JPH025319B2 - - Google Patents

Info

Publication number
JPH025319B2
JPH025319B2 JP58165860A JP16586083A JPH025319B2 JP H025319 B2 JPH025319 B2 JP H025319B2 JP 58165860 A JP58165860 A JP 58165860A JP 16586083 A JP16586083 A JP 16586083A JP H025319 B2 JPH025319 B2 JP H025319B2
Authority
JP
Japan
Prior art keywords
conductive
flexible sheet
sheet
sheet portion
rubber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58165860A
Other languages
Japanese (ja)
Other versions
JPS6058839A (en
Inventor
Tsutomu Oohayashi
Hidemoto Hiraoka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hiraoka and Co Ltd
Original Assignee
Hiraoka and Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hiraoka and Co Ltd filed Critical Hiraoka and Co Ltd
Priority to JP58165860A priority Critical patent/JPS6058839A/en
Publication of JPS6058839A publication Critical patent/JPS6058839A/en
Publication of JPH025319B2 publication Critical patent/JPH025319B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

発明の分野 本発明は、電気、電磁波障害を効果的に陀去し
たフレキシブルシヌトに関する。 発明の背景 埓来、機噚カバヌその他のフレキシブルシヌト
な被芆甚材料ずしお、各皮合成暹脂又は合成もし
くは倩然ゎムからなるフレキシブルシヌトが䜿甚
されおおり、これらは繊維材料で補匷されおいる
ものも倚い。しかし、これらのシヌトは、本質的
には電気的に絶瞁性であり、䞀般に1010〜
1017Ω・cm、倚くは1012Ω・cm以䞊の固有抵抗倀
を有する。 しかるに、近時、電気機噚の開発が進み、電気
障害や電波障害等の発生が深刻な問題ずなり、か
かるシヌトにおける電気的な問題を解決するため
の抜本的な方策の開発が芁望されおいる。 発明の抂芁 本発明は、以䞊の芁求を充足するために怜蚎し
た結果、完成されたものであり、電気および電磁
波障害を効果的に抑制しお、各皮の状況に察しお
極めお奜たしい察応をするこずのできるフレキシ
ブルシヌトを提䟛するものである。 本発明によれば即ちフレキシブルシヌトが提䟛
されるのであ぀お、このシヌトは導電性を有する
シヌト郚ずこれに積局接着されおいる絶瞁性シヌ
ト郚ずを含んでなる。 発明の具䜓的説明 本発明のフレキシブルシヌトにあ぀おは、導電
性を有するシヌト郚の衚裏䞡面に絶瞁性シヌト郚
が圢成されおいるのが奜たしい。たた、䞊蚘の導
電性を有するシヌト郚以䞋、導電性シヌト郚ず
蚘すの固有抵抗倀は、188Ω・cm以䞋、特に
105Ω・cm以䞋であるのが奜たしく、甚途によ぀
おは101Ω・cm以䞋であ぀おもよい。絶瞁性シヌ
ト郚の抵抗倀は108Ω・cm以䞊であるのが奜たし
く、1010Ω・cm以䞊であるのが曎に奜たしく、特
に1010〜1018Ω・cmであるのがよい。 本発明の目的を達成するためには、本発明のシ
ヌトは本質的にフレキシブルでなければならな
い。 このようなフレキシブルシヌトの堎合、通垞の
非導電性シヌトの衚面に導電性途料等を塗垃する
こずにより目的を達成するこずも考えられるので
あるが、その堎合には導電性塗料等のシヌト衚面
ぞの接着性が問題ずなり、フレキシブルシヌトで
は屈曲が激しいために容易に剥離しおしたい、十
分に効果的なシヌトを埗るこずは困難である。た
た、導電性塗料を塗垃する堎合には、色盞䞊も限
定が倚く、カラフルなシヌトは埗られにくい。 埓぀お、本発明においおは、少なくずも局の
導電性シヌト郚を有するシヌト状基䜓ず、少なく
ずも局の絶瞁性シヌト郚ずを積局接着するこず
により、フレキシブルシヌトずしたものである。
本発明のシヌトの補造に際しおは、䞀般には、合
成暹脂、合成ゎム又は倩然ゎムからなるマトリツ
クス䞭に導電性材料を配合しお所定の抵抗倀に調
敎しおシヌトずするのがよいけれども、フレキシ
ブルの芁件を満すならば導電性材料のみでシヌト
を圢成するこずもできる。 䞊蚘の劂く、本発明のフレキシブルシヌトを構
成する導電性シヌト郚及び絶瞁性シヌト郚には、
合成暹脂、合成ゎム又は倩然ゎムからなるマトリ
ツクスを䜿甚するのが奜たしく、奜たしい合成暹
脂の䟋ずしおはポリ塩化ビニルPVC、ポリり
レタン、゚チレン−酢酞ビニル共重合䜓、アむ゜
タクチツクポリプロピレン、ポリ゚チレン、ポリ
アクリロニトリル、ポリ゚ステル及びポリアミド
やその他公知の材料がある。たた、奜たしい合成
ゎムの䟋ずしおは、スチレン−ブタゞ゚ンゎム
SBR、クロルスルホン化ポリ゚チレンゎム、
ポリりレタンゎム、ブチルゎム及びむ゜プレンゎ
ムやその他公知の材料がある。最も奜たしい合成
暹脂はPVCであり、これは可塑剀、充填剀、着
色剀、安定剀および・又はその他の倉性剀を含ん
でいおもよい。たた、甚途や目的により、これら
マトリツクスが気泡を含有しおいおもよく、ある
いは倚孔質であ぀おもよい。 これらの導電性シヌト郚のマトリツクス䞭に配
合されお、各シヌト郚の抵抗倀をコントロヌルす
るための導電性材料ずしおは、液状、粉末状、繊
維状、箔状、線状又はシヌト状の導電性物質、䟋
えば、カヌボンブラツク、金属、䟋えばAl、
Au、Ag、Pt、Cu、Cr、Ni、Zn、Ti、Pb、Sn、
Pdやこれらの化合物又はNi−Cr合金、又はその
他の導電性化合物、䟋えば、酞化むンゞりムがあ
る。導電性物質の配合量は、その物質に固有の導
電性、性状や所望の導電性の皋床を勘案しお定め
られるが、少なくずも重量であるのが奜たし
く、10〜70重量であるのが曎に奜たしい。勿
論、導電性物質の配合量は、70重量以䞋に限定
されるものではなく、特に導電性シヌト郚の堎合
には、所望のフレキシブルシヌト性状匷床、屈
曲性、倖芳などを有しおいる限り、70重量よ
り倚くおもよい。参考のため、各皮材料の固有抵
抗倀を瀺すず䞋蚘の劂くである。
FIELD OF THE INVENTION The present invention relates to a flexible sheet that effectively eliminates electrical and electromagnetic interference. BACKGROUND OF THE INVENTION Conventionally, flexible sheets made of various synthetic resins or synthetic or natural rubber have been used as covering materials for equipment covers and other flexible sheets, and these are often reinforced with fiber materials. However, these sheets are electrically insulating in nature and generally have a
It has a specific resistance value of 10 17 Ω·cm, and often 10 12 Ω·cm or more. However, in recent years, as the development of electrical equipment has progressed, the occurrence of electrical interference and radio wave interference has become a serious problem, and there is a demand for the development of drastic measures to solve the electrical problems with such sheets. SUMMARY OF THE INVENTION The present invention has been completed as a result of studies to satisfy the above requirements, and is capable of effectively suppressing electrical and electromagnetic interference and providing extremely favorable responses to various situations. This provides a flexible sheet that can According to the present invention, a flexible sheet is provided, and this sheet includes a conductive sheet portion and an insulating sheet portion laminated and bonded thereto. DETAILED DESCRIPTION OF THE INVENTION In the flexible sheet of the present invention, it is preferable that insulating sheet portions are formed on both the front and back surfaces of the conductive sheet portion. In addition, the specific resistance value of the above-mentioned conductive sheet portion (hereinafter referred to as the conductive sheet portion) is 18 8 Ω・cm or less, especially
It is preferably 10 5 Ω·cm or less, and may be 10 1 Ω·cm or less depending on the application. The resistance value of the insulating sheet portion is preferably 10 8 Ω·cm or more, more preferably 10 10 Ω·cm or more, and particularly preferably 10 10 to 10 18 Ω·cm. In order to achieve the objectives of the invention, the sheets of the invention must be flexible in nature. In the case of such flexible sheets, it is possible to achieve the purpose by applying a conductive coating material to the surface of a normal non-conductive sheet; Adhesion to the surface becomes a problem, and flexible sheets are easily peeled off due to severe bending, making it difficult to obtain a sufficiently effective sheet. Furthermore, when applying conductive paint, there are many limitations in terms of hue, making it difficult to obtain colorful sheets. Therefore, in the present invention, a flexible sheet is obtained by laminating and bonding a sheet-like substrate having at least one layer of conductive sheet portion and at least one layer of insulating sheet portion.
When manufacturing the sheet of the present invention, it is generally preferable to blend a conductive material into a matrix made of synthetic resin, synthetic rubber, or natural rubber and adjust the resistance to a predetermined value to make the sheet. It is also possible to form the sheet solely from conductive material if the requirements are met. As mentioned above, the conductive sheet portion and the insulating sheet portion constituting the flexible sheet of the present invention include:
It is preferable to use a matrix made of synthetic resin, synthetic rubber or natural rubber; examples of preferred synthetic resins include polyvinyl chloride (PVC), polyurethane, ethylene-vinyl acetate copolymer, isotactic polypropylene, polyethylene, Examples include acrylonitrile, polyester and polyamide, and other known materials. Examples of preferable synthetic rubbers include styrene-butadiene rubber (SBR), chlorosulfonated polyethylene rubber,
Examples include polyurethane rubber, butyl rubber, isoprene rubber, and other known materials. The most preferred synthetic resin is PVC, which may contain plasticizers, fillers, colorants, stabilizers and/or other modifiers. Further, depending on the use and purpose, these matrices may contain bubbles or may be porous. The conductive material that is mixed into the matrix of these conductive sheet parts to control the resistance value of each sheet part may be a liquid, powder, fiber, foil, wire or sheet conductive material. Materials such as carbon black, metals such as Al,
Au, Ag, Pt, Cu, Cr, Ni, Zn, Ti, Pb, Sn,
Pd or compounds thereof or Ni-Cr alloys or other conductive compounds such as indium oxide. The blending amount of the conductive substance is determined by taking into account the conductivity and properties inherent to the substance and the desired degree of conductivity, but it is preferably at least 5% by weight, and preferably 10 to 70% by weight. is even more preferable. Of course, the blending amount of the conductive material is not limited to 70% by weight or less, and especially in the case of the conductive sheet portion, it is necessary to have the desired flexible sheet properties (strength, flexibility, appearance, etc.). It may be more than 70% by weight as long as it is present. For reference, the specific resistance values of various materials are shown below.

