JPH0252367B2 - - Google Patents

Info

Publication number
JPH0252367B2
JPH0252367B2 JP17549085A JP17549085A JPH0252367B2 JP H0252367 B2 JPH0252367 B2 JP H0252367B2 JP 17549085 A JP17549085 A JP 17549085A JP 17549085 A JP17549085 A JP 17549085A JP H0252367 B2 JPH0252367 B2 JP H0252367B2
Authority
JP
Japan
Prior art keywords
insulator
axis
conductor
moment
chain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP17549085A
Other languages
Japanese (ja)
Other versions
JPS6235413A (en
Inventor
Shuji Tatsuzaki
Susumu Watanabe
Takashi Imakoma
Shigeru Ogawa
Takeshi Kobayashi
Yukio Ikeda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku Electric Power Co Inc
Asahi Tec Corp
Original Assignee
Asahi Malleable Iron Co Ltd
Tohoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Malleable Iron Co Ltd, Tohoku Electric Power Co Inc filed Critical Asahi Malleable Iron Co Ltd
Priority to JP17549085A priority Critical patent/JPS6235413A/en
Publication of JPS6235413A publication Critical patent/JPS6235413A/en
Publication of JPH0252367B2 publication Critical patent/JPH0252367B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Insulators (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は碍子連を上下縦方向に複数配列した
縦配列複連耐張碍子装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a vertically arranged multiple tension insulator device in which a plurality of insulator chains are arranged vertically and vertically.

(従来の技術) 従来、塔体11に取着される複連耐張碍子装置
として、第6図に示すような水平配列のものが使
用されている。この水平配列の碍子装置15は寒
冷降雪地において、同碍子装置15に冠雪が生
じ、この冠雪が碍子装置15の金具等を変形させ
たり、耐電圧特性を低下させることがあつた。
(Prior Art) Conventionally, as a multiple tension insulator device attached to the tower body 11, one in a horizontal arrangement as shown in FIG. 6 has been used. This horizontally arranged insulator device 15 is exposed to snow in cold and snowy regions, and this snow can sometimes deform the metal fittings of the insulator device 15 or reduce its withstand voltage characteristics.

そこで、前記碍子装置15の冠雪を軽減するた
めに、例えば、第7図に示すように碍子連を縦に
配列する縦配列複連耐張碍子装置15が提供され
ている。
Therefore, in order to reduce the snow cover of the insulator device 15, for example, a vertically arranged multi-strand tension insulator device 15 in which insulator chains are arranged vertically as shown in FIG. 7 is provided.

この碍子装置15は概略的には、長幹碍子3、
3を1本以上直列に接続した碍子連1A,1Bを
上下二段に配列するとともに、両碍子連1A,1
Bの両端をそれぞれ塔体側ヨーク2Cと導体側ヨ
ーク2Dの連結部である軸P2,P3に連結して
形成されていた。そして、前記塔体11及び導体
13と両ヨーク2C,2Dとの連結部である軸P
1,P1を、上方碍子連1Aと両ヨーク2C,2
Dとの連結部である軸P2,P2と、下方碍子連
1Bと両ヨーク2C,2Dとの連結部である軸P
3,P3との上下中央位置に設けていた。すなわ
ち、軸P2,P2を結ぶ軸線H2と軸P1,P1
を結ぶ装置軸線H1との間隔を1とし、軸P
3,P3を結ぶ軸線H3と装置軸線H1との間隔
を2とすると、 1≒2 となるように軸P1,P1が設けられていた。
This insulator device 15 roughly includes a long insulator 3,
The insulator chains 1A, 1B each having one or more 3.
Both ends of B were connected to shafts P2 and P3, which are connecting portions of the tower-side yoke 2C and the conductor-side yoke 2D, respectively. A shaft P is a connecting portion between the tower body 11 and the conductor 13 and both yokes 2C and 2D.
1, P1, upper insulator chain 1A and both yokes 2C, 2
The shafts P2, P2 are the connecting portions with D, and the shafts P are the connecting portions between the lower insulator chain 1B and both yokes 2C, 2D.
3, it was installed at the vertical center position with P3. That is, the axis H2 connecting the axes P2, P2 and the axes P1, P1
The distance from the device axis H1 that connects is 1, and the axis P
The axes P1 and P1 were provided so that, if the distance between the axis H3 connecting the lines H3 and P3 and the device axis H1 was 2, then 1≈2.

