JPH0252417B2 - - Google Patents

Info

Publication number
JPH0252417B2
JPH0252417B2 JP57010108A JP1010882A JPH0252417B2 JP H0252417 B2 JPH0252417 B2 JP H0252417B2 JP 57010108 A JP57010108 A JP 57010108A JP 1010882 A JP1010882 A JP 1010882A JP H0252417 B2 JPH0252417 B2 JP H0252417B2
Authority
JP
Japan
Prior art keywords
winding
star
delta
sheet coils
transformer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57010108A
Other languages
Japanese (ja)
Other versions
JPS58128713A (en
Inventor
Akira Hino
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP57010108A priority Critical patent/JPS58128713A/en
Publication of JPS58128713A publication Critical patent/JPS58128713A/en
Publication of JPH0252417B2 publication Critical patent/JPH0252417B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2847Sheets; Strips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2847Sheets; Strips
    • H01F2027/2857Coil formed from wound foil conductor

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Coils Of Transformers For General Uses (AREA)

Description

【発明の詳細な説明】 本発明は大電流用変圧器に係り、更に具体的に
はサイリスタ機器等に使用される大電流用変圧器
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a large current transformer, and more specifically to a large current transformer used in thyristor equipment and the like.

サイリスタ機器の容量の増大に伴い、高調波が
電源に及ぼす影響が問題となつていた。この為に
サイリスタ機器に使用される変圧器ではその二次
側巻線を二分割し、これらの巻線をスター結線及
びデルタ結線の組合せで多相整流を行うことによ
り高調波の影響を小さくするように構成されてい
る。ここでこの種の変圧器は大電流用が多いため
に巻線としては銅板を巻回したシートコイルが用
いられている。
As the capacity of thyristor devices increases, the influence of harmonics on power supplies has become a problem. For this reason, in transformers used in thyristor equipment, the secondary winding is divided into two, and these windings are combined with star and delta connections to perform multiphase rectification to reduce the effects of harmonics. It is configured as follows. Since this type of transformer is often used for large currents, a sheet coil made of a copper plate is used as the winding.

以下、本発明の実施例を図面に基づいて説明す
る。第1図には従来のこの種の変圧器の二次側の
巻線構造が示されており、同図では第2図に示す
ベクトル図における一相分のみの巻線のみが示さ
れている。また第5図には第1図に示した二次側
巻線の斜視図が示されている。
Embodiments of the present invention will be described below based on the drawings. Figure 1 shows the winding structure on the secondary side of a conventional transformer of this type, and the figure only shows the winding for one phase in the vector diagram shown in Figure 2. . Further, FIG. 5 shows a perspective view of the secondary winding shown in FIG. 1.

さて、第1図及び第5図に示されるように従来
の変圧器の二次側ではスター結線された二次巻線
2(以下、単に〓巻線と記す。)とデルタ結線さ
れた二次巻線3(以下、単にΔ巻線と記す。)と
2段で製作され、しかも各巻線内の電流密度はほ
ぼ同じであつた。
Now, as shown in Fig. 1 and Fig. 5, on the secondary side of a conventional transformer, a star-connected secondary winding 2 (hereinafter simply referred to as 〓 winding) and a delta-connected secondary winding 2 are connected. It was manufactured in two stages with winding 3 (hereinafter simply referred to as Δ winding), and the current density in each winding was almost the same.

また〓巻線の巻回数はΔ巻線の1/√3である
ために巻線の巻回間の隙間δが大きくなり、占
積率が低いという欠点があつた。
In addition, since the number of turns of the winding is 1/√3 of the Δ winding, the gap δ between turns of the winding becomes large, resulting in a disadvantage that the space factor is low.

