JPH0253624A - Double-acting cylinder - Google Patents

Double-acting cylinder

Info

Publication number
JPH0253624A
JPH0253624A JP20283588A JP20283588A JPH0253624A JP H0253624 A JPH0253624 A JP H0253624A JP 20283588 A JP20283588 A JP 20283588A JP 20283588 A JP20283588 A JP 20283588A JP H0253624 A JPH0253624 A JP H0253624A
Authority
JP
Japan
Prior art keywords
cylinder
piston
valve
vibration
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20283588A
Other languages
Japanese (ja)
Inventor
Hiroshi Matsumoto
洋 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYB Corp
Original Assignee
Kayaba Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kayaba Industry Co Ltd filed Critical Kayaba Industry Co Ltd
Priority to JP20283588A priority Critical patent/JPH0253624A/en
Publication of JPH0253624A publication Critical patent/JPH0253624A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/02Spring characteristics, e.g. mechanical springs and mechanical adjusting means
    • B60G17/04Spring characteristics, e.g. mechanical springs and mechanical adjusting means fluid spring characteristics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/90Other conditions or factors

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Vehicle Body Suspensions (AREA)

Abstract

PURPOSE:To simply and exactly prevent the cylinder lock within the high frequency vibration range by controlling the working oil flowing through an oil passage formed at the piston part of a double acting cylinder, with a valve which is actuated at an frequency exceeding the working range of a control valve. CONSTITUTION:The control system of a hydraulic suspension system consists of a double acting cylinder 4 having two rods 15 and a control rod 5. In such system when an exciting frequency exceeds the response range of the control system, the piston 16 of the double acting cylinder 4 and both rods 15 are moved. On the other hand, movable masses 20 at both sides of the piston 16 are stopped due to the inertia force. The relative moving moment is generated between the piston 16 and the movable mass 20 so that the vibration of the secondary system is generated due to the damper operating part which consists of the movable mass 20, a spring 22, an oil reservoir 23 and a slot 24. Then the movable mass 20 is separated from a seat part 18 to open an oil passage 17, whereby preventing the cylinder lock.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、車輌における油圧懸架サスペンションシステ
ムにおいて使用する複動シリンダに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a double-acting cylinder for use in a hydraulic suspension system in a vehicle.

〔従来の技術〕[Conventional technology]

従来周知の如く、車輌におけるサスペンション制御系と
して、すてに幾−)かの方法か提案されており、その内
の複動シリンダによる懸架「段による場合の−・例な第
2 rlに示す。
As is well known in the art, several methods have been proposed as suspension control systems for vehicles, among which a suspension system using double-acting cylinders is shown in the second example.

即ち、この種サスペンションにおいては、+1jBtを
これと搾車輪2のサスペンシミ1ンアーム3との間に設
けた複動シリンダ4によって懸71し、該シリンダ4の
1−下室A及びBへの作動油の給排を制御する外部油圧
回路の制御弁5を、該シリンダ4に並置した変位センサ
6及びその他の各種センサで検出した・1(体状況仙号
を受けるコントローラ7からの演算出力信号と圧力セン
サ8゛C感知した前記り下室A、B間の圧力偏差信号と
のコンパレータ9による比較結果の信号に基づいて作動
させて、車体l(ばねヒ)に加わる慣性力やサスペンシ
ミ1ンアーム3(ばねド)に走行路面の凹凸によって発
生する振動、の伝速力又はばね下11に系の動きなどを
、複動シリンダ4における発生荷重(圧力)及びその変
位を調整することによって制御するようになしである。
That is, in this type of suspension, +1jBt is suspended 71 by a double acting cylinder 4 provided between this and the suspension arm 3 of the squeeze wheel 2, and hydraulic oil is supplied to the lower chambers A and B of the cylinder 4. The control valve 5 of the external hydraulic circuit that controls the supply and discharge of the cylinder 4 is detected by the displacement sensor 6 and other various sensors arranged in parallel with the cylinder 4. The sensor 8'C is activated based on the signal of the comparison result between the pressure deviation signal between the lower chambers A and B detected by the comparator 9, and the inertial force applied to the vehicle body l (spring) and the suspension shim arm 3 ( The transmission force of the vibration generated by the unevenness of the running road surface in the spring (spring) or the movement of the system under the spring 11 is controlled by adjusting the load (pressure) generated in the double-acting cylinder 4 and its displacement. It is.

その他、Sは油圧源、Tはタンクを示す。In addition, S indicates a hydraulic source and T indicates a tank.