【衚】 䞊蚘の劂き材料からなるフレキシブルシヌト
は、前述の劂く、導電性シヌト郚ず絶瞁性シヌト
郚ずを組み合せおなるものであるが、以䞋このシ
ヌトの構成に぀いお曎に詳しく説明する。 添付図面においお、第図及び第図は、それ
ぞれ、本発明に係るフレキシブルシヌトの䞀䟋を
暡匏的に瀺す断面図である。第図むに瀺すフレ
キシブルシヌトは、導電性シヌト郚からなるシ
ヌト基䜓の䞡面に絶瞁性シヌト郚が圢成されお
なるものであり、第図ロに瀺すフレキシブルシ
ヌトでは、導電性シヌト郚からなるシヌト状基
䜓の片面にのみ絶瞁性シヌト郚が圢成されおい
る。䞀方、第図に瀺すフレキシブルシヌトにお
いおは、耇数局の導電性シヌト郚ず、その間に
積局接着された絶瞁性シヌト郚ずからシヌト状
基䜓が圢成されおおり、絶瞁性シヌト郚がこれ
を囲むように圢成されおいる。第図の劂き構成
の堎合、䜿甚条件が衚裏面で異なるような環境で
䜿甚するずきは、その安党性や効果を確実に達成
するこずができ、特に過酷な䜿甚条件䞋においお
奜たしいものである。このような構造を有する本
発明のフレキシブルシヌトは、補匷材ず組み合わ
されおいるのが奜たしい。 補匷材ずしおは繊維性基垃が䞀般的であり、有
甚な繊維性基垃ずしおは、倩然繊維、䟋えば、朚
綿、麻など、無機繊維、䟋えば、ガラス繊維な
ど、再生繊維、䟋えば、ビスコヌスレヌペン、キ
ナプラなど、半合成繊維、䟋えば、ゞヌおよびト
リアセテヌト繊維など、および合成繊維、䟋え
ば、ナむロン、ナむロン66、ポリ゚ステルポ
リ゚チレンテレフタレヌト等繊維、芳銙族ポリ
アミド繊維、アクリル繊維、ポリ塩化ビニル繊維
およびポリオレフむン繊維など、から遞ばれた少
くずも皮からなるものがある。基垃䞭の繊維は
短繊維玡積糞条、長繊維糞状、スプリツトダヌ
ン、テヌプダヌンなどのいずれの圢状のものでも
よく、たた基垃は織物、線物、䞍織垃、玙状物或
はこれらの耇合垃のいずれであ぀おもよい。䞀般
には、本発明のシヌトに甚いられる繊維はポリ゚
ステル繊維が奜たしく、この繊維は長繊維フむ
ラメントの圢状のものが奜たしい。繊維性基垃
は、埗られるシヌトの機械的匷床を高いレベルに
維持するために有甚である。 たた、有甚な織物ずしおは、綟織、平織その他
の䞀般的な組織からなる織物を挙げるこずができ
るが、補品の匕裂匷力、倚方向ぞの折曲げ柔性、
導電性シヌト郚及び絶瞁性シヌト郚材料の基垃ぞ
の密着耐久性、寒冷時の暹脂又はゎム局の耐亀裂
性、軜量性等を考慮すれば、以䞋に述べる劂き特
殊構造織物が特に奜たしく甚いられる。たた、導
電性材料の含量が倚い堎合、導電性シヌト郚は硬
くなる傟向にあり、このような材料を含むシヌト
の補匷支持䜓ずしお平織物、䞍織垃又は玙状物を
䜿甚するずシヌト党䜓が硬くなるが、かかる堎合
に特殊構造織物基垃を䜿甚すれば、硬さをカバヌ
でき、適圓に柔軟なシヌトが埗られるので、極め
お奜たしい。本発明のフレキシブルシヌトに有甚
な特殊構造織物基垃は、倩然繊維、䟋えば、朚
綿、麻など、無機繊維、䟋えば、ガラス繊維な
ど、再生繊維、䟋えば、ビスコヌスレヌペン、キ
ナプラなど、半合成繊維、䟋えば、ゞヌおよびト
リ−アセテヌト繊維など、および合成繊維、䟋え
ば、ナむロン、ナむロン66、ポリ゚ステルポ
リ゚チレンテレフタレヌト等繊維、芳銙族ポリ
アミド繊維、アクリル繊維、ポリ塩化ビニル繊維
およびポリオレフむン繊維など、から遞ばれた少
くずも皮からなるものである。基垃䞭の繊維は
短繊維玡積糞状、長繊維糞状、スプリツトダヌ
ン、テヌプダヌンなどのいずれの圢状のものでも
よい。そしおこれらは互に䞊列に配眮され、それ
により圢成される経糞局ず緯糞局ずが互に亀差す
るように積局され、経緯糞条の亀差点で長いから
み糞によりゆるく結合される。 からみ糞はポリ゚ステル、ナむロン、芳銙族ポ
リアミドその他の公知の合成繊維、ガラス繊維、
スチヌル繊維その他の公知の無機繊維等から遞定
されるが、特にポリアミドフむラメント糞が奜適
である。 いた、䟋えば、経緯糞条ずしお、匕匵単糞匷力
1.3Kgのビニロン10S玡積糞が䜿甚される堎合
には、からみ糞ずしお単䜍デニヌル圓り匕匵匷力
20gの芳銙族ポリアミドフむラメントダヌンが䜿
甚され、たた、シヌトの加工容易性を考慮しお同
䞀玠材の糞条を䜿甚する堎合には、䟋えば、経緯
糞条ずしお単䜍デニヌル圓り匕匵匷力8gのポリ
゚ステルフむラメントダヌンを、たた、からみ糞
ずしおは、10gのポリ゚ステルフむラメントダヌ
ンを䜿甚する。 本発明に甚いるのに特に奜たしい特殊構造織物
の構成は、本出顔人の出願に係る特公昭57−
30381号に蚘茉の劂き、互に平行に配列された倚
数の経糞からなる経糞局ず、前蚘経糞ず盎亀する
ように互に平行に配列された倚数の緯糞よりなる
緯糞局ず、前蚘経糞ず緯糞ずをそれらの亀差点で
からみ結合するからみ糞ずからなる。前蚘からみ
糞は、前蚘経糞及び緯糞よりも長く、埓぀お、経
糞ず緯糞ずをゆるく結合しおおりか぀、その匕匵
匷床、匕匵䌞床および砎断仕事量のうちの少くず
も぀が前蚘経糞および緯糞のそれよりも倧き
く、及び又は、暹脂材料に察する接着力が前蚘
経糞および緯糞のそれよりも小さいこずが奜たし
い。からみ糞ずしおは、特に䞋蚘に瀺す特性を有
する糞条が奜たしい。即ち (i) 基垃を構成する経糞および緯糞より、その匷
力が、単䜍デニヌル圓り10以䞊倧なるからみ
糞。 (ii) 基垃を構成する経糞および緯糞より、その砎
断仕事量が10以䞊倧なるからみ糞。 (iii) 基垃を構成する経糞および緯糞より、その砎
断䌞床が以䞊倧なるからみ糞。 (iv) 基垃を構成する経糞および緯糞より、暹脂被
芆物に察する接着力が小なるからみ糞。 このうち、単䜍デニヌル圓りの匷力が、経糞お
よび緯糞よりも10以䞊倧なるからみ糞ずしお
は、奜たしくは20〜30以䞊倧きいものが䜿甚さ
れ、経糞および緯糞に生ずる匕裂きの進行を実質
的に10以䞊匷力の倧なるからみ糞で阻止しよう
ずするものであり、しかもからみ糞は経緯糞条よ
り長く、埓぀お経緯糞条よりも倉化及び倉圢の自
由床が倧であるので、連続しおシヌトに䜜甚する
匕裂力に柔軟に察凊しこれを吞収しうるものであ
る。即ち、匕裂力がシヌトに働いお経緯糞条が倉
䜍しやがお切断しおも、からみ糞は切断するこず
なく匕裂力に远随しお倉䜍、倉圢し、やがお匕裂
の゚ネルギヌを吞収しお匕裂を停止させるこずが
できる。 次に、からみ糞ずしお、経緯糞条より砎断仕事
量が奜たしくは10以䞊、より奜たしくは20〜30
高い糞条を䜿甚するこずができる。ここでいう
砎断仕事量ずは、糞条の切断時の匷力ず切断時の
䌞床ずの積により近䌌的に衚わされる倀である。 砎断仕事量砎断匕匵匷力×砎断匕匵䌞床 いた、䟋えば、経緯糞条ずしお、単䜍デニヌル
圓り砎断匕匵匷床8.0g、砎断匕匵䌞床13のポリ
゚ステルフむラメントダヌンを䜿甚し、からみ糞
ずしおは、単䜍デニヌル圓り7.0g、砎断匕匵䌞床
18のポリアミド繊維糞が䜿甚される。このず
き、からみ糞の砎断仕事量は、経緯糞条のそれよ
りも玄21倧ずな぀おいる。たた、加工容易性を
考慮すれば同䞀玠材の糞条を䜿甚するこずが望た
しい。 さらに、経緯糞条より砎断䌞床が、奜たしくは
以䞊倧なるからみ糞を線組結合に䜿甚するこ
ずもできる。ポリ゚ステルフむラメントダヌンを
䜿甚する堎合、経緯糞条の砎断䌞床は15以䞋特
に〜12が奜たしいが、䞀方、からみ糞の砎断
䌞床は、15以䞊特に20以䞊で、䞡者間に少く
ずも以䞊の差を有するものが良い結果を䞎け
る。からみ糞が合成繊維である堎合には、補造
時、重合䜓材料の重合床を調節しお所定の匷床を
保持し぀぀、所望の倧なる砎断䌞床を有せしめる
か、又は、補造時のフむラメントの延䌞倍率を小
さくしたもの、䟋えば、未延䌞糞、又は、二次加
工時に捲瞮を付䞎するこずにより所望の砎断䌞床
を有するからみ糞を埗るこずができる。 さらに、経緯糞条より、被芆暹脂材料に察する
接着力が小さなからみ糞を䜿甚するこずもでき
る。この堎合、からみ糞は、その衚面にシリコン
加工等が斜されたものであ぀おもよい。この堎合
は、経緯糞条は、被芆暹脂材料ずの接着により、
その倉䜍、倉圢の自由床が枛少するが、からみ糞
の自由床は経緯糞条よりも倧であ぀お、匕裂力が
基垃に䜜甚したずき、からみ糞はスリツプしお倉
䜍、倉圢するこずができ、埓぀お基垃の匕裂きを
阻止しうるものである。 接着力を小にするためには、からみ糞の衚面
に、シリコン凊理、油剀凊理の劂き非接着凊理を
斜すか、又は、ポリ゚チレン糞およびポリプロピ
レン糞の劂く、本質的に、接着性の小さな糞条を
甚いればよい。 以䞊の劂く、本発明に有甚な基垃においおは、
奜たしくは、経緯方向に䞊列に配列された経緯糞
条を結合するためのからみ糞が、実質的に経緯糞
より長く、しかも、からみ糞が経緯糞条が切断又
は倉䜍した状態にあ぀おも、少くずもその䞀郚が
切断しない皋床に長尺であるか、匷力、砎断仕事
量、および又は砎断䌞床が倧であるか、又は接
着力が小であるなどの物理的性状を備えお構成さ
れおおり、その匕匵力は経緯糞条により高匷力が
保持され、からみ糞をも぀お、匕裂時の衝撃力に
察抗し、又は匕裂゚ネルギヌを吞収し、さらに、
からみ糞を切断せずに残存するこずにより、匕裂
きに䌎う暹脂被芆ずシヌトずの局間剥離を防止し
埗るものである。 本発明に有甚な特殊構造織物に぀いおは、曎
に、本出願人の先の出願に係る 実公昭52−50234号実開昭50−1668号、 特公昭57−30381号特開昭55−67446号、 特公昭55−24415号特開昭54−139688号、 実開昭55−134242号、 特開昭56−159165号、 特開昭57−14031号、及び 特開昭57−14032号 等に蚘茉の織物が奜適に䜿甚出来る。そしお、こ
れらの織物は、兞型的には第図に瀺す劂き構成
を有する。図においお、は経糞、は緯糞、そ
しおはからみ糞である。 即ち、本発明に甚いられる基垃は、埗られるシ
ヌトの機械的匷床を高いレベルに維持するために
有甚である。 これらの補匷材は、導電性シヌト郚及び絶瞁性
シヌト郚のいずれか䞀方又は䞡方に察しお甚いら
れおもよく、あるいは䞡者の境界に介圚されおも
よい。もちろん、このような補匷材は局のみで
なく、局又はそれ以䞊で構成されおいおもよ
い。たた、これら補匷材は、前述のマトリツクス
および又は導電性材料で加工されお、それぞれ
所定の固有抵抗倀を保有する劂く構成されおいお
もよい。 本発明に係るフレキシブルシヌトは、少なくず
も䞀方の最倖偎衚面積が絶瞁性シヌト郚からなり
䞡倖偎衚面局が絶瞁性シヌト郚からなるのが特
に奜たしい、その䞋郚局又は䞭間局が党䜓ずし