更に第3図に示す如き自冷式の変圧器では変圧
器の高さ(H)によつて油温上昇が大きく異なる
ため鉄心1の上部に配置されたΔ巻線周囲の油温
との油温と下部に配置された巻線周囲の油温と
の間に温度差Δtがあり、Δ巻線周囲の油温が高
くなるために冷却器もΔ巻線に合せて設計する必
要があつた。
Furthermore, in a self-cooling type transformer as shown in Fig. 3, the oil temperature rise varies greatly depending on the height (H) of the transformer. There is a temperature difference Δt between the temperature and the oil temperature around the winding located at the bottom, and as the oil temperature around the Δ winding increases, the cooler also had to be designed to match the Δ winding. .

本発明の目的は二次側の巻線の占積率の向上
を図つた大電流用変圧器を提供することにある。
An object of the present invention is to provide a large current transformer in which the space factor of the secondary winding is improved.

本発明の特徴は二次側のスター結線されるシー
トコイルの段数をデルタ結線されるシートコイル
の段数より少なくし且つスター結線されるシート
コイルの電流密度がデルタ結線されるシートコイ
ルの電流密度より高くなるようにこれらのシート
コイルを形成する銅板の断面積を選定するように
構成した点にある。
The features of the present invention are that the number of stages of star-connected sheet coils on the secondary side is smaller than the number of stages of delta-connected sheet coils, and the current density of the star-connected sheet coils is lower than the current density of the delta-connected sheet coils. The main feature is that the cross-sectional area of the copper plates forming these sheet coils is selected so as to increase the height.

即ち、本発明は二次側の下部巻線の発生損失を
大きくすればラジエータ4内の冷油と損失発生部
の熱油間の圧力差が大きくなりラジエータ4の放
熱効果が向上することと、下部巻線の発生損失が
大きくなつても下部巻線の周囲油温が低く巻線の
温度は高ならないこと、さらに鉄心1上部巻回さ
れるΔ巻線の損失を下げることにより二次側巻線
全体の損失は増加せず、しかも両巻線の温度が平
衡状態となることに着目し、巻線に用いられる
銅板の厚みをうすくし、この結果として二次側の
巻線の構造を例えば従来の2段より1段形とす
ることにより巻線の占積率の向上を図らんとす
るものである。
That is, the present invention provides that if the loss generated in the lower winding on the secondary side is increased, the pressure difference between the cold oil in the radiator 4 and the hot oil in the loss generating part will be increased, and the heat dissipation effect of the radiator 4 will be improved. Even if the loss generated in the lower winding increases, the surrounding oil temperature of the lower winding is low and the temperature of the winding does not increase.Furthermore, by reducing the loss of the Δ winding wound on the upper part of the iron core 1, the secondary winding Focusing on the fact that the loss of the entire wire does not increase and the temperature of both windings is in equilibrium, the thickness of the copper plate used for the winding is reduced, and as a result, the structure of the secondary winding is The purpose is to improve the space factor of the winding by using one stage rather than the conventional two stages.

以下、本発明に係る大電流用変圧器の一実施例
を第3図、第4図及び第6図に基づいて説明す
る。第4図には本発明に係る大電流用変圧器の二
次側の巻線構造が示されており、本実施例が第1
図に示した従来例と構造上、異なる点は巻線を
2段から1段にし且つ巻線に使用される銅板の
断面積を、巻線12の電流密度がΔ巻線13の
電流密度より高くなるように選定してあることで
ある。第4図に示した二次側巻線のうち巻線の
斜視図を第6図に示す。この場合に巻線12は
Δ巻線に比して巻線の単位体積当りの発熱量、単
位表面積当りの発熱量及び熱放散量も高くなつて
いる。
Hereinafter, one embodiment of a large current transformer according to the present invention will be described based on FIGS. 3, 4, and 6. FIG. 4 shows the winding structure on the secondary side of the large current transformer according to the present invention, and this embodiment is the first one.
The difference in structure from the conventional example shown in the figure is that the winding is changed from two stages to one stage, and the cross-sectional area of the copper plate used for the winding is changed so that the current density of the winding 12 is higher than the current density of the winding 13. This is because the selection was made so that it would be high. A perspective view of the winding of the secondary winding shown in FIG. 4 is shown in FIG. In this case, the winding 12 has a higher calorific value per unit volume, a higher calorific value per unit surface area, and a higher heat dissipation amount than the Δ winding.