ところで、一般的に、市輌用サスペンションにおいて求
められている技術的要件は乗心地と操縦安定性の高次元
での両立機渣である。そのため、第2図に示す例では両
ロフトの複動シリンダ4を使い、その内圧室A及びBの
間の差圧を−・定(出力荷重がばね上の重着どなる)に
制御することを基本に、慣性力に対してはその大きさに
応じて偏差をつけるような補正を加えるルj御を行って
いる。
By the way, generally speaking, the technical requirement for suspensions for commercial vehicles is to achieve a high level of both ride comfort and handling stability. Therefore, in the example shown in Fig. 2, a double-acting cylinder 4 with both lofts is used, and the differential pressure between its internal pressure chambers A and B is controlled to be constant (the output load is not heavy on the spring). Basically, the inertia force is controlled by adding a correction to the inertia force according to its magnitude.

即ち1乗心地のためには路面の凹凸などのような外力か
シリンダ4に加えられた時に、該シリンダ4に対して前
記制御を行わないと、凸人力に対し゛乙圧室Aの内圧は
増圧、圧室Bは減圧することになり、内圧室A、Hの設
定差圧にアンバランスな状態か生じる。
In other words, in order to achieve a comfortable ride, when an external force such as an uneven road surface is applied to the cylinder 4, if the above-mentioned control is not performed on the cylinder 4, the internal pressure of the pressure chamber A will be The pressure increases, and the pressure in pressure chamber B decreases, resulting in an unbalanced state of the set differential pressure between internal pressure chambers A and H.

そこで、このf−め設定した差圧に対する内圧のアンバ
ランスをなくすように、前記制御弁5を働かせる制御を
シリンダ4に加えれば、凸入力による衝撃力は該シリン
ダ4て吸収されたことになり、ばね上部分には伝わらず
、その結果良い乗心地か得られる。逆に凹向きの振動入
力かシリンダ4に4えられる時には、圧室A及びBの間
に生しる先の場合と逆の差圧アンバランスをなくすよう
に、tJIWすれば、先の場合と同様に良い乗心地を得
ることか出来る。
Therefore, if control is applied to the cylinder 4 to operate the control valve 5 so as to eliminate the unbalance of the internal pressure with respect to the differential pressure set f-, the impact force due to the convex input will be absorbed by the cylinder 4. , it is not transmitted to the sprung portion, resulting in a good riding comfort. Conversely, when concave vibration input is applied to cylinder 4, if tJIW is applied to eliminate the differential pressure imbalance that occurs between pressure chambers A and B, which is the opposite of the previous case, You can get a good ride as well.

一方1例えば車輌が旋回するような時には、重体の慣性
力によって1周知の如く内輪から外輪へ荷重め移動が起
こる。これは、内輪側のシリンダ4に加わる荷重を減ら
して、小側の浮き一ヒがりを起こし、外輪側の荷重を増
して沈み込みを弓1き起こす。
On the other hand, when a vehicle turns, for example, a load is transferred from the inner ring to the outer ring due to the inertial force of the heavy body, as is well known. This reduces the load applied to the cylinder 4 on the inner ring side, causing the small side to float, and increases the load on the outer ring side, causing it to sink.

このような詩に、内輪側では圧室Aの内圧を高め、〜方
て圧室Bの内圧を低めるように制御すれば、シリンダ4
には下向きの力か発生し浮きにがりを抑えることが出来
る。また、外輪側では圧室A、Hに対して逆の制御をす
ることによってシリンダ4に上向きの力が発生し、その
沈み込みを抑えることか出来る。しかして、全体ては、
車体姿勢にフラット感をrpえ、操縦安定性を向トさせ
ることか出来る。
In this poem, if the inner ring side is controlled to increase the internal pressure of pressure chamber A and decrease the internal pressure of pressure chamber B, cylinder 4
A downward force is generated, which can suppress floating. Furthermore, by controlling the pressure chambers A and H in the opposite manner on the outer ring side, an upward force is generated in the cylinder 4, and it is possible to suppress the sinking of the cylinder 4. However, overall,
It can give a flat feeling to the vehicle body posture and improve handling stability.

即ち、路面の凹凸に対しては、シリンダ圧室A及びBの
間の圧力の差圧一定の制御を行いつつ、慣性力か入る時
には、その大きさに応じたr徒の偏差をつけるように補
iIを加えることにより、高次元の11f4つか11目
七になる。
In other words, while controlling the pressure difference between cylinder pressure chambers A and B to be constant in response to unevenness in the road surface, when inertial force is applied, a deviation of r is applied depending on the magnitude of the inertial force. By adding complement iI, it becomes a higher dimension 11f4 or 11th seven.