お導電性シヌト郚からなるか又は導電性シヌト郚
を䞀郚に含む局から構成されおいるシヌトであ぀
およい。 導電性シヌト郚は、貫通電波の遮蔜を目的ず
し、この目的の堎合絶瞁性シヌト郚ず導電性シヌ
ト郚ずが密着しおいなくずもよく、あるいはその
他の局が介圚しおいおもよい。しかし、他の局が
介圚しない方がより倚目的的ではある。特に、䞡
倖衚面に絶瞁性シヌト郚を有するシヌトの堎合に
は、䞭間局ずしお少なくずも局の導電性シヌト
郚を有するシヌトであ぀おも、倧なる効果が埗ら
れる。たた、このようなシヌトは、いうたでもな
く、本発明シヌト内の任意の堎所に又はそれ以
䞊の他の材料の局を有しおいおもよい。たた、第
図ロに瀺す劂く、倖衚面を絶瞁性シヌト郚、
その䞋を導電性シヌト郚ずするこずもできる。
この堎合、シヌトは䞊面、䞋面の䜿甚時の芁求性
胜に適合した構成を有し、䞊䞋面任意に接觊する
から、取扱い時のたずわり付き等の問題を生じな
いのである。第図ロに瀺すシヌトの堎合には、
前述の効果の他に、衚裏䞡面をそれぞれ異なる目
的の甚途に甚いるこずができ、たた他の材料の局
を区切぀お構成すれば電気的に異なる性胜を郚分
的に芁求される甚途に甚いるこずもできる。 実斜䟋 本発明シヌトの䟋を瀺すず、経糞および緯糞
に1000デニヌルのポリ゚ステルフむラメントをそ
れぞれ11本、からみ糞に110デニヌルのナむロン
フむラメント糞を甚いた特殊構造織物を甚意し、
この織物を、PVC100重量郚に察しカヌボンブラ
ツク、ケチンブラツク40重量郚を混入した加
工液に浞挬し、含浞した埌、ピツクアツプ100
に搟液し、次いで也燥し、180℃でゲル化熱凊理
固着しお、補匷材を有する導電性シヌトを圢成し
た。このシヌトの厚さは玄0.48mmであり、固有抵
抗倀は100〜101Ω・cmであ぀た。このシヌトに察
しお、次いで、PVC100重量郚にゞオクチルフタ
レヌト60重量郚ず所定量の安定剀及び着色剀を添
加した加工液を片面づ぀䞡面に塗垃し、也燥し、
ゲル化熱凊理固着しお、衚裏䞡面にそれぞれ厚さ
箄0.1mmの絶瞁性シヌト郚を有するフレキシブル
シヌトを埗た。この絶瞁性シヌト郚の固有抵抗倀
は1016Ω・cmであり、フレキシブルシヌト党䜓の
厚さは玄0.7mmであ぀た。 このシヌトを甚いお実隓宀内に簡易ボツクスを
䜜り、その䞭で高呚波ミシンによる瞫補䜜業を行
぀たずころ、すぐ倖偎においお点灯されおいたテ
レビ画面に党くノむズが発生しなか぀た。比范の
ため、埓来のPVCシヌトを甚いお同様のテスト
を行぀たずころ、テレビ画面に乱れを生じた。垯
電防止加工のみを斜した埓来のPVCシヌトによ
぀お行぀たテストにおいおも同様にテレビ画面の
乱れを生じた。たた、基垃に同様目付の平織垃を
䜿甚した所、効果は党く同様であ぀たが、出来䞊
぀たシヌトは先の実斜䟋シヌトに范べお硬く、カ
バヌフむツト性等の面でやや難点がみられた。 尚、本発明のフレキシブルシヌトの䜜成に際し
おは、カレンダヌ法、トツピング法、デむツピン
グ法、コヌテむング法、ラミネヌト法、抌出成型
法、撒垃法その他の任意の手段を甚いるこずがで
きる。 発明の効果 本発明のシヌトは、電磁波障害を生ぜず、たた
挏電の危険もなく、極めお画期的な耇合的効果を
奏する。埓぀お、このシヌトは、それのみで倚目
的の甚途に適合するずいう驚くべき利点をも有
し、工業的䟡倀の倧なるものである。曎に、この
シヌトは、フレキシブルであるから、どのような
物品に察しおもその有する圢状のたた被芆するこ
ずができ、任意の圢状物に瞫補しお䜿甚するこず
もできるから、極めお皮々の補品を簡易に䟛絊す
るこずを可胜にする。たた、倖衚面が絶瞁性であ
るので、瞫補時においお、高呚波り゚ルダヌを甚
いお瞫補できるのも倧きな特城である。
[Table] As described above, the flexible sheet made of the above-mentioned materials is a combination of a conductive sheet portion and an insulating sheet portion, and the structure of this sheet will be explained in more detail below. In the accompanying drawings, FIGS. 1 and 2 are sectional views each schematically showing an example of a flexible sheet according to the present invention. The flexible sheet shown in FIG. 1A has an insulating sheet portion 2 formed on both sides of a sheet base consisting of a conductive sheet portion 1. In the flexible sheet shown in FIG. 1B, the conductive sheet portion An insulating sheet portion 2 is formed only on one side of a sheet-like substrate made of 1. On the other hand, in the flexible sheet shown in FIG. 2, a sheet-like base is formed from a plurality of layers of conductive sheet parts 1 and an insulating sheet part 2 laminated and bonded between them. It is formed to surround this. In the case of the configuration shown in Fig. 2, safety and effectiveness can be reliably achieved when used in an environment where the usage conditions are different for the front and back sides, and it is preferable especially under harsh usage conditions. . The flexible sheet of the present invention having such a structure is preferably combined with a reinforcing material. Fibrous base fabrics are common as reinforcing materials, and useful fibrous base fabrics include natural fibers such as cotton and linen, inorganic fibers such as glass fiber, and recycled fibers such as viscose rayon. , kyupra, semi-synthetic fibers such as g- and triacetate fibers, and synthetic fibers such as nylon 6, nylon 66, polyester (such as polyethylene terephthalate) fibers, aromatic polyamide fibers, acrylic fibers, polyvinyl chloride fibers and polyolefins. Some are made of at least one type selected from fibers, etc. The fibers in the base fabric may be in any form such as short fiber spun yarn, long fiber thread, split yarn, or tape yarn, and the base fabric may be a woven fabric, knitted fabric, nonwoven fabric, paper-like material, or a composite fabric thereof. It may be either. Generally, the fibers used in the sheet of the present invention are preferably polyester fibers, and these fibers are preferably in the form of long fibers (filaments). The fibrous base fabric is useful for maintaining the resulting sheet's mechanical strength at a high level. In addition, useful fabrics include fabrics made of twill weave, plain weave, and other general structures, but the tear strength of the product, the flexibility of bending in multiple directions,