(発明が解決しようとする問題点) ところが、前記碍子装置15の両ヨーク2C,
2Dは、本来、水平配列複連耐張碍子装置に用い
るバランスヨークに類するものである。従つて、
これを前記碍子装置15のような、縦配列の複連
耐張碍子装置に用いて送電線路で使用すると、前
記圧縮クランプ12に取着された高圧線などの導
体13の捻回や風圧の作用により、両ヨーク2
C,2Dは導体側及び塔体側の装置軸線H1を中
心に捻回力が作用し、特に導体側のヨーク2Dが
捻回して、塔体側及び導体側の軸P1,P1や、
長幹碍子3,3の軸P2,P3で変形が生じた
り、あるいは、上下両碍子連1A,1Bの縦方向
(垂直方向)の配列が崩れて、斜めの配列状態に
なつたりした。その結果、降雪時には、両碍子連
1A,1Bに冠雪が生じ易くなるばかりでなく、
冠雪により、碍子連1A,1Bの配列バランスが
崩れたり、更に導体側及び塔体側の軸P1,P1
で金具の変形が生じる虞があつた。
(Problems to be Solved by the Invention) However, both yokes 2C of the insulator device 15,
2D is originally similar to a balance yoke used in horizontally arranged multiple tension insulator devices. Therefore,
When this is used in a vertically arranged multiple tensile insulator device such as the insulator device 15 on a power transmission line, twisting of the conductor 13 such as a high voltage line attached to the compression clamp 12 and the effect of wind pressure Accordingly, both yokes 2
A twisting force acts on C and 2D around the device axis H1 on the conductor side and the tower side, and in particular, the yoke 2D on the conductor side twists, causing the axes P1 and P1 on the tower side and the conductor side,
Deformation occurred in the axes P2, P3 of the long insulators 3, 3, or the longitudinal (vertical) arrangement of the upper and lower insulator chains 1A, 1B collapsed, resulting in a diagonal arrangement. As a result, during snowfall, not only are both insulators 1A and 1B more likely to be covered with snow, but
Due to the snow cover, the arrangement balance of the insulator chains 1A and 1B may be disrupted, and the axes P1 and P1 on the conductor side and tower side may
There was a risk that the metal fittings would be deformed.

この発明は導体の捻回や風圧等の作用に対し
て、安定した碍子連の配列を保つことのできる縦
配列複連耐張碍子装置の提供を目的としている。
The object of the present invention is to provide a vertically arranged multi-strand tension-resistant insulator device that can maintain a stable arrangement of insulator chains against the effects of twisting of conductors, wind pressure, etc.

発明の構成 (問題点を解決するための手段) この発明は、塔体11に対し連結部P1により
一点で連結される塔体側ヨーク2Aと、導体13
に対し連結部P1により一点で連結される導体側
ヨーク2Bとの間に複数の碍子連1A,1Bを上
下に、かつ、所定間隔をもつて並列に連結する。
そして、前記塔体側及び導体側の連結部P1,P
1を結ぶ装置軸線H1を、下方碍子連1Bの慣性
モーメントが上方碍子連1Aの慣性モーメントよ
りも大きくなるように、上方碍子連1Aの軸線H
2と下方碍子連1Bの軸線H3との上下中央位置
よりも上側に設けるという構成を採用している。
Structure of the Invention (Means for Solving Problems) This invention comprises a tower body side yoke 2A connected to the tower body 11 at one point by a connecting portion P1, and a conductor 13.
On the other hand, a plurality of insulator chains 1A and 1B are vertically connected in parallel at a predetermined interval between the conductor side yoke 2B connected at one point by the connecting portion P1.
And the connection parts P1 and P on the tower body side and the conductor side
1 to the axis H1 of the upper insulator chain 1A so that the moment of inertia of the lower insulator chain 1B is larger than the moment of inertia of the upper insulator chain 1A.
2 and the axis H3 of the lower insulator chain 1B.

(作用) この発明は前記手段を採用したことより、次の
ように作用する。
(Function) By employing the above-mentioned means, the present invention functions as follows.

縦に配列された碍子連は、碍子装置全体とし
て、横方向への面積の拡がりが減じて、同方向へ
の連続的な冠雪の拡がりが減少する。
In the vertically arranged insulator series, the area of the insulator device as a whole is reduced in the horizontal direction, and the spread of continuous snow cap in the same direction is reduced.