第3図(イ)、(TI)、 (ハ)はこのような制御[
1的をもって使用される制御弁5、シリンダ質e系、こ
れ等の総合の周波数特性を、縦軸にゲーインdBを採り
横じくに171波数ωを採って、夫々示す特性12iて
、制御弁5、シリンダ質賃系共に周波数ωか高くなるに
連れて、ゲインdnか下がる特性を持つのてそれらの総
合の特性も、高周波数側でゲインdBか下がる特性にな
る。
Figure 3 (a), (TI), and (c) show such control [
The overall frequency characteristics of the control valve 5, the cylinder type e system, and the like, which are used in a single purpose, are expressed by taking the gain dB on the vertical axis and the wave number ω of 171 on the horizontal axis. , the cylinder mass system both have a characteristic that as the frequency ω increases, the gain dn decreases, so their combined characteristics also have a characteristic that the gain dB decreases on the high frequency side.

ここて、総合のゲイン特性は、路面の凹凸入力変位(x
)に対するばね上部分の変位(xL、)の比率を示して
いる。即ち、制御弁5が応答する領域ではゲインdBは
高く、シリンダ4に自由な動きをさせることかできるか
、応答しにくくなる高周波数域では、凹凸入力変位(X
)に対してのはね1一部分の変(&、(x、、)のゲイ
ンtlBか低い。換言すれば、小さな凹凸の変位に対(
)てばね」−か変位しにくくなっている。即ち、制御j
P 5の作動によるシリンダ圧室A、Bへの作動油の給
排か出来ず2シリンダ4がオイル口yり状態になる。
Here, the overall gain characteristic is the input displacement of road surface irregularities (x
) to the displacement (xL, ) of the sprung portion. That is, the gain dB is high in the region where the control valve 5 responds, and the unevenness input displacement (X
) with respect to the displacement of a part of the spring 1 (&, (x, , ) is low. In other words, with respect to the displacement of small irregularities (
) The spring is difficult to displace. That is, control j
Due to the operation of P5, hydraulic oil cannot be supplied to or discharged from the cylinder pressure chambers A and B, resulting in the two cylinders 4 being in a dry state.

従って、該シリンダ4での前記凹凸による振動か吸収で
きず、そのまま、振動がばね11部分に伝わること大な
る。つまり、制」弁5か応答できない高周波数域ての乗
心地の向1.は期待てきず、むしろ悪化していると行っ
ても良い。勿論、かかる′従来装置のJR成における制
御jtは−・般的にサーボ弁であり、その応答性能か高
いにもかかわらず、シリンダロックに至るような高周波
数域の振動に対しては、サスペンションのブツシュ類か
その吸収を受は持つのであるかここで問題としていると
ころの制御ブr5の応答は、それ程高い応答でなく、制
御系としてl [I I+ 、。
Therefore, vibrations due to the unevenness in the cylinder 4 cannot be absorbed, and the vibrations are transmitted directly to the spring 11 portion. In other words, the riding comfort in the high frequency range where the control valve 5 cannot respond is 1. I don't have high expectations, and if anything, I think it's getting worse. Of course, the control jt in the JR configuration of such conventional equipment is generally a servo valve, and despite its high response performance, suspension The response of the control block r5, which is the issue here, is not a very high response, and as a control system, l [I I+,.

以ドの範囲を対象とするものである。The scope is as follows.

しかして、このような範囲の周波数に対するシリンダロ
ック状態を防IFする方υ、とし゛(、第4図、第5図
の方法か考えられる。
Therefore, there is a possible way to prevent the cylinder lock state for frequencies in this range υ (the methods shown in FIGS. 4 and 5).

第4図はスプール10とランド11がオーバラップして
いるものである。このa敗の場合は、高周波数域の振動
に応答できず1図示の様にシリンダ圧室A及びBがロッ
ク状態になった時は。
In FIG. 4, the spool 10 and land 11 overlap. In this case, when the cylinder pressure chambers A and B become locked as shown in Figure 1 because they cannot respond to vibrations in the high frequency range.

シリンダ圧室A及びBに各々向かう作動油の給排路14
a、+4bに接続されている絞り13a、 l:lb付
きのアキュームレータ+2a、12bに油が流れ、ロッ
クを防ぐ構造である。
Hydraulic oil supply and discharge passages 14 heading to cylinder pressure chambers A and B, respectively
The structure is such that oil flows to accumulators +2a and 12b with throttles 13a and l:lb connected to a and +4b to prevent locking.