Considering the durability of the adhesion of the conductive sheet part and the insulating sheet part material to the base fabric, the crack resistance of the resin or rubber layer in cold weather, the light weight, etc., special structured woven fabrics as described below are particularly preferably used. It will be done. In addition, when the content of conductive material is high, the conductive sheet portion tends to become hard, and if plain fabric, nonwoven fabric, or paper-like material is used as a reinforcing support for a sheet containing such material, the entire sheet becomes hard. However, in such a case, it is extremely preferable to use a specially structured woven base fabric because it can cover the hardness and provide a suitably flexible sheet. The special structure woven base fabric useful for the flexible sheet of the present invention includes natural fibers such as cotton, linen, etc., inorganic fibers such as glass fiber, recycled fibers such as viscose rayon, Kyupra, etc., semi-synthetic fibers, and synthetic fibers such as nylon 6, nylon 66, polyester (such as polyethylene terephthalate) fibers, aromatic polyamide fibers, acrylic fibers, polyvinyl chloride fibers and polyolefin fibers. It consists of at least one type. The fibers in the base fabric may be in any form such as short fiber spun yarn, long fiber yarn, split yarn, or tape yarn. These are arranged in parallel to each other, and the warp and weft layers thus formed are laminated so as to intersect with each other, and are loosely connected by long leno threads at the intersections of the warp and weft threads. The leno thread is made of polyester, nylon, aromatic polyamide and other known synthetic fibers, glass fiber,
It may be selected from steel fibers and other known inorganic fibers, with polyamide filament yarns being particularly preferred. Now, for example, as warp and warp yarns, we are using tensile strength single yarns.
When 1.3Kg of Vinylon 10S/1 spun yarn is used, the tensile strength per unit denier is as a leno yarn.
20g of aromatic polyamide filament yarn is used, and if yarns of the same material are used in consideration of ease of sheet processing, for example, polyester filament yarn with a tensile strength of 8g per unit denier is used as the warp and warp yarns. Also, 10g of polyester filament yarn is used as the leno thread. A particularly preferable structure of the special structure fabric for use in the present invention is as follows:
30381, a warp layer consisting of a large number of warps arranged in parallel to each other, a weft layer consisting of a large number of wefts arranged in parallel to each other so as to be perpendicular to the warps, and the warp and weft. and a tangle thread that entangles and connects them at their intersections. The leno yarn is longer than the warp and weft, and therefore loosely connects the warp and weft, and has at least one of its tensile strength, tensile elongation, and breaking work as compared to the warp and weft. The adhesion force to the resin material is preferably greater than that of the warp and weft and/or smaller than that of the warp and weft. As the leno yarn, yarns having the characteristics shown below are particularly preferred. That is, (i) a leno yarn whose strength is 10% or more per unit denier than the warp and weft yarns constituting the base fabric. (ii) Leno yarn whose breaking work is 10% or more greater than the warp and weft yarns that make up the base fabric. (iii) Leno yarn whose elongation at break is 5% or more greater than the warp and weft yarns that make up the base fabric. (iv) Leno yarn that has a lower adhesion force to the resin coating than the warp and weft yarns that make up the base fabric. Among these, leno yarns whose tenacity per unit denier is 10% or more greater than the warp and weft are preferably used by 20 to 30% or more to substantially prevent the progress of tearing that occurs in the warp and weft. It is intended to be stopped by a large leno thread that is 10% stronger or more, and since the leno thread is longer than the warp and warp threads, and therefore has a greater degree of freedom in change and deformation than the warp threads, it is possible to continuously It can flexibly deal with and absorb tearing forces acting on the sheet. In other words, even if a tearing force acts on the sheet, causing the warp and warp threads to displace and eventually break, the leno threads follow the tearing force, displace and deform without being cut, and eventually absorb the tearing energy and stop tearing. can be done. Next, as a leno yarn, the breaking work is preferably 10% or more, more preferably 20 to 30%, than the warp and warp yarns.
