.
The effectiveness of the latter method differs depending on the type of ice and snow that adheres to power lines, and furthermore, if a grown block of ice and snow is simply dropped, there is no possibility of a secondary disaster depending on where it falls. I don't.

このようなことから交流送電線上に磁性体で作
られたスリーブ或はスパイラル状に加工された線
状体や、テープもしくはロツド等を巻きつけ、送
電々流による交流磁界がスリーブ等を通過するこ
とによつて発生するヒステリシス損、渦電流損に
よる損失熱を利用して融解する方法も提案されて
いるが、着氷雪の起らない温度での磁性体からの
発熱は、送電損失の増加となるので高温時には磁
気特性が低下し発熱しなくなるキユリー点の低い
材料が望ましいものとされている。
For this reason, it is possible to wrap a sleeve made of magnetic material, a linear body processed into a spiral shape, tape, or a rod around the AC power transmission line, so that the AC magnetic field caused by the power transmission current passes through the sleeve, etc. A method of melting the magnetic material using heat loss due to hysteresis loss and eddy current loss has been proposed, but heat generation from the magnetic material at a temperature where freezing and snow does not occur will increase power transmission loss. Therefore, it is desirable to use a material with a low Curie point, which reduces its magnetic properties and does not generate heat at high temperatures.

しかしこのような低いキユリー温度の磁性体を
用いた場合でも常時電線の表面にこれが巻きつけ
られている状態では常温時不要な発熱の低減が必
しも充分であるとは言えない状態にある。
However, even when a magnetic material with such a low Curie temperature is used, unnecessary heat generation cannot be reduced sufficiently at room temperature if it is constantly wound around the surface of the wire.

本発明者は種々検討の結果、形状記憶合金によ
る線条体を磁性体と組合せて使用することによつ
て前記の難点を解決した架空送配電線の融雪シス
テムを提供するものである。
As a result of various studies, the present inventor has provided a snow melting system for overhead power transmission and distribution lines that solves the above-mentioned difficulties by using a filament made of a shape memory alloy in combination with a magnetic material.

次に図面により本発明を説明する。 Next, the present invention will be explained with reference to the drawings.

第1図は本発明で使用される磁性体素子の一例
で、中空円筒状の低キユリー材料からなる磁性体
層1と、その外部に密着した中空円筒状のアルミ
ニウムの如き低導電性の導体層2とからなる磁性
体素子3である。第2図はこのような磁性体素子
3を形状記憶合金の線条体4に数珠状に連続して
挿入することにより磁性体素子装着形状記憶合金
線条体5が構成されていることを示している。
FIG. 1 shows an example of a magnetic element used in the present invention, which includes a hollow cylindrical magnetic layer 1 made of a low-Kyrie material, and a hollow cylindrical conductive layer 1 of low conductivity such as aluminum closely adhered to the outside of the magnetic layer 1. This is a magnetic element 3 consisting of 2. FIG. 2 shows that a magnetic element-attached shape-memory alloy filament 5 is constructed by continuously inserting such magnetic elements 3 into a shape-memory alloy filament 4 in the form of beads. ing.

第3図〜第4図は本発明の架空電線の融雪シス
テムを説明する正面図である。なお磁性体素子装
着形状記憶合金線条体はこれらの図では線で示し
てあるが具体的には第2図に示す如きものであ
る。
3 and 4 are front views illustrating the snow melting system for overhead electric wires of the present invention. Note that the magnetic element-attached shape memory alloy filament is shown by a line in these figures, but it is specifically as shown in FIG. 2.

先づ第3図は架空電線6の周囲に、磁性体素子
装着形状記憶合金線条体5を0℃附近の温度でピ
ツチP0でらせん状に巻きつけられた状態を示し
ている。
First, FIG. 3 shows a state in which a magnetic element-attached shape memory alloy wire body 5 is spirally wound around an overhead electric wire 6 at a temperature of around 0° C. with a pitch P 0 .