第5図はスプール10とランド11かアンダーラップし
ているものである。これては、高周波数域で、図示のよ
うにスプールlOが動けなくなった場合でも、両圧室A
と8との間及びこれ・等への給排路が連通しており、シ
リンダ4かロック状態に至るようなことはない。
In FIG. 5, the spool 10 and the land 11 are underlapping. This means that even if the spool IO becomes stuck in the high frequency range as shown in the figure, the double pressure chamber A
The supply and discharge passages between and 8 and these etc. are in communication, and there is no possibility that the cylinder 4 will be in a locked state.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところて、上記第4図示の構成による場合はアキューム
レータ12a、 12bを夫々の圧室A、 Hに対して
個別に設けなければならず、従って、このアキュームレ
ータ構成をシリンダ内臓型或いはシリンダ外設型のいず
れの構造を採用するにしても、シリンダ4と制御ブr5
との間の構成が複雑になり、重数には向かないことが予
想される。更に、シリンダ4.制御5P5、アキューム
L/−夕12a又は+2b間で共振系を作ることになり
、それを抑えるためのダンパーか別に必要になる。勿論
、このダンパーを構成するための構造か複雑゛になるこ
とは素より、それ以−Lに附設ダンパーで発生するダン
ピンクが全周波数域て働き、その結果、該シリンダ4に
おける振動の絶縁性を悪化させる。
However, in the case of the configuration shown in the fourth figure, the accumulators 12a and 12b must be provided separately for the pressure chambers A and H, respectively, and therefore, this accumulator configuration cannot be used as a built-in cylinder type or an external cylinder type. Regardless of which structure is adopted, cylinder 4 and control brake r5
It is expected that the configuration between the Furthermore, cylinder 4. A resonance system will be created between the control 5P5 and the accumulation L/-12a or +2b, and a separate damper will be required to suppress it. Of course, the structure for configuring this damper will be complicated, but the damping pink generated by the damper attached to L will work in the entire frequency range, and as a result, the vibration insulation in the cylinder 4 will be improved. make worse.

そして、第51−Aの構成によれば、高周波数域もシリ
ンダ4かロック状態にならないが、この=lG 71は
”8い換えるとその周波数域でシリンダ4か自由に動い
てしまうことであり、振動絶縁かてきないことになる。
According to the configuration of No. 51-A, cylinder 4 does not become locked even in the high frequency range, but this =lG71 means ``8'' In other words, cylinder 4 moves freely in that frequency range. , vibration isolation will not be possible.

しかして、この振動を抑えるには、前記アキュムレータ
12a、 12bの他にシリンダ4と並ターにばねとダ
ンパーとを設け、これにより制振の作用をさせる必要か
ある。
Therefore, in order to suppress this vibration, in addition to the accumulators 12a and 12b, it is necessary to provide a spring and a damper in parallel with the cylinder 4, so as to have a damping effect.

しかし、この場合には上記の場合と同様、共振系を作る
ことになって、その結果、ダンピンクか振動入力の全周
波数域で働き、該シリンダ4における振動絶縁性を悪化
させる。
However, in this case, similar to the above case, a resonant system is created, and as a result, the damping acts in the entire frequency range of the vibration input, worsening the vibration isolation in the cylinder 4.

そこて、本発明は、かかる両ロッドの複動シリンダとこ
れへの作動油の給排制御のための制御1弁とを使用する
油圧懸架式のサスペンション制御系において、創御it
によるlTA御動作が追随出来ない域の高周波振動入力
に対するシリンダロック防出な、広域の加振周波数域に
おけるサスペンションの振動絶縁性を悪化させることな
く行い得る?caの開発を1.1的とする。
Therefore, the present invention is directed to a hydraulic suspension control system that uses such a double-acting cylinder of both rods and one control valve for controlling the supply and discharge of hydraulic oil to the double-acting cylinder.
Is it possible to prevent cylinder locking in response to high-frequency vibration inputs that cannot be followed by ITA control operations without deteriorating the vibration isolation of the suspension in a wide excitation frequency range? The development of ca is assumed to be 1.1.