又、塔体及び導体に対する碍子装置両側の連結
部を通過する装置軸線を中心として、下方碍子連
の慣性モーメントは上方碍子連の慣性モーメント
よりも大きくなり、全体として、前記装置軸線を
中心とする碍子装置の慣性モーメントが増大し、
導体の捻回のトルクに対し、従来の碍子装置に比
較して捻回が生じ難くなる。
Furthermore, the moment of inertia of the lower insulator chain is larger than the moment of inertia of the upper insulator chain, centering on the device axis passing through the connection parts on both sides of the insulator device with respect to the tower body and the conductor, The moment of inertia of the insulator device increases,
Compared to conventional insulator devices, twisting is less likely to occur with respect to the twisting torque of the conductor.

さらに、上下両碍子連の重力による力のモーメ
ントの差の作用によつて、風圧等による回転力が
作用しても、碍子装置は常に縦配列の安定状態と
なる。
Further, due to the difference in the moment of force due to gravity between the upper and lower insulator chains, the insulator device is always in a stable vertically arranged state even if rotational force due to wind pressure or the like is applied.

(実施例) 以下、この発明を具体化した一実施例を第1〜
5図に従つて詳細に説明する。
(Example) Hereinafter, an example embodying this invention will be described in the first to
This will be explained in detail according to FIG.

図面中1は碍子装置全体を示し、概略的には上
下縦方向、つまり上下に並列に配列された上方及
び下方の耐張碍子としての碍子連1A,1Bの両
端を、それぞれ塔体側ヨーク2Aと導体側ヨーク
2Bに連結して構成されている。
In the drawing, reference numeral 1 indicates the entire insulator device, and roughly speaking, both ends of insulator chains 1A and 1B as upper and lower tension insulators arranged vertically in parallel, that is, vertically, are connected to a tower side yoke 2A, respectively. It is configured to be connected to the conductor side yoke 2B.

前記両碍子連1A,1Bについて詳しく説明す
ると、3は両端にキヤツプ金具4,4が取着され
た中実の磁器よりなる長幹碍子であつて、ホーン
取付金具5によつて二本直列に連結されて上下両
碍子連1A,1Bがそれぞれ形成されている。6
は両碍子連1A,1Bの両端に取着されたホーン
取付金具、7,7は各長幹碍子3の両端に、それ
ぞれ前記ホーン取付金具5,6に取着された一対
のアークホーンである。
To explain in detail the double insulator chains 1A and 1B, 3 is a long insulator made of solid porcelain with cap fittings 4, 4 attached to both ends, and two insulators are connected in series by a horn fitting 5. They are connected to form upper and lower insulator chains 1A and 1B, respectively. 6
are horn mounting brackets attached to both ends of both insulator chains 1A and 1B, and 7 and 7 are a pair of arc horns attached to the horn attachment brackets 5 and 6, respectively, at both ends of each long insulator 3. .

更に、前記碍子連1A,1Bの両端は、それぞ
れ直角クレビスリンク8,8を介して、上下方向
の回動可能に両ヨーク2A,2Bの連結部である
軸P2,P3に連結されている。
Further, both ends of the insulator chains 1A and 1B are vertically rotatably connected to shafts P2 and P3, which are connecting portions of the yokes 2A and 2B, via right-angled clevis links 8 and 8, respectively.