らせんの半径はρ0である。 The radius of the helix is ρ 0 .

このような電線に着雪、着氷が起きた場合に
は、当然に架空電線6に密着している磁性体素子
の発熱により融雪作用が速やかに起り架空電線は
温度上昇する。しかし、第3図に於て、磁性体素
子3は常温になると弛緩し変形する形状記憶合金
線条体4に挿着されているので、この形状記憶合
金線条体4が弛緩することによつて、磁性体素子
3と架空電線6との密着が解かれたり、巻付ピツ
チが大きくなつたり或はその複合現象が起る。
When snow or ice accretes on such electric wires, naturally the snow melting action occurs quickly due to the heat generated by the magnetic elements that are in close contact with the overhead electric wires 6, and the temperature of the overhead electric wires rises. However, in FIG. 3, the magnetic element 3 is inserted into a shape memory alloy wire body 4 that relaxes and deforms when it reaches room temperature. As a result, the close contact between the magnetic element 3 and the overhead electric wire 6 may be broken, the winding pitch may become larger, or a combination thereof may occur.

その状態は第4図a,b及びcに示すとおりで
ある。先づ第4図では巻きつけられている磁性体
素子装着形状記憶合金線条体5が常温に昇温し、
弛緩して巻付けピツチもしくは巻付半径等に変化
を生じた状態を示し、第4図aでは第3図に比べ
巻き付けによるらせんのピツチP1、その巻付ら
せんの半径ρ1とするときに、ρ1≫ρ0、ρ1>ρ0の場
合の一部正面図、又、第4図bでは第3図に比べ
らせんの巻付半径は変らず、ピツチP1のみ非常
に大きくなつた場合でρ1=ρ0、ρ1≫ρ0の場合を示
す一部正面図、更に第4図cではらせんのピツチ
P1も、その巻付けらせんの半径ρ1もともに第3図
に比べ非常に大きくなり、ρ1≫ρ0、ρ1≫ρ0の場合
を示すす一部正面図である。
The state is as shown in FIGS. 4a, b and c. First, in FIG. 4, the shape memory alloy filament 5 with the magnetic element attached thereto is heated to room temperature,
It shows a state in which the winding pitch or the winding radius changes due to relaxation, and in Fig. 4a, compared to Fig. 3, when the pitch of the helix due to winding is P 1 and the radius of the winding helix is ρ 1 . , ρ 1 ≫ ρ 0 , ρ 1 > ρ 0 , and in Fig. 4b, the winding radius of the spiral has not changed compared to Fig. 3, and only the pitch P 1 has become very large. A partial front view showing the case where ρ 1 = ρ 0 and ρ 1 ≫ ρ 0 , and also the pitch of the helix in Fig. 4c.
Both P 1 and the radius ρ 1 of the winding spiral are much larger than in FIG. 3, and this is a partial front view showing the case where ρ 1 ≫ρ 0 and ρ 1 >>ρ 0 .

上記第4図のような変形が起きれば、形状記憶
合金線条体4に装着されている磁性体素子3は架
空電線6に密着する割合が少なくなり、架空電線
6の無駄な温度上昇を防ぐことになる。
If the deformation as shown in FIG. 4 occurs, the magnetic element 3 attached to the shape memory alloy filament 4 will be less likely to be in close contact with the overhead wire 6, thereby preventing unnecessary temperature rise of the overhead wire 6. It turns out.

次に第5図は磁性体素子装着形状記憶合金線条
体5の当初の巻付らせんの半径ρ0、その後の弛緩
による半径ρ、巻付角θ及びピツチPの説明図で
ある。
Next, FIG. 5 is an explanatory diagram of the initial winding helical radius ρ 0 , the radius ρ due to subsequent relaxation, the winding angle θ, and the pitch P of the magnetic element-attached shape memory alloy filament 5.