% yarn can be used. The breaking work here is a value approximately expressed by the product of the strength at the time of cutting the yarn and the elongation at the time of cutting. Work at break = Tensile strength at break x Tensile elongation at break For example, polyester filament yarn with a tensile strength at break of 8.0 g per unit denier and a tensile elongation at break of 13% per unit denier is used as the warp and warp threads, and as a leno yarn, the unit 7.0g per denier, tensile elongation at break
18% polyamide fiber yarn is used. At this time, the breaking work of the leno yarn is approximately 21% greater than that of the warp and warp yarns. Furthermore, in consideration of ease of processing, it is desirable to use threads made of the same material. Furthermore, a leno yarn having a breaking elongation that is preferably 5% or more higher than that of the warp and warp yarns can also be used for the braided connection. When polyester filament yarn is used, the breaking elongation of the warp and warp yarns is preferably 15% or less, especially 8 to 12%, while the breaking elongation of the leno yarn is 15% or more, especially 20% or more, and there is no difference between the two. A difference of at least 5% gives good results. If the leno yarn is a synthetic fiber, the degree of polymerization of the polymer material is adjusted at the time of manufacture to maintain a desired strength and a desired high elongation at break, or the filament at the time of manufacture is adjusted. A leno yarn having a desired elongation at break can be obtained by lowering the drawing ratio, for example, an undrawn yarn, or by crimping it during secondary processing. Furthermore, it is also possible to use leno threads that have a smaller adhesion force to the coating resin material than warp and warp threads. In this case, the leno thread may have its surface subjected to silicon processing or the like. In this case, the warp and warp threads are bonded to the coating resin material,
The degree of freedom for displacement and deformation decreases, but the degree of freedom for the leno thread is greater than that for the warp and warp threads, and when tearing force acts on the base fabric, the leno thread slips and is displaced and deformed. Therefore, tearing of the base fabric can be prevented. In order to reduce the adhesive force, the surface of the leno yarn should be subjected to non-adhesive treatment such as silicone treatment or oil treatment, or it should be treated with yarns that are inherently small in adhesive properties, such as polyethylene yarn and polypropylene yarn. You can use As mentioned above, in the base fabric useful in the present invention,
Preferably, the leno yarns for connecting the warp and warp yarns arranged in parallel in the weft and warp directions are substantially longer than the warp and warp yarns, and even if the leno yarns are in a state where the warp and warp yarns are cut or displaced, Constructed with physical properties such as at least a part of it is long enough to not break, is strong, has a large amount of work at break, and/or has a large elongation at break, or has low adhesive strength. The tensile force is maintained at high strength by the warp and warp yarns, and the leno threads resist the impact force at the time of tearing or absorb the tearing energy, and
By leaving the leno threads uncut, delamination between the resin coating and the sheet due to tearing can be prevented. Regarding the special structure fabrics useful in the present invention, further details are provided in Japanese Utility Model Publication No. 52-50234 (1668-1988) and Japanese Patent Publication No. 30381-1981 (30381-1981), which are related to the applicant's earlier applications. 67446), JP-A-55-24415 (JP-A-54-139688), JP-A-55-134242, JP-A-56-159165, JP-A-57-14031, and JP-A-57- The fabrics described in No. 14032 and the like can be suitably used. These textiles typically have a structure as shown in FIG. In the figure, 3 is a warp, 4 is a weft, and 5 is a leno thread. That is, the base fabric used in the present invention is useful for maintaining the mechanical strength of the resulting sheet at a high level. These reinforcing materials may be used for either or both of the conductive sheet portion and the insulating sheet portion, or may be interposed at the boundary between the two. Of course, such a reinforcing material may be composed of not only one layer but also two or more layers. Further, these reinforcing materials may be processed with the above-mentioned matrix and/or conductive material, and may be constructed so as to each have a predetermined specific resistance value. In the flexible sheet according to the