(課題を解決するための手段) しかして、この目的は、本発明によれば、両ロット#i
動シリンダと制御弁とを使用するサスペンション制御系
において、該シリンダのピストン部に、これによって仕
切られたシリンダ内圧室の間を連通ずる油路と、前記制
御弁の作動周波数域を越える加振周波数に対して作動す
るニー次系の振動構造部からなる周波数感応バルブとを
設けて、該バルブにより重犯油路に流れる作動油を制御
するように構j&lノてなる複動シリンダニよって達成
することが出来る。
(Means for Solving the Problem) According to the present invention, this purpose is achieved by
In a suspension control system that uses a dynamic cylinder and a control valve, the piston of the cylinder has an oil passage that communicates between the cylinder internal pressure chamber partitioned by the piston, and an excitation frequency that exceeds the operating frequency range of the control valve. This can be achieved by a double-acting cylinder having a structure in which a frequency-sensitive valve consisting of a secondary system vibration structure that operates against the valve is provided, and the valve controls the hydraulic oil flowing into the criminal oil passage. I can do it.

(作 用) 即ち、複動シリンダのピストン部に一体に組込まれた二
次振動系の周波数感応バルブは、ピストン動作の所定の
作動周波数域まては、その振動構造部かピストンと一体
に移動するので、シリンダ内圧室間の油路な閉鎖状7g
に保つように機崩する。
(Function) In other words, the frequency sensitive valve of the secondary vibration system that is integrated into the piston part of the double-acting cylinder moves its vibration structure integrally with the piston within the predetermined operating frequency range of the piston operation. Therefore, the oil passage between the cylinder internal pressure chambers is closed 7g.
The machine collapses to keep it in place.

そして、この作動周波数を越える制御Jr動作の追随が
不可能な加振周波数域に達した際に、該バルブがその振
動構造部の二次系の振動によって+tij記油路全油路
するように作用して、両圧室nllの作動油の流れを許
す。
Then, when the vibration frequency reaches an excitation frequency range in which it is impossible to follow the control Jr operation that exceeds this operating frequency, the valve is caused to move all the +tij oil passages due to the vibration of the secondary system of its vibration structure. This acts to allow the flow of hydraulic oil in both pressure chambers nll.

これによって、シリンダは制御弁不作動下のロック状態
の発生を防がれ、しかも、外部油圧回路にダンパー等の
他の振動減衰系を必要としないので、これを用いるサス
ペンションの振動絶縁性の悪化を防ぐ一ヒで有効に機能
する。
This prevents the cylinder from locking up when the control valve is inoperative, and also eliminates the need for other vibration damping systems such as dampers in the external hydraulic circuit, which reduces the vibration isolation of suspensions that use this system. It works effectively to prevent this.

(実施例) 次に、本発明の好ましい実施例について添附図面を参照
して説明する。
(Embodiments) Next, preferred embodiments of the present invention will be described with reference to the accompanying drawings.

第1図は本発明の一実施例を示すサスペンション制御系
のJJi成図で、前述の従来装置における各機構部分と
同様な構成部分には夫々共通の記号を賦して説明するに
、従来装置と同じく両ロットI5の複動シリンダ4と制
御弁5と゛C構成される制御系を基本構造にして、該複
動シリン44の両I;下室A、Bかピストン16に対し
て対称に構成しである。
FIG. 1 is a JJI diagram of a suspension control system showing an embodiment of the present invention. Common symbols are given to the same components as those in the conventional device described above, and the explanation will be given below. Similarly, the control system consisting of the double-acting cylinder 4 and control valve 5 of both lots I5 and C is used as the basic structure, and the lower chambers A and B of the double-acting cylinder 44 are configured symmetrically with respect to the piston 16. It is.

しかして、前記両°ロット15の接合部に−・体に螺合
固定した該ピストン16には、前記り下室A及び8間を
連通ずる向きに開穿した少なくとも一対の油路I7を設
けてあり、その両側面を後述する11fj助マスと当接
して前記油路17の〃いに逆側の目を閉しるシート部1
8となしてあり、これに対する油路【7の夫々他方の口
をピストン側面における径方向に延びる開穿溝19に連
通させた開放口となしである。
The piston 16 screwed and fixed to the body at the joint of both rods 15 is provided with at least a pair of oil passages I7 opening in a diagonal direction and communicating between the lower chambers A and 8. The seat part 1 has both sides thereof in contact with the 11fj support mass described later to close the opposite side of the oil passage 17.
8, and the other openings of the oil passages [7 for this oil passage 7 are open ports which communicate with the open perforated grooves 19 extending in the radial direction on the side surface of the piston.

