JPH0253910B2 - - Google Patents

Info

Publication number
JPH0253910B2
JPH0253910B2 JP61031288A JP3128886A JPH0253910B2 JP H0253910 B2 JPH0253910 B2 JP H0253910B2 JP 61031288 A JP61031288 A JP 61031288A JP 3128886 A JP3128886 A JP 3128886A JP H0253910 B2 JPH0253910 B2 JP H0253910B2
Authority
JP
Japan
Prior art keywords
battery
sodium
anode
battery container
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61031288A
Other languages
Japanese (ja)
Other versions
JPS61179069A (en
Inventor
Hiroshi Kagawa
Takashi Nakabayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Battery Corp filed Critical Yuasa Battery Corp
Priority to JP61031288A priority Critical patent/JPS61179069A/en
Publication of JPS61179069A publication Critical patent/JPS61179069A/en
Publication of JPH0253910B2 publication Critical patent/JPH0253910B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • H01M10/39Accumulators not provided for in groups H01M10/05-H01M10/34 working at high temperature
    • H01M10/3909Sodium-sulfur cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/663Selection of materials containing carbon or carbonaceous materials as conductive part, e.g. graphite, carbon fibres
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明はナトリウム−硫黄電池の製造法に関す
るもので、さらに詳しく言えば陽極活物質による
腐食を防止しうる電池容器または陽極集電体を備
えた低コストで長寿命のナトリウム−硫黄電池の
製造法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for manufacturing a sodium-sulfur battery, and more particularly to a method for manufacturing a sodium-sulfur battery, and more particularly to a method for manufacturing a sodium-sulfur battery, and more particularly to a method for manufacturing a sodium-sulfur battery, which is equipped with a battery container or an anode current collector that can prevent corrosion caused by the anode active material. The present invention relates to a method for manufacturing a sodium-sulfur battery that is inexpensive and has a long life.

従来技術とその問題点 ナトリウム−硫黄電池は、陽極活物質に硫黄ま
たは多硫化ナトリウム、陰極活物質にナトリウム
が使用され、これらの活物質を分離するとともに
ナトリウムイオン伝導性を有する非孔質の固体電
解質管が収納された電池容器を備えてなり、両活
物質が溶融し、固体電解質管のイオン伝導度が高
くなる300℃以上の高温で作動する電池である。
この電池を放電すると、陰極室である固体電解質
管内のナトリウムはナトリウムイオンとして固体
電解質管を通過し、陽極室である電池容器と固体
電解質管との間隙の硫黄と反応して多硫化ナトリ
ウムを生成する。また充電する場合には可逆的に
多硫化ナトリウムが分解し、ナトリウムイオンが
固体電解質管を通過して陰極室内にナトリウムと
して蓄積される。このようなナトリウム−硫黄電
池を第1図により説明する。第1図において、1
はβ−アルミナ、β″−アルミナ等からなる固体電
解質管で、上端にα−アルミナ等の絶縁セラミツ
クからなるナトリウム蓄積用のリザーバー4がガ
ラス封着され、充放電により固体電解質管1内の
陰極室の陰極活物質3としてのナトリウムが増減
しても陰極室内には常にナトリウムが満たされて
いるように構成されている。一方2は陽極活物質
としての硫黄で、陽極室である電池容器8と固体
電解質管1との間隙に収納された陽極電導材とし
てのグラフアイトフエルト中に含浸されている。
さらに前述のリザーバー4の上端には、リザーバ
ー4と同材質の陰極蓋5がガラス封着されて陰極
室を密閉するとともにこの陰極蓋5には陰極端子
6がガラス封着され、その一端を陰極活物質3と
接触させてなる。一方、電池容器8は陽極端子を
兼ね、その上端には陽極蓋7が溶接されるととも
にこの陽極蓋7はリザーバー4にガラス封着され
て陽極室を密閉している。
Prior art and its problems Sodium-sulfur batteries use sulfur or sodium polysulfide as the anode active material and sodium as the cathode active material, and separate these active materials using a non-porous solid that has sodium ion conductivity. This battery is equipped with a battery container containing an electrolyte tube, and operates at a high temperature of 300°C or higher, where both active materials melt and the ionic conductivity of the solid electrolyte tube increases.
When this battery is discharged, the sodium in the solid electrolyte tube, which is the cathode chamber, passes through the solid electrolyte tube as sodium ions and reacts with the sulfur in the gap between the battery container, which is the anode chamber, and the solid electrolyte tube, producing sodium polysulfide. do. Furthermore, when charging, sodium polysulfide decomposes reversibly, and sodium ions pass through the solid electrolyte tube and are accumulated as sodium in the cathode chamber. Such a sodium-sulfur battery will be explained with reference to FIG. In Figure 1, 1
is a solid electrolyte tube made of β-alumina, β″-alumina, etc., and a reservoir 4 for storing sodium made of insulating ceramic such as α-alumina is sealed in glass at the upper end, and the cathode inside the solid electrolyte tube 1 is The cathode chamber is configured so that it is always filled with sodium even if the amount of sodium as the cathode active material 3 in the chamber increases or decreases.On the other hand, the cathode chamber 2 is filled with sulfur as the anode active material, and the battery container 8 that is the anode chamber It is impregnated into graphite felt as an anode conductive material, which is housed in the gap between the anode and the solid electrolyte tube 1.
Further, a cathode lid 5 made of the same material as the reservoir 4 is glass-sealed to the upper end of the reservoir 4 to seal the cathode chamber, and a cathode terminal 6 is glass-sealed to the cathode lid 5, one end of which is connected to the cathode. It is brought into contact with the active material 3. On the other hand, the battery container 8 also serves as an anode terminal, and an anode lid 7 is welded to its upper end, and this anode lid 7 is glass-sealed to the reservoir 4 to seal the anode chamber.