present invention, at least one outermost surface area consists of an insulating sheet part (it is particularly preferable that both outer surface layers consist of an insulating sheet part), and the lower layer or middle layer is electrically conductive as a whole. The sheet may be composed of a sheet portion or a layer partially including a conductive sheet portion. The purpose of the conductive sheet part is to shield penetrating radio waves, and for this purpose, the insulating sheet part and the conductive sheet part do not need to be in close contact with each other, or other layers may be interposed therebetween. However, it is more versatile without other layers involved. In particular, in the case of a sheet having insulating sheet portions on both outer surfaces, great effects can be obtained even if the sheet has at least one conductive sheet portion as an intermediate layer. Such a sheet may also, of course, have one or more layers of other materials anywhere within the sheet of the present invention. In addition, as shown in FIG.
The conductive sheet portion 1 can also be provided underneath.
In this case, the sheet has a structure that meets the required performance when the upper and lower surfaces are used, and since the upper and lower surfaces contact each other arbitrarily, problems such as clinging do not occur during handling. In the case of the sheet shown in Figure 1B,
In addition to the above-mentioned effects, the front and back surfaces can be used for different purposes, and if they are constructed with separate layers of other materials, they can be used for applications that partially require different electrical performance. can. Example To show one example of the sheet of the present invention, a special structured fabric was prepared in which 11 1000 denier polyester filaments were used as the warp and weft, and 110 denier nylon filament yarn was used as the leno thread.
This fabric was immersed in a processing liquid containing 40 parts by weight of carbon black (Ketin black) mixed with 100 parts by weight of PVC, and after impregnating it, it was pick-up 100%.
The liquid was squeezed out, then dried, and gelatinized and fixed at 180° C. to form a conductive sheet having a reinforcing material. The thickness of this sheet was approximately 0.48 mm, and the specific resistance value was 10 0 to 10 1 Ω·cm. Next, a processing liquid containing 100 parts by weight of PVC, 60 parts by weight of dioctyl phthalate, and a predetermined amount of stabilizers and colorants was applied to each side of this sheet, and dried.
A flexible sheet having insulating sheet portions with a thickness of approximately 0.1 mm on both the front and back surfaces was obtained by gelation heat treatment and fixation. The specific resistance value of this insulating sheet portion was 10 16 Ω·cm, and the thickness of the entire flexible sheet was approximately 0.7 mm. When we used this sheet to create a simple box in the laboratory and used a high-frequency sewing machine to perform sewing work inside the box, there was no noise at all on the television screen that was lit just outside. For comparison, when we conducted a similar test using a conventional PVC sheet, it caused disturbances on the TV screen. Tests conducted using conventional PVC sheets with only antistatic treatment also resulted in TV screen disturbances. In addition, when a plain woven fabric with the same basis weight was used as the base fabric, the effect was exactly the same, but the resulting sheet was harder than the sheet of the previous example, and there were some drawbacks in terms of cover fit, etc. It was done. In the production of the flexible sheet of the present invention, any method such as a calendering method, a topping method, a dipping method, a coating method, a laminating method, an extrusion molding method, a spreading method or the like can be used. Effects of the Invention The sheet of the present invention does not cause electromagnetic interference, has no risk of electrical leakage, and exhibits extremely innovative multiple effects. Therefore, this sheet also has the surprising advantage of being suitable for multiple purposes by itself, and is of great industrial value. Furthermore, since this sheet is flexible, it can be used to cover any article in its original shape, and can also be sewn into any shape, making it suitable for a wide variety of products. Enables easy supply. Another great feature is that since the outer surface is insulating, it can be sewn using a high-frequency welder.