そして、先の可動マス20は金属等からなる所要の% 
Is1体からなり、前記ピストン16の両側の両ロット
15に密に1fjWしてあり、シリンダ5の内壁との間
に作動油を通す幾分の隙間を有し、riij記両ロット
15に固定したストッパ21の端面と前記ピストン[6
におけるシート部18の端面との間で摺動自在に設けて
る。また、前記ストッパ21の端面と該可動マス20と
の間に配在したスプリング22の拡圧力によって、この
0■動マス20は前記シート部18に圧接する向きに附
勢されている。
The movable mass 20 is made of metal etc.
It consists of one Is body, is tightly connected to both lots 15 on both sides of the piston 16, has some gap between it and the inner wall of the cylinder 5 to allow the hydraulic oil to pass, and is fixed to both lots 15 on both sides of the piston 16. The end face of the stopper 21 and the piston [6
It is provided so as to be slidable between the end face of the seat portion 18 at. Further, the zero-movement mass 20 is biased in a direction to come into pressure contact with the seat portion 18 by the expanding force of a spring 22 disposed between the end face of the stopper 21 and the movable mass 20.

更に、これi 11’r動マス20及びストッパ2【の
組付は部分における内ロット15の周面と該可動マス2
0及びストッパ21とによって囲まれる油溜り室23を
形成し、該室23に臨む細孔24を可動マス20に穿っ
゛〔、可動マス20の移動に連れて油溜り室23からの
作動油の用人を該細孔24により規制することにより、
可動マス20の移動に対してダンパー機イ對を発揮する
ように構成しである。
Furthermore, the assembly of the movable mass 20 and the stopper 2 is carried out on the circumferential surface of the inner rod 15 and the movable mass 2.
0 and the stopper 21, and a small hole 24 facing the chamber 23 is bored in the movable mass 20. As the movable mass 20 moves, hydraulic oil flows from the oil reservoir chamber 23. By regulating the user through the pores 24,
The structure is such that a damper mechanism is exerted against the movement of the movable mass 20.

このようなa成よりなる実施例によれば、シリンダ4と
制御弁5とからなる制御系が応答できる加振周波数域に
おいては、ピストンI6の両側のI+[動マス20は二
次系の振動な起こさず、ピストン15と一体的に移動し
ており、この状態でスプリング22の拡圧力によるシー
ト部18への圧着てピストン内の油路17を閉じており
、これによって、シリンダ4自体は通常の両圧室密封型
のシリンダとして機能するので、制御弁5におけるスプ
ール1()の働きに応してこれ等上下室A及びBへの作
動油の給排制御下に、シリンダ5は前述の従来装置にお
ける基本動作と同様に働く これに対して、加振周波数が制御弁5の応答域を越える
場合には、制御系の振動に対して制御弁5が応答しない
のて、該弁5を介しての外部油IL回路による前記上下
室A又はBへの作動油の給排か行われない一方、このと
きの比較的高い周波数の振動を受けたシリンダ9ではピ
ストン16及びその両ロット15が振動の向きに応じて
L下に移動しようとする。
According to the embodiment consisting of such a configuration, in the excitation frequency range in which the control system consisting of the cylinder 4 and the control valve 5 can respond, the I+[dynamic mass 20 on both sides of the piston I6 is It moves together with the piston 15 without causing any trouble, and in this state, the expansion force of the spring 22 presses against the seat part 18 and closes the oil passage 17 inside the piston. Since the cylinder 5 functions as a cylinder with sealed double pressure chambers, the supply and discharge of hydraulic oil to the upper and lower chambers A and B is controlled according to the function of the spool 1 () in the control valve 5. On the other hand, when the excitation frequency exceeds the response range of the control valve 5, the control valve 5 does not respond to vibrations in the control system, so the valve 5 is While the hydraulic oil is not supplied to or discharged from the upper and lower chambers A or B by the external oil IL circuit via the external oil IL circuit, the piston 16 and its two rods 15 are damaged in the cylinder 9 which is subjected to relatively high frequency vibration at this time. It tries to move down L depending on the direction of vibration.

このとき、可動マス20はそれ自体の持つ慣性作用で、
その位置に止まろうとするので、このピストン16とO
f動動メス20の間で微少ではあるか、相対的な移動か
生じる。すなわち、13丁動子ス20、スプリング22
及び油溜り室23ど細孔2・1とによるダンパー作用部
などの共同作用による二次系の振動が起こる。
At this time, the movable mass 20 has its own inertia,
Since it tries to stop at that position, this piston 16 and O
A slight or relative movement occurs between the f-moving knives 20. That is, 13 hinges 20, springs 22
Vibrations in the secondary system occur due to the joint action of the damper acting portion and the oil reservoir chamber 23 and the pores 2 and 1.