9,9はそれぞれ塔体側及び導体側のヨーク2
A,2Bの連結部である軸P1,P1に上下方向
の回動可能に連結された平行クレビスである。前
記軸P1,P1を結ぶ装置軸線H1は、上方碍子
連1Aと両ヨーク2A,2Bとの連結部である軸
P2,P2を結ぶ上方碍子連1Aの軸線H2と、
下方碍子連1Bと両ヨーク2A,2Bとの連結部
である軸P3,P3を結ぶ下方碍子連1Bの軸線
H3との間にある。そして、装置軸線H1と軸線
H2との間隔を1とし、装置軸線H1と軸線H
3との間隔を2とすると、前記軸P1,P1の
両ヨーク2A,2Bに対する設定位置は、 1/2の値が、 0.3<1<2<0.83 となるような装置軸線H1上に設けられている。
すなわち、前記両ヨーク2A,2Bは、平行クレ
ビス9,9が、上方碍子連1Aと下方碍子連1B
との上下方向の中間位置よりも、上方碍子連1A
側の位置に取着された偏心ヨークである。前記
式、 0.3<1<2<0.83 の変域の下限値は、碍子連1A,1B間隔が普通
状態において400mmが適性で、中心から下側端の
距離はジヤンパー線とのクリアランスを確保する
ので300mmまでが適性のため、 1=100mm 2=300mm となり、 1/2=0.3 に決定される。又、同変域の上限値は、碍子連へ
の分担荷重が安全率2.5以下であることによつて、
例えば、電線張力8.8トンまで考えると、12トン
碍子連において、上方碍子連に許容荷重4.8トン
まで加わるように下方碍子連の位置を決めると、 2=1.21 となり、 1/2=0.83 に決定される。
9, 9 are the yokes 2 on the tower side and conductor side, respectively.
This is a parallel clevis that is rotatably connected in the vertical direction to the shafts P1 and P1, which are the connecting portions of A and 2B. The device axis H1 that connects the shafts P1 and P1 is the axis H2 of the upper insulator chain 1A that connects the shafts P2 and P2 that are the connection parts of the upper insulator chain 1A and both yokes 2A and 2B,
It is located between the axis H3 of the lower insulator chain 1B that connects the shafts P3, P3, which are connecting portions of the lower insulator chain 1B and both yokes 2A, 2B. Then, the distance between the device axis H1 and the axis H2 is set to 1, and the device axis H1 and the axis H2 are
Assuming that the distance from ing.
That is, the parallel clevises 9, 9 of both the yokes 2A, 2B are connected to the upper insulator series 1A and the lower insulator series 1B.
Upper insulator chain 1A than the intermediate position in the vertical direction with
It is an eccentric yoke mounted in a side position. The lower limit of the range of 0.3 < 1 < 2 < 0.83 in the above formula is appropriate to be 400 mm when the distance between insulators 1A and 1B is normal, and the distance from the center to the lower end ensures clearance with the jumper wire. Since up to 300mm is suitable, 1 = 100mm 2 = 300mm, and 1/2 = 0.3. In addition, the upper limit of the same range is determined by the fact that the shared load on the insulator chain is below the safety factor of 2.5.
For example, considering the wire tension up to 8.8 tons, in a 12-ton insulator chain, if the position of the lower insulator chain is determined so that the allowable load of 4.8 tons is applied to the upper insulator chain, 2 = 1.21, and 1/2 = 0.83. be done.

更に、10は塔体側ヨーク2Aの平行クレビス
9に上下方向の回動可能に連結された直角クレビ
スリンクであつて、碍子装置1の一端を塔体11
に水平方向の回動可能に連結している。12は導
体側ヨーク2Bの平行クレビス9に上下方向の回
動可能に連結された高圧線等の導体13を把持す
る圧縮クランプであつて、その基端にはジヤンパ
ー線13a用の圧縮クランプ12aが設けられて
いる。
Furthermore, 10 is a right angle clevis link which is connected to the parallel clevis 9 of the tower side yoke 2A so as to be rotatable in the vertical direction, and connects one end of the insulator device 1 to the tower body 11.
It is connected to allow rotation in the horizontal direction. Reference numeral 12 denotes a compression clamp for gripping a conductor 13 such as a high voltage line which is connected to the parallel clevis 9 of the conductor side yoke 2B so as to be rotatable in the vertical direction, and a compression clamp 12a for a jumper wire 13a is provided at the base end of the clamp. It is provided.

次に、前記のように構成した縦配列複連耐張碍
子装置の作用について説明する。
Next, the operation of the vertically arranged multiple tension insulator device constructed as described above will be explained.

一般に、物体の回転運動に対する慣性の大き
さ、つまり慣性モーメント(Iとする)は、物体
を構成する各部分の質量(mとする)と、回転の
中心から各部分までの距離(とする)の二乗と
の積で示される。
In general, the magnitude of inertia for rotational motion of an object, that is, the moment of inertia (denoted as I), is determined by the mass of each part of the object (denoted as m) and the distance from the center of rotation to each part (denoted as). It is expressed as the product of the square of .

すなわち、 I=m2(単位Kgm2) となる。 That is, I=m 2 (unit: Kgm 2 ).

ここで前述した碍子装置1についてモデル的に
説明する。
Here, the above-mentioned insulator device 1 will be explained as a model.