このような場合磁性体素子の単位長当りの発熱
量Hは他のパラメーターが同一ならば、ほぼH=
cosθ/ρで表わされる。(θ:巻き付け角) ここにθ=tan-1(P/2πρ) 従つてρ、θのいずれか又はρ、θが共に増大
すれば、cosθ/ρは減少するので、常温におけるρ 及びθが0℃附近のρ及びθよりも大きくなるよ
うに、つまり、常温では形状記憶合金線条体が理
想的には真直状態になるように形状を記憶させて
おけば、磁性体の低キユリー特性と相俟つて常温
における発生熱量を0℃附近のそれよりも著しく
低減することができる。
In such a case, the calorific value H per unit length of the magnetic element is approximately H=
It is expressed as cosθ/ρ. (θ: wrapping angle) where θ=tan -1 (P/2πρ) Therefore, if either ρ, θ or both ρ and θ increase, cosθ/ρ decreases, so ρ and θ at room temperature If the shape is memorized so that ρ and θ are larger than those around 0°C, that is, the shape memory alloy strands are ideally in a straight state at room temperature, the low Curie property of the magnetic material can be reduced. Combined with this, the amount of heat generated at room temperature can be significantly reduced compared to that at around 0°C.

なお本発明の実施に際し、形状記憶合金線条体
に装着される磁性体素子3は、第6図に示す如
く、中心の孔部の出口をその両端で開口7せしめ
ることにより、一層移動が円滑となるであろう。
In carrying out the present invention, the magnetic element 3 attached to the shape memory alloy filament can be moved even more smoothly by opening the outlet of the central hole at both ends, as shown in FIG. It will be.

又、形状記憶合金線条体巻き付け片端又は中央
を架空電線に固定し、その余を自由端とすること
により、形状記憶合金線条体の変形が起き易くな
り、特に中央固定のものは片端固定よりもらせん
状に巻き付けた磁性体素子装着形状記憶線条体と
架空電線の相対的移動距離が小さくて済む利点が
ある。
In addition, by fixing one end or the center of the shape memory alloy wire to the overhead wire and leaving the rest free, the shape memory alloy wire becomes more likely to deform. There is an advantage that the relative movement distance between the spirally wound magnetic element-attached shape-memory filament and the overhead electric wire is smaller.

なお、本発明で用いられる形状記憶合金は、可
逆的な形状記憶特性を持つ必要のあることは勿論
であるが、低温(0℃附近)での発熱量をできる
だけ大きくするためには可能ならば低キユリー温
度特性の磁性を有し、かつ/または低導電性を有
するものであることが望ましい。
The shape memory alloy used in the present invention must of course have reversible shape memory properties, but in order to maximize the amount of heat generated at low temperatures (around 0°C), it is necessary to It is desirable to have magnetism with low Curie temperature characteristics and/or low conductivity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明で用いられる磁性体素子の一例
を示す斜視図、第2図はこのような磁性体素子装
着形状記憶合金線条体の一例を示す斜視図、第3
図は磁性体素子装着形状記憶合金線条体を架空電
線の周囲に0℃付近でらせん巻した状態を示す正
面図、第4図a,b及びcは第3図に示したもの
から常温に昇温した場合の3つの構造例を示す正
面図、第5図磁性体素子装着形状記憶合金線条体
の巻きつけ角、ピツチ及び半径の説明図、第6図
は磁性体素子の他の構造例を示す縦断面図であ
る。 1:磁性体層、2:低導電性の導体層、3:磁
性体素子、4:形状記憶合金線条体、5:磁性体
素子装着形状記憶合金線条体、6:架空電線。
FIG. 1 is a perspective view showing an example of a magnetic element used in the present invention, FIG. 2 is a perspective view showing an example of a shape memory alloy wire body equipped with such a magnetic element, and FIG.
The figure is a front view showing a state in which a shape memory alloy wire body equipped with a magnetic element is spirally wound around an overhead electric wire at around 0°C. Figure 5 is a front view showing three examples of structures when the temperature is increased; Figure 5 is an explanatory diagram of the winding angle, pitch, and radius of the shape memory alloy filament attached to the magnetic element; Figure 6 is another structure of the magnetic element. It is a longitudinal cross-sectional view showing an example. 1: Magnetic layer, 2: Low conductive conductor layer, 3: Magnetic element, 4: Shape memory alloy wire, 5: Shape memory alloy wire with magnetic element attached, 6: Overhead electric wire.