上述したナトリウム−硫黄電池では、電池容器
8の内面が腐食性の強い硫黄または多硫化ナトリ
ウムに接するため、電池容器8の内面が硫化され
て電池反応に寄与する硫黄が充放電サイクルを経
過するにつれて減少し、電池容量が短期間に減少
したり、電池容器8に穴をあける場合があつた。
このような問題を解消するため、ステンレス製の
電池容器8の内面にクロムやモリブデン層を内張
りしたり、カーボン被覆層を設けることが知られ
ているが、クロムやモリブデン層を設けることは
耐食性を高めることはできるが電池のコストを高
くし、またカーボン被覆層を設けても多孔性のも
のであれば、集電効果を高めることができても耐
食性を向上させることはできなかつた。
In the above-mentioned sodium-sulfur battery, the inner surface of the battery container 8 is in contact with highly corrosive sulfur or sodium polysulfide, so the inner surface of the battery container 8 is sulfurized and the sulfur that contributes to the battery reaction is sulfurized as the battery goes through the charge/discharge cycle. There were cases where the battery capacity decreased in a short period of time or a hole was made in the battery container 8.
In order to solve these problems, it is known to line the inner surface of the stainless steel battery container 8 with a chromium or molybdenum layer or to provide a carbon coating layer, but providing a chromium or molybdenum layer impairs corrosion resistance. Although it is possible to improve the current collecting effect, it increases the cost of the battery, and even if a carbon coating layer is provided, if the material is porous, the corrosion resistance cannot be improved even if the current collecting effect can be improved.

発明の目的 本発明は上記欠点を解消するもので、ナトリウ
ム−硫黄電池における陽極活物質に接する電池容
器の耐食性と陽極集電効果とを高め、低コストで
長寿命なナトリウム−硫黄電池が得られる製造法
を提供することを目的とする。
Purpose of the Invention The present invention solves the above-mentioned drawbacks, and improves the corrosion resistance and anode current collection effect of the battery container in contact with the anode active material in a sodium-sulfur battery, thereby providing a low-cost, long-life sodium-sulfur battery. The purpose is to provide a manufacturing method.

発明の構成 本発明のナトリウム−硫黄電池の製造法は、鉄
を主成分とする金属または合金に、天然うるし、
合成うるし、ピツチ、タール等の粘性有機化合物
を被覆して高温処理すると、被覆界面に炭化鉄の
拡散層が形成され、高温処理された粘性有機化合
物と金属との間に強い結合力が得られることに着
目してなされたもので、鉄を主成分とする金属ま
たは合金からなる陽極集電体を兼ねる電池容器の
陽極活物質と接する面に、炭素系の粉末状物質と
繊維状もしくは鱗片状物質とを混在させた粘性有
機化合物を被覆させた後、高温処理して該被覆界
面に炭化鉄の拡散層を有する被覆焼結層を形成す
るものである。
Structure of the Invention The method for manufacturing a sodium-sulfur battery of the present invention includes adding natural lacquer to a metal or alloy whose main component is iron.
When coated with a viscous organic compound such as synthetic lacquer, pitch, or tar and treated at high temperatures, a diffusion layer of iron carbide is formed at the coating interface, creating a strong bond between the high-temperature treated viscous organic compound and the metal. This was developed with a focus on this, and the surface in contact with the anode active material of the battery container, which also serves as an anode current collector made of a metal or alloy whose main component is iron, is coated with a carbon-based powder material and a fibrous or scaly material. After coating with a viscous organic compound mixed with a substance, the coating is treated at high temperature to form a coating sintered layer having an iron carbide diffusion layer at the coating interface.