まず、この碍子装置1全体の質量をMとして、
その大部分が、上下両碍子連1A,1Bに集中し
ていることから、上下両碍子連1A,1Bの質量
をそれぞれ同様に0.5Mとし、装置軸線H1から
の距離(第1図に示す1,2)をそれぞれ次
のように仮定する。
First, let the mass of the entire insulator device 1 be M,
Since most of the mass is concentrated in the upper and lower insulator chains 1A and 1B, the masses of the upper and lower insulator chains 1A and 1B are similarly set to 0.5M, respectively, and the distance from the device axis H1 (1 , 2) are respectively assumed as follows.

1=0.3L,2=0.7L (1+2=L,1/2=0.43) このとき、この碍子装置1の慣性モーメント
I、すなわち、碍子装置1の捻回に対する抵抗の
大きさは、上方碍子連1Aの慣性モーメント(I
1とする)と下方碍子連1Bの慣性モーメント
(I2とする)との和で表すことができる。
1=0.3L, 2=0.7L (1+2=L, 1/2=0.43) At this time, the moment of inertia I of this insulator device 1, that is, the magnitude of the resistance to twisting of the insulator device 1 is 1A moment of inertia (I
1) and the moment of inertia (I2) of the lower insulator chain 1B.

すなわち、 I=I1+I2 となる。よつて、 I=0.045ML2+0.245ML2 =0.29ML2 となる。 That is, I=I1+I2. Therefore, I=0.045ML 2 +0.245ML 2 =0.29ML 2 .

一方、従来の碍子装置について、他の全ての条
件を前記と同様にし、上下各碍子連1A,1Bの
質量をそれぞれ0.5M、装置軸線H1からの距離、 1=2=0.5L とすると、慣性モーメントIは次のように表すこ
とができる。すなわち、 I=I1+I2 =0.125ML2+0.125ML2 =0.25ML2 となる。よつて、 0.29ML2>0.25ML2 となる。
On the other hand, regarding a conventional insulator device, if all other conditions are the same as above, the mass of each of the upper and lower insulator chains 1A and 1B is 0.5M, and the distance from the device axis H1 is 1=2=0.5L, then the inertia The moment I can be expressed as: That is, I=I1+I2= 0.125ML2 + 0.125ML2 = 0.25ML2 . Therefore, 0.29ML 2 > 0.25ML 2 .

すなわち、この発明のような偏心ヨーク2A,
2Bを用いた場合、従来のバランスヨーク2C,
2Dの使用と比較して、碍子装置全体としての慣
性モーメントIは大きくなる。従つて、装置軸線
H1を中心として、碍子装置1に捻回の作用(例
えば、高圧線の捻回力)が働いても、この碍子装
置1は従来の碍子装置15よりも捻回され難い。
That is, the eccentric yoke 2A like this invention,
2B, the conventional balance yoke 2C,
Compared to the use of 2D, the moment of inertia I of the insulator device as a whole becomes larger. Therefore, even if a twisting action (for example, twisting force of a high voltage line) is applied to the insulator device 1 about the device axis H1, this insulator device 1 is less likely to be twisted than the conventional insulator device 15.

ここで、碍子装置1に働く捻回の作用、すなわ
ち、捻回トルクと、導体側ヨーク2B,2Dの捻
回角との関係を、 1/2=0.67 となる偏心ヨークと、 1/2=1 となる従来のバランスヨークを用いた、それぞれ
の碍子装置1,15について行つた実験結果を第
2図に示す。
Here, the relationship between the twisting action acting on the insulator device 1, that is, the twisting torque, and the twisting angle of the conductor side yokes 2B and 2D is as follows: 1/2=0.67 for an eccentric yoke, 1/2= FIG. 2 shows the results of experiments conducted on insulator devices 1 and 15 using conventional balance yokes.

図から明らかなように、偏心ヨーク2Bの方
が、従来のバランスヨーク2Dに比較して常に捻
回角が小さく、この発明の偏心ヨーク2Bを用い
た碍子装置1は従来のバランスヨーク2Dを用い
た碍子装置15よりも、捻回され難いことがわか
る。そして、この捻回に対する抵抗性、すなわ
ち、慣性モーメントIは、 1/2 の値が小さくなるほど大きくなり、碍子装置1は
さらに捻回され難くなる。
As is clear from the figure, the eccentric yoke 2B always has a smaller twist angle than the conventional balance yoke 2D, and the insulator device 1 using the eccentric yoke 2B of the present invention uses the conventional balance yoke 2D. It can be seen that the insulator device 15 is less likely to be twisted than the insulator device 15 that was previously used. The resistance to twisting, that is, the moment of inertia I, increases as the value of 1/2 decreases, and the insulator device 1 becomes even more difficult to twist.