本実施例によれば、(1)巻線を1段にし且つ、
該巻線に使用される銅板をその断面積が小さくな
るように薄く形成したので二次巻線の占積率の向
上が図れる。また(2)コイルが1段であるために
巻線の製作が容易となり、その製作時間も従来に
比して約50%に低減される。更に(3)巻線の発熱
量が高く且つ該巻線は鉄心の下部に配置されて
いるためにラジエータ4内の冷油とのヘツド差が
高くなりラジエータの取付員数を少なくすること
ができる。また(4)巻線の熱放散密度がΔ巻線よ
り高くても第3図Bに示したように巻線周囲の
油温はΔ巻線のそれより低く、それ故Δ、両巻
線の温度上昇がほぼ等しくなり、温度分布のバラ
ンスがとれた変圧器を作ることができる。更に(5)
巻線の電流密度を高くできることにより巻線に
使用する銅量の節減ができ、従来の変圧器に比し
て5%程度のコスト低減が可能となる。
According to this embodiment, (1) the winding is in one stage, and
Since the copper plate used for the winding is made thin so that its cross-sectional area is small, the space factor of the secondary winding can be improved. In addition, (2) since the coil is in one stage, it is easy to manufacture the winding, and the manufacturing time is reduced to approximately 50% compared to the conventional method. Furthermore, (3) since the winding generates a high amount of heat and is disposed below the iron core, the head difference between the winding and the cold oil in the radiator 4 is high, allowing the number of people to install the radiator to be reduced. In addition, (4) Even if the heat dissipation density of the winding is higher than that of the Δ winding, the oil temperature around the winding is lower than that of the Δ winding, as shown in Figure 3B. It is possible to create a transformer with almost equal temperature rise and a well-balanced temperature distribution. Furthermore(5)
By increasing the current density of the windings, the amount of copper used for the windings can be reduced, making it possible to reduce costs by about 5% compared to conventional transformers.

なお、第4図に示されるように巻線のスター
結線を形成する中性点端子x2は巻線の内側に巻回
されており、線路側端子の形成を容易にしてあ
る。また巻線の占積率を高める手段として第7
図に示すように銅板の片面のみに冷却ダクトを挿
入する方式も有効である。
Note that, as shown in FIG. 4, the neutral point terminal x 2 forming the star connection of the windings is wound inside the windings, making it easy to form the line side terminals. In addition, as a means to increase the space factor of the winding,
It is also effective to insert a cooling duct on only one side of the copper plate, as shown in the figure.

以上に説明した如く本発明によれば製作容易で
且つ二次側の巻線の占積率の向上を図つた大電
流用変圧器を実現できる。
As described above, according to the present invention, it is possible to realize a large current transformer that is easy to manufacture and that improves the space factor of the secondary winding.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の大電流用変圧器の二次側の巻線
構成を示す説明図、第2図は変圧器のベクトル
図、第3図Aは変圧器の構成図、第3図Bは変圧
器の巻線高さと油温との関係を示す特性図、第4
図は本発明に係る変圧器の二次側の巻線構造を示
す説明図、第5図は第1図に示した二次巻線の外
観を示す斜視図、第6図は第4図に示した二次巻
線のうち巻線の外観を示す斜視図、第7図は本
発明に係る変圧器の二次側巻線における巻線の
巻線構造の他の実施例を示す説明図である。 1,10,20……鉄心、2,12……巻
線、3,13……Δ巻線、4……ラジエータ、2
3……冷却ダクト。
Figure 1 is an explanatory diagram showing the winding configuration on the secondary side of a conventional large current transformer, Figure 2 is a vector diagram of the transformer, Figure 3A is a configuration diagram of the transformer, and Figure 3B is Characteristic diagram showing the relationship between transformer winding height and oil temperature, No. 4
The figure is an explanatory diagram showing the winding structure on the secondary side of the transformer according to the present invention, FIG. 5 is a perspective view showing the external appearance of the secondary winding shown in FIG. 1, and FIG. 6 is the same as FIG. FIG. 7 is an explanatory diagram showing another embodiment of the winding structure of the secondary winding of the transformer according to the present invention. be. 1, 10, 20... Iron core, 2, 12... Winding, 3, 13... Δ winding, 4... Radiator, 2
3... Cooling duct.