しかして、この相対的な動きをする二次系の振動て、j
+(動マス20かシート部18から敲れるの°C1油路
17か開通し、上ド室A、B間の作動1ffbの流れが
第11゛X J=鎖線図示(片側し1示)の如く生じて
1シリンダロツク状態を防ぐことが出来る。
Therefore, the vibration of the secondary system with this relative movement, j
+ (When the moving mass 20 is drawn from the seat part 18, the C1 oil passage 17 is opened, and the flow of the operating 1ffb between the upper chambers A and B is 11゛This can prevent one cylinder from locking up.

(発明の効果) このように、本発明複動シリンダによれば、制御弁の作
動周波数域を越える加振周波数に対して作動する二次系
の振動構造部からなる周波数感応バルブによって、シリ
ンダ内の円圧室間に設けた油路を開閉制御するようにな
し・、これをピストン部に411成したので、この制御
系が応答出来る振動周波数の範囲では、ピストン部にお
ける前記油路の閉鎖下に、従来装置と同様に外部油圧回
路における前記制御弁の動作によって、これ等圧室への
作動油の給排を行い、該シリンダにおける振動絶縁性を
発揮させることが出来る。
(Effects of the Invention) As described above, according to the double-acting cylinder of the present invention, the frequency-sensitive valve consisting of the vibration structure of the secondary system that operates at an excitation frequency that exceeds the operating frequency range of the control valve, Since this control system is designed to control the opening and closing of the oil passage provided between the circular pressure chambers of In addition, as in the conventional device, hydraulic oil is supplied and discharged to and from the equal pressure chamber by the operation of the control valve in the external hydraulic circuit, thereby making it possible to exhibit vibration isolation in the cylinder.

そして上記応答可能な範囲を越える高い周波数の振動に
対しては、これを感知して作動する周波数感応バルブの
開放で前記油路を介して、両圧室が連通ずるので、この
ときのシリンダのオイルロックを防ぐことが出来る。し
かも、この周波数感応バルブにおける前記開放作動周波
数は、二次系の振動構造部におけるばね定数と質量部の
重さを変えることにより、自由に設定することが可能で
あり、かつ、1俵構造部におけるダンピングを適度に加
減することにより油路の開き具合をある程度al!I整
することも出来るのて、制御弁の周波数応答特性並びに
シリンダ質量などに適合する前記バルブ動作を起こさせ
ることか出来る。
In response to high-frequency vibrations that exceed the above-mentioned response range, the frequency-sensitive valve that senses and operates opens the two pressure chambers through the oil passage, so that the cylinder at this time Oil lock can be prevented. Moreover, the opening frequency of this frequency-sensitive valve can be freely set by changing the spring constant and the weight of the mass part in the vibration structure of the secondary system. By adjusting the damping appropriately, the opening of the oil passage can be adjusted to a certain degree! It is also possible to adjust the valve operation according to the frequency response characteristics of the control valve, the cylinder mass, etc.

なお、前記振動構造部におけるダンピング作用は該構造
部における共振動作を防ぐためにある程瓜大きく採る必
要があるが、しかし、この場合のダンピング作用はピス
トン部内部の二次系の振動体に対してのみ働くたけであ
るので、これか制御系全体に影響を与え、該第の振動絶
縁性を悪化させるようなことはない。
It should be noted that the damping action in the vibrating structure needs to be large enough to prevent resonant operation in the structure, but in this case the damping action will not affect the secondary vibrating body inside the piston part. Since this only works, it will not affect the entire control system and will not deteriorate the first vibration isolation property.

このように、本発明複動シリンダは、応答性のそれ程!
〆くない1vliJ1弁を用いた場合にも、従来装置の
ようにシリンダロックを防止するためのばね要素を附設
する必要がなくて、高周波数振動域でのシリンダロック
を防1トしたサスペンションの振動絶縁性を極めて良好
に保つことが出来る。
In this way, the double-acting cylinder of the present invention has excellent responsiveness!
Even when using the 1vliJ1 valve, which does not have a limit, there is no need to install a spring element to prevent cylinder lock as in conventional devices, and the suspension vibration prevents cylinder lock in the high frequency vibration range. It is possible to maintain extremely good insulation properties.