次に、この碍子装置1に対する重力の作用を第
3〜5図について説明する。
Next, the effect of gravity on this insulator device 1 will be explained with reference to FIGS. 3 to 5.

ところで、一般に、物体の回転に対する作用、
すなわち、力のモーメント(Nとする)は、うで
の長さ、すなわち回転の中心から力の作用点まで
の距離(とする)と、うでの長さに対して垂直
に作用する力(Fとする)との積で示される。
By the way, in general, the effect on the rotation of an object,
In other words, the moment of force (denoted as N) is the length of the arm, that is, the distance from the center of rotation to the point of application of the force (determined), and the force acting perpendicularly to the length of the arm (denoted as N). F).

すなわち、 N=F〔単位Nm〕 となる。 That is, N=F [Unit: Nm] becomes.

従つて、第3図に示すように、常には縦方向に
配列された碍子装置1にかかる重力、主に上方碍
子連1Aの重力W1と下方碍子連1Bの重力W2
は、上方碍子連1Aまでのうでの長さ1及び下
方碍子連1Bまでのうでの長さ2(2〉1)
に対して直角に作用しないので、碍子装置1は回
動されない。従つて、碍子装置1は縦配列の安定
状態で支持される。
Therefore, as shown in FIG. 3, the gravity always applied to the vertically arranged insulator devices 1 is mainly the gravity W1 of the upper insulator chain 1A and the gravity W2 of the lower insulator chain 1B.
The length of the arm up to the upper insulator series 1A is 1, and the length of the arm up to the lower insulator series 1B is 2 (2>1)
Since the insulator device 1 does not act at right angles to the insulator device 1, it is not rotated. Therefore, the insulator device 1 is supported in a stable vertical arrangement.

ところが、同碍子装置1の側方から、例えば、
風圧等により、装置軸線H1を中心として、下方
碍子連1Bに回動力Fが作用すると、重力W1,
W2は同装置1の回動に抗する力のモーメントと
して反作用を生じる。
However, from the side of the insulator device 1, for example,
When rotational force F acts on the lower insulator chain 1B around the device axis H1 due to wind pressure, etc., gravity W1,
W2 produces a reaction as a moment of force that resists the rotation of the device 1.

すなわち、この碍子装置1には、第4図に示す
ように、上方碍子連1Aのうでの長さ1と、同
碍子連1Aにかかる重力W1が、うでの長さ1
に直角に作用する力の成分F1との積で示される
力のモーメント(N1とする)、 N1=F1×1 及び、下方碍子連1B側のうでの長さ2と、同
碍子連1Bにかかる重力W2が、うでの長さ2
に直角に作用する力の成分F2との積で示される
力のモーメント(N2とする)、 N2=F2×2 との力のモーメントの差が生じる。
That is, in this insulator device 1, as shown in FIG.
The moment of force (assumed to be N1) is the product of the force component F1 acting perpendicular to The applied gravity W2 is the arm length 2
A difference in the moment of the force between the force and the force component F2 acting perpendicular to the force (denoted as N2) occurs, N2=F2×2.

すなわち、 N=N2−N1>0 の大きさの力のモーメントによつて、碍子装置1
はX方向への反作用により、常にもとの安定状態
に戻ろうとしている。
That is, by a moment of force of magnitude N=N2−N1>0, the insulator device 1
is always trying to return to its original stable state due to the reaction in the X direction.

これに対して、従来のバランスヨーク2C,2
Dを用いた碍子装置15では、第5図に示すよう
に、風圧等の力Fが作用しても、重力W1,W2の
作用による力のモーメントの差、 すなわち、 N=N2−N1=0 となるので、重力の作用による力のモーメントの
反作用を受けず、風圧の力Fに対してもとの静止
状態に戻ろうとしない。
In contrast, the conventional balance yoke 2C, 2
In the insulator device 15 using D, as shown in Fig. 5, even if force F such as wind pressure acts, the difference in moment of force due to the action of gravity W1 and W2, that is, N = N2 - N1 = 0 Therefore, it does not receive the reaction of the moment of force due to the action of gravity, and does not try to return to its original resting state in response to the wind pressure force F.