【図面の簡単な説明】[Brief explanation of drawings]

第図むロ及び第図はそれぞれ本発明のフ
レキシブルシヌトの䞀䟋を暡匏的に瀺す断面図で
あり、第図は本発明のシヌトに甚いるこずので
きる補匷甚基垃の䞀䟋を瀺す暡匏図である。   導電性シヌト郚、  絶瞁性シヌト
郚、  経糞、  緯糞、  からみ糞。
Figures 1A and 2B are cross-sectional views schematically showing an example of the flexible sheet of the present invention, and Figure 3 is an example of a reinforcing base fabric that can be used in the sheet of the present invention. It is a schematic diagram. DESCRIPTION OF SYMBOLS 1... Conductive sheet part, 2... Insulating sheet part, 3... Warp, 4... Weft, 5... Leno thread.

Claims (1)

【特蚱請求の範囲】  少なくずも局の導電性フレキシブルシヌト
郚を有するシヌト状基䜓ず、前蚘シヌト状基䜓に
積局接着しおいる少なくずも局の電気絶瞁性フ
レキシブルシヌト郚ずを有し、前蚘導電性シヌト
郚および導電性シヌト郚の少なくずも䞀局が繊維
性基垃により補匷されおいる、電気および電磁波
障害防止フレキシブルシヌト。  前蚘導電性シヌト郚の固有抵抗倀が108Ω・
cm以䞋である特蚱請求の範囲第項蚘茉のフレキ
シブルシヌト。  前蚘導電性シヌト郚の固有抵抗倀が105Ω・
cm以䞋である特蚱請求の範囲第項蚘茉のフレキ
シブルシヌト。  前蚘絶瞁性シヌト郚の固有抵抗倀が108Ω・
cm以䞊である特蚱請求の範囲第項蚘茉のフレキ
シブルシヌト。  前蚘絶瞁性シヌト郚の固有抵抗倀が1010Ω・
cm以䞊である特蚱請求の範囲第項蚘茉のフレキ
シブルシヌト。  前蚘絶瞁性シヌト郚の固有抵抗倀が1010〜
1018Ω・cmである特蚱請求の範囲第項蚘茉のフ
レキシブルシヌト。  前蚘少なくずも局の導電性シヌト郚のそれ
ぞれの䞡面偎に絶瞁性シヌト郚が積局接着されお
いる、特蚱請求の範囲第項蚘茉のフレキシブル
シヌト。  前蚘絶瞁性シヌト郚が電気絶瞁性ゎムおよび
合成暹脂から遞ばれた少なくずも皮により圢成
されおいる、特蚱請求の範囲第項蚘茉のフレキ
シブルシヌト。  前蚘絶瞁性ゎムが、倩然ゎム、スチレンブタ
ゞ゚ンゎムSBR、クロルスルホン化ポリ゚チ
レンゎム、ポリりレタンゎム、ブチルゎム、およ
びむ゜プレンゎムから遞ばれる、特蚱請求の範囲
第項蚘茉のフレキシブルシヌト。  前蚘絶瞁性合成暹脂がポリ塩化ビニル
PVC、ポリりレタン、゚チレン−酢酞ビニル
共重合䜓、ポリプロピレン、ポリ゚チレン、ポリ
アクリロニトリル、ポリ゚ステル、およびポリア
ミドから遞ばれる、特蚱請求の範囲第項蚘茉の
フレキシブルシヌト。  前蚘導電性シヌト郚が、ゎムおよび合成暹
脂より遞ばれた少くずも皮からなるマトリツク
ス成分ず、このマトリツクス成分䞭に含有されお
いる導電性物質ずを含んでなる、特蚱請求の範囲
第項蚘茉のフレキシブルシヌト。  前蚘導電性物質の含有量が前蚘導電性シヌ
ト郚に察し少くずも重量である、特蚱請求の
範囲第項蚘茉のフレキシブルシヌト。  前蚘導電性物質の含有量が、10〜70重量
である、特蚱請求の範囲第項蚘茉のフレキシ
ブルシヌト。  前蚘導電性物質が、カヌボンブラツク、導
電性金属、導電性合金および導電性金属化合物か
ら遞ばれる、特蚱請求の範囲第項蚘茉のフレ
キシブルシヌト。  前蚘繊維性基垃が、互いに平行に配列され
た倚数の経糞からなる経糞局ず、前蚘経糞ず盎亀
するように、互いに平行に配列された倚数の緯糞
からなる緯糞局ず、前蚘経糞ず緯糞ずを、それら
の亀差点においおからみ結合するからみ糞ずから
なる特殊構造織物基垃である特蚱請求の範囲第
項蚘茉のフレキシブルシヌト。
[Scope of Claims] 1. A sheet-like substrate having at least one layer of an electrically conductive flexible sheet portion, and at least one layer of an electrically insulating flexible sheet portion laminated and bonded to the sheet-like substrate, A flexible sheet for preventing electrical and electromagnetic interference, in which at least one layer of a conductive sheet portion and a conductive sheet portion is reinforced with a fibrous base fabric. 2 The specific resistance value of the conductive sheet portion is 10 8 Ω・
2. The flexible sheet according to claim 1, which has a thickness of 1 cm or less. 3 The specific resistance value of the conductive sheet portion is 10 5 Ω・
3. The flexible sheet according to claim 2, which has a thickness of 1 cm or less. 4 The specific resistance value of the insulating sheet portion is 10 8 Ω・
The flexible sheet according to claim 1, which has a length of cm or more. 5 The specific resistance value of the insulating sheet portion is 10 10 Ω・
The flexible sheet according to claim 4, which has a length of cm or more. 6 The specific resistance value of the insulating sheet portion is 10 10 ~
The flexible sheet according to claim 5, which has a resistance of 10 18 Ω·cm. 7. The flexible sheet according to claim 1, wherein insulating sheet portions are laminated and adhered to both surfaces of each of the at least one conductive sheet portion. 8. The flexible sheet according to claim 1, wherein the insulating sheet portion is made of at least one selected from electrically insulating rubber and synthetic resin. 9. The flexible sheet according to claim 8, wherein the insulating rubber is selected from natural rubber, styrene butadiene rubber (SBR), chlorosulfonated polyethylene rubber, polyurethane rubber, butyl rubber, and isoprene rubber. 10. The flexible sheet according to claim 8, wherein the insulating synthetic resin is selected from polyvinyl chloride (PVC), polyurethane, ethylene-vinyl acetate copolymer, polypropylene, polyethylene, polyacrylonitrile, polyester, and polyamide. . 11. Claim 1, wherein the conductive sheet portion comprises a matrix component made of at least one selected from rubber and synthetic resin, and a conductive substance contained in this matrix component. Flexible sheet as described in section. 12. The flexible sheet according to claim 11, wherein the content of the conductive substance is at least 5% by weight based on the conductive sheet portion. 13 The content of the conductive substance is 10 to 70% by weight
The flexible sheet according to claim 12. 14. The flexible sheet according to claim 11, wherein the conductive material is selected from carbon black, conductive metals, conductive alloys, and conductive metal compounds. 15 The fibrous base fabric has a warp layer consisting of a large number of warps arranged parallel to each other, a weft layer consisting of a large number of wefts arranged parallel to each other so as to be perpendicular to the warps, and the warp and weft. and a leno thread entwined at their intersection.
Flexible sheet as described in section.
JP58165860A 1983-09-10 1983-09-10 Flexible sheet Granted JPS6058839A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58165860A JPS6058839A (en) 1983-09-10 1983-09-10 Flexible sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58165860A JPS6058839A (en) 1983-09-10 1983-09-10 Flexible sheet