【図面の簡単な説明】[Brief explanation of the drawing]

第113Jは木:2!明複動シリンダの一実施例を示す
制御系の要部の構成図、第2図はサスペンションシステ
ムの−・例を示す構成[4,第3図(イ)、(O)、(
ハ)はL記すスペンションシステムにお番する各要部機
構の夫々の作動特性図、第4図及び第5図は同じく上記
システムにおける制御系の各個を夫々示す構成図である
。 (符号の説明) l・・・+l(体、2・・・車輪、4・・・複動シリン
ダ、5・・・制御系、I5・・・両ロツlく、16・・
・ピストン、17・・・油路、 18・・・シート部、
ZO・・・可動マス、21−拳・ストッパー、22・・
・スプリング、23・・・′油溜り室、24・・・細孔
The 113th J is Thursday: 2! A configuration diagram of the main parts of the control system showing an example of a bright double-acting cylinder, and Figure 2 is a configuration diagram showing an example of a suspension system [4, Figures 3 (A), (O), (
C) is a diagram showing the operating characteristics of each main mechanism in the suspension system indicated by L, and FIGS. 4 and 5 are configuration diagrams respectively showing each control system in the above system. (Explanation of symbols) l...+l (body, 2...wheels, 4...double acting cylinder, 5...control system, I5...both parts, 16...
・Piston, 17...oil passage, 18...seat part,
ZO...movable square, 21-fist/stopper, 22...
・Spring, 23...'oil reservoir chamber, 24...pore.

Claims (1)

【特許請求の範囲】[Claims] 両ロット複動シリンダと制御弁とを使用するサスペンシ
ョン制御系において、該シリンダのピストン部に、これ
によって仕切られたシリンダ内圧室の間を連通する油路
と、前記制御弁の作動周波数域を越える加振周波数に対
して作動する二次系の振動構造部からなる周波数感応バ
ルブとを設けて、該バルブにより前記油路に流れる作動
油を制御するように構成してなることを特徴とする複動
シリンダ。
In a suspension control system that uses a double-acting cylinder and a control valve, the piston of the cylinder has an oil passage that communicates between the cylinder internal pressure chambers partitioned by the piston, and an oil passage that communicates with the cylinder internal pressure chamber that exceeds the operating frequency range of the control valve. A frequency sensitive valve comprising a secondary vibration structure that operates in response to an excitation frequency, and the valve is configured to control hydraulic oil flowing into the oil passage. moving cylinder.
JP20283588A 1988-08-15 1988-08-15 Double-acting cylinder Pending JPH0253624A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20283588A JPH0253624A (en) 1988-08-15 1988-08-15 Double-acting cylinder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20283588A JPH0253624A (en) 1988-08-15 1988-08-15 Double-acting cylinder

Publications (1)

Publication Number Publication Date
JPH0253624A true JPH0253624A (en) 1990-02-22

Family

ID=16463980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20283588A Pending JPH0253624A (en) 1988-08-15 1988-08-15 Double-acting cylinder

Country Status (1)

Country Link
JP (1) JPH0253624A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102287423A (en) * 2011-08-11 2011-12-21 浙江大学 Outflow-type micro-stoke double-acting exciting hydraulic cylinder
CN102305227A (en) * 2011-08-11 2012-01-04 浙江大学 Micro-stroke double-action vibration-exciting hydraulic cylinder

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102287423A (en) * 2011-08-11 2011-12-21 浙江大学 Outflow-type micro-stoke double-acting exciting hydraulic cylinder
CN102305227A (en) * 2011-08-11 2012-01-04 浙江大学 Micro-stroke double-action vibration-exciting hydraulic cylinder

Similar Documents

Publication Publication Date Title
JP4143782B2 (en) Air suspension device
US20060237942A1 (en) Hydraulic system for a vehicle suspension
JP2012517925A (en) Active suspension system and fluid pressure driven ram for use in the active suspension system
JPH0780409B2 (en) Active suspension
WO2014045965A1 (en) Suspension device
CN112203879A (en) Suspension device
JPH02254007A (en) Active suspension
JP6514608B2 (en) Shock absorber
US20050252699A1 (en) Hydraulic suspension with a lock-out mechanism for an off-highway vehicle
JPH04296234A (en) Hydraulic shock absorber
JP4487192B2 (en) Controllable piston valve and / or bottom valve for shock absorber
JPH0615287B2 (en) Suspension
JPH02298681A (en) Hydraulic control system
JPH0253624A (en) Double-acting cylinder
JP2005088854A (en) Suspension system for vehicle
JPH07217696A (en) Hydraulic buffer
JP4356544B2 (en) shock absorber
US11511586B2 (en) Shock absorber with frequency-dependent load regulation by hydraulic inertia
JP2009293664A (en) Vehicular suspension device
JPH0326338Y2 (en)
JPH05302639A (en) Hydraulic damper
JPH0415182A (en) Damping force adjusted damper
KR102483127B1 (en) Mount With Variable Fluid Flow Path
JPH10220512A (en) Suspension device
JPH11344069A (en) Damping force generating structure of hydraulic shock absorber