以上、力学的モデルによつて説明したように、
この碍子装置1は、導体の捻回の力、あるいは、
風圧の力等が作用しても、碍子装置1全体として
捻回され難い。従つて、この碍子装置1の上下各
碍子連1A,1Bの長幹碍子3,3を連結するホ
ーン取付金具5や、両碍子連1A,1Bと両ヨー
ク2A,2Bとを連結するホーン取付金具6、直
角クレビスリンク8,8あるいは、この碍子装置
1と塔体11を連結する平行クレビス9、直角ク
レビスリンク10及び、特に導体13の捻回トル
クが直接作用する平行クレビス9、圧縮クランプ
12等には無理な力が作用せず、変形や破壊が生
じ難い。
As explained above using the mechanical model,
This insulator device 1 uses the twisting force of the conductor or
Even if wind pressure or the like acts, the insulator device 1 as a whole is difficult to twist. Therefore, the horn mounting bracket 5 that connects the long insulators 3, 3 of the upper and lower insulator chains 1A, 1B of this insulator device 1, and the horn mounting bracket that connects both insulator chains 1A, 1B and both yokes 2A, 2B. 6. Right angle clevis links 8, 8, or parallel clevis 9 connecting this insulator device 1 and tower body 11, right angle clevis link 10, parallel clevis 9, compression clamp 12, etc. on which torsional torque of conductor 13 directly acts, in particular. No excessive force is applied to the material, and deformation or destruction is unlikely to occur.

発明の効果 以上詳述したように、この発明の碍子装置は、
従来の碍子装置に比較して、導体の捻回トルクや
風圧等の外力が働いても、碍子装置自体が捻回さ
れ難く、導体側ヨークも捻回され難いので、安定
した碍子連の縦配列を維持できる。従つて、高圧
線を鉄塔に配設する縦配列複連耐張碍子装置とし
て、バランス性に優れ、かつ、耐用寿命の長い装
置を提供することができる。
Effects of the Invention As detailed above, the insulator device of the present invention has the following features:
Compared to conventional insulator devices, the insulator device itself is difficult to twist even when external forces such as twisting torque of the conductor or wind pressure are applied, and the yoke on the conductor side is also difficult to twist, resulting in a stable vertical arrangement of insulator chains. can be maintained. Therefore, it is possible to provide a vertically arranged multiple tension insulator device in which high voltage lines are disposed on a steel tower, which has excellent balance and has a long service life.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施例を示す正面図、第2
図は前記実施例の碍子装置と従来の碍子装置と
の、捻回トルクに対する導体側ヨーク捻回角の関
係を比較した実験結果を示すグラフ、第3,4図
はこの発明の実施例の重力に対する作用の模式
図、第5図は従来の碍子装置の重力に対する作用
の模式図、第6図は従来の碍子装置の装着状態を
示す斜視図、第7図は同じく従来の碍子装置を示
す正面図である。 1……碍子装置、1A……上方碍子連、1B…
…下方碍子連、2A……塔体側ヨーク、2B……
導体側ヨーク、3……長幹碍子、4……キヤツプ
金具、5,6……ホーン取付金具、7……アーク
ホーン、8,10……直角クレビスリンク、9…
…平行クレビス、11……塔体、12……圧縮ク
ランプ、13……導体。
Figure 1 is a front view showing an embodiment of the invention, Figure 2 is a front view showing an embodiment of the invention.
The figure is a graph showing the results of an experiment comparing the relationship between the twisting torque and the twisting angle of the conductor side yoke between the insulator device of the above embodiment and the conventional insulator device. FIG. 5 is a schematic diagram of the effect of a conventional insulator device on gravity; FIG. 6 is a perspective view showing the conventional insulator device installed; FIG. 7 is a front view of the conventional insulator device. It is a diagram. 1...Insulator device, 1A...Upper insulator chain, 1B...
...Lower insulator chain, 2A...Tower body side yoke, 2B...
Conductor side yoke, 3... Long insulator, 4... Cap fitting, 5, 6... Horn mounting bracket, 7... Arc horn, 8, 10... Right angle clevis link, 9...
...Parallel clevis, 11...Tower body, 12...Compression clamp, 13...Conductor.