実施例 以下実施例により説明する。陽極集電体を兼ね
る電池容器にクロム30%−アルミニウム4%−鉄
66%なる組成の合金を用い、陽極活物質と接する
面を50メツシユ以下のα−アルミナ粉末でサンド
ブラストした後、洗浄、脱脂、乾燥させ、粘性有
機化合物としての天然うるしにカーボン微粉末11
重量%、カーボン繊維2.4重量%を配合したもの
を塗布して風乾させた後、アルゴンガス等の不活
性ガス雰囲気炉内に配置して多段式温度プログラ
ム(室温→100℃、1時間→350℃、1時間→500
℃、1時間→750℃、1時間→1000℃、2時間→
徐冷)で前記粘性有機化合物を炭化させて被覆焼
結層を形成した。この被覆焼結層の被覆界面には
炭化鉄、炭化クロムの拡散層が形成されていた。
この工程を粘性有機化合物中に配合させるカーボ
ン粉末、カーボン繊維の量を増加させながら平均
被覆焼結層の厚みが250μになるまで数回反復さ
せる。こうして得られた電池容器8の縦断面図を
第2図に示す。第2図において、9は電池容器を
構成する合金層、10は炭化された粘性有機化合
物、11はカーボン微粉末、12はカーボン繊維
である。すなわち本発明の製造法により得られた
電池容器の内面は、カーボン術粉末11とカーボ
ン繊維12とを配合させて炭化された粘性有機化
合物で被覆されてなり、この電池容器を第1図に
おける電池容器8とし、固体電解質管1との間隙
の陽極室にグラフアイトフエルトからなる陽極電
導材を配し、陽極活物質2としての多硫化ナトリ
ウムNa2S5を充填、密閉して本発明の製造法によ
り得られた電池とする。一方、電池容器8にステ
ンレスを用い、同じ量の陽極活物質2を充填した
ものを従来電池として試作し、ともに350℃、100
mA/cm2の充放電条件でサイクル試験を行ない、
充放電サイクルの経過に対する電池容量の変化を
第3図に示す。第3図において、本発明の製造法
により得られた電池はA、従来電池はBである。
第3図から本発明の製造法により得られた電池A
は、充放電サイクルの経過に対しても電池容量は
ほとんど減少していないことがわかり、このこと
は粘性有機化合物を鉄を主成分とする金属または
合金からなる電池容器の陽極活物質と接する面に
被覆し、焼結させて得られた被覆焼結層は剥離し
にくく、陽極活物質に対してすぐれた耐食性を有
していることを意味している。また粘性有機化合
物中にカーボン微粉末11とカーボン繊維12と
を配合させたことにより、第2図の如くその一部
が被覆焼結層外表面に露出して陽極電導材と接し
て集電効果を高めることができる。
Examples The following examples will be explained below. 30% chromium - 4% aluminum - iron in the battery container that also serves as the anode current collector
Using an alloy with a composition of 66%, the surface in contact with the anode active material is sandblasted with α-alumina powder of 50 mesh or less, then washed, degreased, dried, and mixed with natural lacquer as a viscous organic compound and fine carbon powder 11
After coating and air-drying a compound containing 2.4% by weight of carbon fiber, it was placed in an inert gas atmosphere furnace such as argon gas and subjected to a multistage temperature program (room temperature → 100℃, 1 hour → 350℃ , 1 hour → 500
℃, 1 hour → 750℃, 1 hour → 1000℃, 2 hours →
The viscous organic compound was carbonized by slow cooling) to form a covering sintered layer. A diffusion layer of iron carbide and chromium carbide was formed at the coating interface of this coating sintered layer.
This process is repeated several times while increasing the amount of carbon powder and carbon fiber mixed into the viscous organic compound until the average thickness of the coated sintered layer becomes 250 μm. A longitudinal cross-sectional view of the battery container 8 thus obtained is shown in FIG. In FIG. 2, 9 is an alloy layer constituting the battery container, 10 is a carbonized viscous organic compound, 11 is fine carbon powder, and 12 is carbon fiber. That is, the inner surface of the battery container obtained by the manufacturing method of the present invention is coated with a viscous organic compound that is carbonized by blending carbon powder 11 and carbon fiber 12, and this battery container is used as the battery shown in FIG. A container 8 is formed, an anode conductive material made of graphite felt is arranged in the anode chamber in the gap with the solid electrolyte tube 1, and sodium polysulfide Na 2 S 5 as the anode active material 2 is filled and sealed to produce the present invention. The battery is obtained by the method. On the other hand, we prototyped a conventional battery using stainless steel for the battery container 8 and filling it with the same amount of anode active material 2.
A cycle test was conducted under charge/discharge conditions of mA/cm 2 ,
FIG. 3 shows changes in battery capacity over the course of charging and discharging cycles. In FIG. 3, A is the battery obtained by the manufacturing method of the present invention, and B is the conventional battery.
From FIG. 3, battery A obtained by the manufacturing method of the present invention
It was found that the battery capacity hardly decreased with the passage of charge/discharge cycles, and this indicates that the viscous organic compound was applied to the surface in contact with the anode active material of the battery container made of iron-based metal or alloy. The coated sintered layer obtained by coating and sintering is difficult to peel off, which means that it has excellent corrosion resistance against the anode active material. In addition, by blending fine carbon powder 11 and carbon fiber 12 into the viscous organic compound, a part of it is exposed on the outer surface of the coating sintered layer and comes into contact with the anode conductive material, resulting in a current collecting effect, as shown in Figure 2. can be increased.