Claims (1)

【特許請求の範囲】 1 架空送配電線の表面に磁性体素子を数珠状に
装着した下記特性の形状記憶合金線条体を、その
一端もしくは中央を固定し他端もしくは両端を自
由端として巻回していることを特徴とする架空電
線の融雪システム。 (1) 0℃附近の温度で架空電線の周囲に所定のピ
ツチで巻かれた形状を保持し、常温では弛緩状
態に変形する特性。
[Scope of Claims] 1. A shape memory alloy wire body having the following characteristics, in which magnetic elements are attached in the form of beads on the surface of an overhead power transmission/distribution line, is wound with one end or the center thereof being fixed and the other end or both ends being free ends. A snow melting system for overhead power lines that is characterized by rotating. (1) The property that it maintains its shape when wound around an overhead wire at a predetermined pitch at a temperature around 0°C, and deforms into a relaxed state at room temperature.
JP58048770A 1983-03-25 1983-03-25 Snow fusing system of aerial wire Granted JPS59175321A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58048770A JPS59175321A (en) 1983-03-25 1983-03-25 Snow fusing system of aerial wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58048770A JPS59175321A (en) 1983-03-25 1983-03-25 Snow fusing system of aerial wire

Publications (2)

Publication Number Publication Date
JPS59175321A JPS59175321A (en) 1984-10-04
JPH0254008B2 true JPH0254008B2 (en) 1990-11-20

Family

ID=12812510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58048770A Granted JPS59175321A (en) 1983-03-25 1983-03-25 Snow fusing system of aerial wire

Country Status (1)

Country Link
JP (1) JPS59175321A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH047639Y2 (en) * 1986-04-17 1992-02-27
JPH0275931U (en) * 1988-11-25 1990-06-11

Also Published As

Publication number Publication date
JPS59175321A (en) 1984-10-04

Similar Documents

Publication Publication Date Title
US3764779A (en) Winterized control cable
EP0282092A2 (en) Corrugated heat pipe
JP3474602B2 (en) Superconducting conductor
GB1141390A (en) An improved method of preventing the formation of ice on an overhead power transmission line
EP0141344A1 (en) Time delay electric fuse
US3705974A (en) Hair setting apparatus
JPH0254008B2 (en)
US4602231A (en) Spaced stabilizing means for a superconducting switch
US3045102A (en) Cold terminal resistance wire
JPH10224973A (en) Snow-melting spiral heater rod for overhead ground line
JP2004200178A (en) Oxide superconductor and its manufacturing method
JPH04281314A (en) Snow and ice accretion prevention equipment for power transmission line
JP2831659B2 (en) Heating wire and snow melting wire using it
JP2822104B2 (en) Magnetic material for preventing icing of overhead transmission and distribution lines
JP2847710B2 (en) Difficult-to-wear snow wire
JPH11329101A (en) Heat resisting cv cable
US1983862A (en) Soil warming device and method of manufacturing same
JP2022020669A (en) Connection structure of power cable and connection method of power cable
JP3415646B2 (en) Superconducting conductor
CN211063304U (en) High-voltage line ice melting structure
WO1995022153A1 (en) Electric windings for inductors and transformers having water-cooled tubular elements and a helically wound coating of flat wires
JPH02126519A (en) Superconducting conductor
JPS59806A (en) Magnetic material
JPH1141768A (en) Magnetic heating composite wire
JPH05120920A (en) Low wind noise type snow accretion resistant wire