Claims (1)

【特許請求の範囲】 1 塔体11に対し連結部P1により一点で連結
される塔体側ヨーク2Aと、導体13に対し連結
部P1により一点で連結される導体側ヨーク2B
との間に複数の碍子連1A,1Bを上下に、か
つ、所定間隔をもつて並列に連結し、前記塔体側
及び導体側の連結部P1,P1を結ぶ装置軸線H
1を、下方碍子連1Bの慣性モーメントが上方碍
子連1Aの慣性モーメントよりも大きくなるよう
に、上方碍子連1Aの軸線H2と下方碍子連1B
の軸線H3との上下中央位置よりも上側に設けた
ことを特徴とする縦配列複連耐張碍子装置。 2 上方碍子連1Aの軸線H2と、塔体側及び導
体側の連結部P1,P1を結ぶ装置軸線H1との
間隔を1とし、下方碍子連1Bの軸線H3と前
記装置軸線H1との間隔を2とすると、1/
2の値は01/2<1の範囲とし、望ま
しくは0.3<1/2<0.83の範囲に設定した
特許請求の範囲第1項に記載の縦配列複連耐張碍
子装置。
[Claims] 1. A tower body side yoke 2A connected to the tower body 11 at one point by a connecting part P1, and a conductor side yoke 2B connected to the conductor 13 at one point by a connecting part P1.
A device axis H connects a plurality of insulator chains 1A, 1B vertically and in parallel with a predetermined interval between them, and connects the connecting parts P1, P1 on the tower body side and the conductor side.
1, the axis H2 of the upper insulator chain 1A and the lower insulator chain 1B so that the moment of inertia of the lower insulator chain 1B is larger than the moment of inertia of the upper insulator chain 1A.
A vertically arranged multiple tension insulator device characterized in that it is provided above a vertically central position with respect to an axis H3. 2. The distance between the axis H2 of the upper insulator chain 1A and the device axis H1 connecting the connecting parts P1 and P1 on the tower side and the conductor side is 1, and the distance between the axis H3 of the lower insulator chain 1B and the device axis H1 is 2. Then, 1/
2. The longitudinally arranged multiple tension insulator device according to claim 1, wherein the value of 2 is set in the range of 01/2<1, preferably in the range of 0.3<1/2<0.83.
JP17549085A 1985-08-08 1985-08-08 Vertically arranged multi-throw anti-tension insulator Granted JPS6235413A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17549085A JPS6235413A (en) 1985-08-08 1985-08-08 Vertically arranged multi-throw anti-tension insulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17549085A JPS6235413A (en) 1985-08-08 1985-08-08 Vertically arranged multi-throw anti-tension insulator

Publications (2)

Publication Number Publication Date
JPS6235413A JPS6235413A (en) 1987-02-16
JPH0252367B2 true JPH0252367B2 (en) 1990-11-13

Family

ID=15996954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17549085A Granted JPS6235413A (en) 1985-08-08 1985-08-08 Vertically arranged multi-throw anti-tension insulator

Country Status (1)

Country Link
JP (1) JPS6235413A (en)

Also Published As

Publication number Publication date
JPS6235413A (en) 1987-02-16

Similar Documents

Publication Publication Date Title
JPH0252367B2 (en)
JPH0239295Y2 (en)
JP3115111B2 (en) Jumper device and yoke fitting to which the device is mounted
JPH036971Y2 (en)
KR102704289B1 (en) Installation structure of cross arm support wire of power pole having one-way protrusion cross arm
JPH10243513A (en) Connection fittings for prefabricated protectorless method
JPH11205980A (en) Jointing metal fittings for overhead power transmission line
JPH036972Y2 (en)
JPH0514668Y2 (en)
JPS6115541Y2 (en)
JP3357431B2 (en) Double tension yoke bracket
US1885317A (en) Transmission line support
JP3844949B2 (en) Arrester device
JPH08256426A (en) Interphase spacer for electric cable
JPH036134Y2 (en)
JPH01227606A (en) Transmission line bearing device provided with lightning arrester
JPH03192618A (en) Strain insulator for large bundle diameter multiple conductor power transmission line
JPH01289022A (en) Three series tension resisting device and three series balance yoke
JPS649685B2 (en)
JPH026168B2 (en)
JPH07335055A (en) Lightning resistant horn insulator device and metal-fitting used therefor
JPS58348Y2 (en) Jumper wire support device for overhead power transmission lines
JPH0740770B2 (en) Pipe type jumper device
JPS591388Y2 (en) jumper device
JPS647541Y2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term