発明の効果 実施例において詳述した如く、本発明のナトリ
ウム−硫黄電池の製造法は、陽極活物質に接する
電池容器の耐食性と集電効果をモリブデンの如き
高価な耐食性金属を用いることなく高めることが
でき、低コストで長寿命なナトリウム−硫黄電池
を得ることができる。試算すれば電池容器の内面
にモリブデン層を内張りすると、1セル当り2500
円コスト上昇していたのに対し、本発明の製造法
では380円のコスト上昇であつた。
Effects of the Invention As detailed in the Examples, the method for manufacturing a sodium-sulfur battery of the present invention improves the corrosion resistance and current collection effect of the battery container in contact with the positive electrode active material without using an expensive corrosion-resistant metal such as molybdenum. This makes it possible to obtain a low-cost, long-life sodium-sulfur battery. According to an estimate, if a molybdenum layer is lined on the inside of the battery container, it will cost 2,500 yen per cell.
Whereas the cost increased by 380 yen, the manufacturing method of the present invention increased the cost by 380 yen.

なお上記本発明の製造法において、電池容器は
種々の形状の陽極集電体についても適用できるこ
とは言うまでもなく、また被覆焼結層の厚みや形
成時の温度、時間、カーボン微粉末やカーボン繊
維の配合割合、材質および粘性有機化合物の種類
については特に限定するものではなく、電池構造
(例えば固体電解質管内を陽極室とする電池な
ど)、電池寿命等によりその都度変更しうるもの
である。
It goes without saying that in the manufacturing method of the present invention, the battery container can be applied to anode current collectors of various shapes, and the thickness of the covering sintered layer, the temperature and time during formation, and the amount of fine carbon powder or carbon fiber can be adjusted. The blending ratio, material, and type of viscous organic compound are not particularly limited, and may be changed each time depending on the battery structure (for example, a battery with an anode chamber inside a solid electrolyte tube), battery life, etc.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はナトリウム−硫黄電池の断面図、第2
図は本発明の製造法により得られたナトリウム−
硫黄電池の陽極集電体を兼ねる電池容器の一部拡
大断面図、第3図は電池容量の充放電サイクルの
経過に対する変化を示す図である。 1……固体電解質管、8……電池容器、9……
電池容器を構成する合金層、10……炭化された
粘性有機化合物、11……カーボン微粉末、12
……カーボン繊維。
Figure 1 is a cross-sectional view of a sodium-sulfur battery, Figure 2
The figure shows sodium obtained by the production method of the present invention.
FIG. 3 is a partially enlarged sectional view of a battery container that also serves as an anode current collector of a sulfur battery, and is a diagram showing changes in battery capacity over the course of charging and discharging cycles. 1...Solid electrolyte tube, 8...Battery container, 9...
Alloy layer constituting the battery container, 10...Carbonized viscous organic compound, 11... Fine carbon powder, 12
...Carbon fiber.