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP1188825A Division JPH02161800A (en) 1989-07-24 1989-07-24 Electric and electromagnetic wave failure prevention flexible sheet

Publications (2)

Publication Number Publication Date
JPS6058839A JPS6058839A (en) 1985-04-05
JPH025319B2 true JPH025319B2 (en) 1990-02-01

Family

ID=15820361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58165860A Granted JPS6058839A (en) 1983-09-10 1983-09-10 Flexible sheet

Country Status (1)

Country Link
JP (1) JPS6058839A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01160638A (en) * 1987-12-18 1989-06-23 Nok Corp Water-absorbing conductive rubber laminate

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS586200A (en) * 1981-07-02 1983-01-13 防衛庁技術研究本郚長 Radio wave absorber

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS586200A (en) * 1981-07-02 1983-01-13 防衛庁技術研究本郚長 Radio wave absorber

Also Published As

Publication number Publication date
JPS6058839A (en) 1985-04-05

Similar Documents

Publication Publication Date Title
US4749625A (en) Amorphous metal laminate sheet
EP0668336B2 (en) Adhesive tape
JPH025319B2 (en)
JPS60116437A (en) Electrical and electromagnetic trouble preventive flexible sheet
JPS59192559A (en) Flexible sheet
JPH069911B2 (en) Electromagnetic wave shielding amorphous metal thin film laminated sheet
JPH02229497A (en) Electric and electromagnetic wave trouble preventive flexible sheet
JPH01152695A (en) Flexible sheet
JPH0755039Y2 (en) Flexible sheet to prevent electrical and electromagnetic interference
JP2732789B2 (en) Electromagnetic wave shielding laminated sheet
JPH0622994B2 (en) Amorphous metal laminated sheet
JPH0346903Y2 (en)
JPS5951901B2 (en) Resin coated sheet with high tear strength
JPH0358592B2 (en)
CN220973539U (en) High-strength high-wear-resistance non-woven fabric
JPH073679Y2 (en) Flexible sheet to prevent electrical and electromagnetic interference
JPH08800Y2 (en) Flexible sheet to prevent electrical and electromagnetic interference
JPH09190921A (en) Sheet of electromagnetic-wave shielding amorphous-metal-thin-film laminated layer
CN218615804U (en) High-strength composite textile fabric
JPH01117395A (en) Electromagnetic wave shielding laminated sheet
JPH0413154Y2 (en)
JP2859203B2 (en) Manufacturing method of wide and long amorphous metal sheet
JPH0361770B2 (en)
JPH0129075Y2 (en)
JPH0377060B2 (en)