Claims (1)

【特許請求の範囲】[Claims] 1 スター結線又はデルタ結線される2個以上の
二次巻線を銅板を巻回して形成されるシートコイ
ルとし且つデルタ結線される二次巻線を巻線の軸
方向上部に、またスター結線される二次巻線を巻
線の軸方向下部に配置してなる大電流用変圧器に
おいて、前記スター結線されるシートコイルの段
数をデルタ結線されるシートコイルの段数より少
なくし且つスター結線されるシートコイルの電流
密度がデルタ結線されるシートコイルの電流密度
より高くなるようにこれらのシートコイルを形成
する銅板の断面積を選定したことを特徴とする大
電流用変圧器。
1 A sheet coil formed by winding a copper plate with two or more star-connected or delta-connected secondary windings, and a delta-connected secondary winding placed above the winding in the axial direction, and a star-connected secondary winding. In a large current transformer in which a secondary winding is disposed at the lower part of the winding in the axial direction, the number of stages of the star-connected sheet coils is smaller than the number of stages of delta-connected sheet coils, and the star-connected sheet coils are star-connected. A large current transformer characterized in that the cross-sectional area of the copper plates forming these sheet coils is selected so that the current density of the sheet coils is higher than the current density of the sheet coils connected in delta.
JP57010108A 1982-01-27 1982-01-27 Transformer for large current Granted JPS58128713A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57010108A JPS58128713A (en) 1982-01-27 1982-01-27 Transformer for large current

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57010108A JPS58128713A (en) 1982-01-27 1982-01-27 Transformer for large current

Publications (2)

Publication Number Publication Date
JPS58128713A JPS58128713A (en) 1983-08-01
JPH0252417B2 true JPH0252417B2 (en) 1990-11-13

Family

ID=11741116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57010108A Granted JPS58128713A (en) 1982-01-27 1982-01-27 Transformer for large current

Country Status (1)

Country Link
JP (1) JPS58128713A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4997330B2 (en) * 2010-07-27 2012-08-08 株式会社神戸製鋼所 Multiphase transformer and transformer system
FI125524B (en) * 2014-06-19 2015-11-13 Efore Oyj Transformer

Also Published As

Publication number Publication date
JPS58128713A (en) 1983-08-01

Similar Documents

Publication Publication Date Title
US3659239A (en) Power transformer incorporating improved heat dissipation means
US4012706A (en) Sheet-wound transformer coils
JPH0252417B2 (en)
JPH0436441B2 (en)
JPH11288819A (en) Transformer and reactor
EP3062319B1 (en) Transformer for reducing eddy current losses of coil
JPS59168618A (en) Winding for transformer
US3391363A (en) Transformer winding having cooling ducts
KR200244148Y1 (en) A Internal Iron Core type of Three Phases Potential Transformer for a Welding Machine
GB1173249A (en) Electrical Transformer
CN214336486U (en) Single-phase conjugate reactor and three-phase conjugate reactor
JPH087613Y2 (en) Transformer equipment
JPS584912A (en) Electromagnetic guiding device
JPH0534091Y2 (en)
RU2144229C1 (en) Three-phase balanced transformer
JP2535853Y2 (en) Transformer equipment
JPH0374014B2 (en)
JP2022152034A (en) oil-filled transformer
JPH08222442A (en) Reactor with cooling device for electric car
JPH02895Y2 (en)
JPH0727135U (en) AC reactor
JPH06325956A (en) Three-phase transformer
JP2533503Y2 (en) Composite transformer
JPH04373110A (en) Three phase transformer
JP2001237129A (en) Oil-immersed transformer