Claims (1)

【特許請求の範囲】 1 鉄を主成分とする金属または合金からなる陽
極集電体を兼ねる電池容器の陽極活物質と接する
面に、炭素系の粉末状物質と繊維状もしくは鱗片
状物質とを混在させた粘性有機化合物を被覆した
後、高温処理して該被覆界面に炭化鉄の拡散層を
形成し、この電池容器内に陽極活物質を含浸させ
た陽極電導材を充填して密閉したことを特徴とす
るナトリウム−硫黄電池の製造法。 2 粘性有機化合物中に混在させた炭素系の粉末
状物質と繊維状もしくは鱗片状物質は、高温処理
することにより形成された被覆焼結層外表面に一
部露出させ、陽極電導材と接するようにしたこと
を特徴とする特許請求の範囲第1項記載のナトリ
ウム−硫黄電池の製造法。
[Claims] 1. A carbon-based powder material and a fibrous or scaly material are applied to the surface of a battery container that also serves as an anode current collector made of a metal or alloy containing iron as a main component and is in contact with the anode active material. After coating the mixed viscous organic compound, high temperature treatment is performed to form a diffusion layer of iron carbide at the coating interface, and the battery container is filled with an anode conductive material impregnated with an anode active material and sealed. A method for manufacturing a sodium-sulfur battery characterized by: 2. The carbon-based powdery substance and fibrous or scaly substance mixed in the viscous organic compound are partially exposed on the outer surface of the coating sintered layer formed by high-temperature treatment, so that they come into contact with the anode conductive material. A method for manufacturing a sodium-sulfur battery according to claim 1, characterized in that:
JP61031288A 1986-02-15 1986-02-15 Preparation of sodium-sulfur cell Granted JPS61179069A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61031288A JPS61179069A (en) 1986-02-15 1986-02-15 Preparation of sodium-sulfur cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61031288A JPS61179069A (en) 1986-02-15 1986-02-15 Preparation of sodium-sulfur cell

Publications (2)

Publication Number Publication Date
JPS61179069A JPS61179069A (en) 1986-08-11
JPH0253910B2 true JPH0253910B2 (en) 1990-11-20

Family

ID=12327118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61031288A Granted JPS61179069A (en) 1986-02-15 1986-02-15 Preparation of sodium-sulfur cell

Country Status (1)

Country Link
JP (1) JPS61179069A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9007998D0 (en) * 1990-04-09 1990-06-06 Aabh Patent Holdings Electrochemical cell

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS534896A (en) * 1976-07-01 1978-01-17 Nippon Telegr & Teleph Corp <Ntt> Production of magnetic thin film
JPS54109134A (en) * 1978-02-15 1979-08-27 Toray Industries Sodiummsulfur cell

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS534896A (en) * 1976-07-01 1978-01-17 Nippon Telegr & Teleph Corp <Ntt> Production of magnetic thin film
JPS54109134A (en) * 1978-02-15 1979-08-27 Toray Industries Sodiummsulfur cell

Also Published As

Publication number Publication date
JPS61179069A (en) 1986-08-11

Similar Documents

Publication Publication Date Title
US3933521A (en) Anode for a secondary, high-temperature electrochemical cell
US3833421A (en) Secondary electrochemical cells with a chalcogen cathode
GB2141576A (en) Impregnated cathode
EP2313353A1 (en) Electrode for lead-acid battery and method for producing such an electrode
US4054729A (en) Rechargeable high temperature electrochemical battery
JPH01194276A (en) Electrochemical cell
US5656391A (en) lectrochemical alkali metal cell and process for its manufacture
JPH04230959A (en) Rechargeable high-temperature electrochemical power storage battery
JPH026191B2 (en)
US4233378A (en) Process for manufacture of positive electrode for lithium/metal sulfide secondary cell
US3506490A (en) Solid electrolyte battery having lithium or lithium alloy anode
US4509254A (en) Method for molybdenum-coated aluminum current collector for alkali metal/sulfur battery cells
US4144383A (en) Positive electrode for lithium/metal sulfide secondary cell
US4048394A (en) Secondary battery or cell with vitreous carbon coated graphite current collector
US4649022A (en) Method of making a current collector for a sodium/sulfur battery
JPH0253910B2 (en)
JPH0352187B2 (en)
JPH0353747B2 (en)
Kuz'minskii et al. Nickel phosphorus trisulfide: an electroactive material for medium-temperature lithium batteries
US4460662A (en) Molybdenum-coated aluminum cathodes for alkali metal/sulfur battery cells
JPS62290067A (en) Manufacture of battery
JPS6342819B2 (en)
US3499795A (en) Storage battery having electrodes comprising a supporting base of titanium nitride
US3161545A (en) Rechargeable cell and electrode therefor
JPH10188998A (en) Positive electrode conductive material for sodium-sulfur battery