JPH025203Y2 - - Google Patents
Info
- Publication number
- JPH025203Y2 JPH025203Y2 JP1981066716U JP6671681U JPH025203Y2 JP H025203 Y2 JPH025203 Y2 JP H025203Y2 JP 1981066716 U JP1981066716 U JP 1981066716U JP 6671681 U JP6671681 U JP 6671681U JP H025203 Y2 JPH025203 Y2 JP H025203Y2
- Authority
- JP
- Japan
- Prior art keywords
- flue
- boiler
- heat transfer
- earthquake
- evaporator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000011084 recovery Methods 0.000 claims description 12
- 239000002918 waste heat Substances 0.000 claims description 12
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims 1
- 239000003546 flue gas Substances 0.000 claims 1
- 238000009434 installation Methods 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 9
- 230000005484 gravity Effects 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 239000002912 waste gas Substances 0.000 description 4
- 239000007789 gas Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000000567 combustion gas Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 description 2
- 238000010276 construction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000007665 sagging Methods 0.000 description 1
Landscapes
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Description
【考案の詳細な説明】
〈産業上の利用分野〉
この考案は廃熱回収ボイラに係り、特に耐震性
が高くかつ製作費も安価に押えることができる廃
熱回収ボイラに関する。[Detailed description of the invention] <Industrial application field> This invention relates to a waste heat recovery boiler, and particularly to a waste heat recovery boiler that has high earthquake resistance and can be manufactured at low cost.
〈従来の技術及びその問題点〉
ガスタービン等から排出された高温の燃焼ガス
中の熱を回収する廃熱回収ボイラは伝熱管配置形
式により横置形と縦置形の二形式がある。第1図
は横置形を示し、ボイラ設置面に対して垂直に配
置した煙道7に対しては下段から順にボイラ設置
面に対して平行に過熱器6、蒸発器4、節炭器1
の順に配置してある。高温ガスGはボイラ底部か
ら流入し過熱器6、蒸発器4、節炭器1の順に伝
熱した後系外に排出される。なお図中2はボイラ
ドラム、3は下降管、5は上昇管、10は循還ポ
ンプ、Wは給水、Sは蒸気である。以上の構成の
横置形ボイラの容量を増大したものにする場合に
は図面のヘツダ軸心方向、即ち図面奥行寸法を増
大しかつダクト横断面積を増加させて、ボイラの
伝熱部伝熱面を増加させボイラ負荷に対応するこ
とができる。<Prior art and its problems> There are two types of waste heat recovery boilers that recover heat in high-temperature combustion gas discharged from a gas turbine or the like: a horizontal type and a vertical type, depending on the arrangement of heat transfer tubes. Fig. 1 shows a horizontally installed type, and for a flue 7 arranged perpendicular to the boiler installation surface, a superheater 6, an evaporator 4, and an economizer 1 are arranged parallel to the boiler installation surface in order from the bottom.
They are arranged in this order. High-temperature gas G flows from the bottom of the boiler, heats it in the order of superheater 6, evaporator 4, and economizer 1, and then discharges it out of the system. In the figure, 2 is a boiler drum, 3 is a downcomer, 5 is a riser, 10 is a circulation pump, W is water supply, and S is steam. In order to increase the capacity of the horizontal boiler with the above configuration, the heat transfer surface of the heat transfer part of the boiler is Increased boiler load can be accommodated.
しかしこの構造のボイラでは一般に廃ガスGを
ボイラ設置面に対して垂直上方に流すためボイラ
容量の大小に拘らず数m角の排ガス入口ダクトが
軸心を水平に据付架台内に設ける必要があり、ボ
イラ全体の高さを増す。加えて背丈数mの架台8
を必要とする。 However, in a boiler with this structure, generally the waste gas G flows upward perpendicularly to the boiler installation surface, so regardless of the boiler capacity, it is necessary to install an exhaust gas inlet duct several meters square inside the installation frame with its axis horizontal. , increase the overall height of the boiler. In addition, a pedestal 8 with a height of several meters
Requires.
このため重量物たる伝熱管パネル群が据付面レ
ベルが地表より数mの高さの処にある架台上面に
載置されるためその重心は地表面より高い処に来
ることゝなり耐震上望ましくない。これと同時に
その耐震上の配慮から、ダクト、柱、梁に強度の
大なる材料と寸法の大なるものを使用せねばなら
ず、製品価格も大となるものとなる。また伝熱管
群の管が水平配置のため水頭によるボイラ水の自
然循環力を使用することができず循環ポンプを必
ず設ける必要があるという問題がある。 For this reason, the heavy heat transfer tube panels are placed on top of a pedestal whose installation level is several meters above the ground, so the center of gravity is higher than the ground, which is undesirable from an earthquake-resistant perspective. . At the same time, due to earthquake resistance considerations, it is necessary to use materials with high strength and large dimensions for the ducts, columns, and beams, which increases the product price. Furthermore, since the tubes of the heat transfer tube group are arranged horizontally, the natural circulation force of the boiler water due to the water head cannot be used, so there is a problem that a circulation pump must be provided.
第2図に縦置形の廃熱回収ボイラの構造を示
す。この形式のボイラは煙道7をボイラ設置面
(床面)に平行即ち水平に配置し、その煙道内に
廃ガス流入側から順に過熱器6、蒸発器4、節炭
器1をボイラ設置面に対してパネル面を垂直にし
て位置させる。この形式のボイラにおいては蒸発
器ではボイラ水の自然循環を利用するものであり
必然的にボイラ背丈(高さ)Hを10m以上もある
大きいものを採用している。従つてボイラ容量増
に対しては伝熱管の屈曲数(一パネルについての
ベンド部数)を増加させなくてすみ、製造上有利
である。しかし垂下する伝熱管長さを大にすると
煙道7の高さHが増加し煙道7自体の座屈、地震
時の強度不足振動等の問題を生ずる。つまり長尺
管の使用により煙道7の高さHと幅Dの比が大と
なり、第5図に示すように装置の重心がボイラ底
面から5m以上も高い処に来るしまたこれに加え
てボイラの伝熱管群を分割し複数のユニツトにし
工場組立し運搬車(ドーリー)で現地に運び工期
短縮をはかるため、図示の如く現地搬入後ドーリ
ーの床部をユニツトから抜き出すため第5図に示
す地表よりhの高さ約1.2mをもつ基礎を必要と
し、ますます重心は地表面より高い処に来るので
耐震性が低下する。一方容量の大なるボイラに対
して高さHと幅Dを変えず奥行き(流れ方向)寸
法を増大させる(パネル数を増す)ことは、過熱
器、蒸発器、節炭器の夫々を構成する単位の伝熱
管の屈曲部(ベンド部)数を増加させて、夫々の
伝熱面積を増加させることがあり、これにより燃
焼ガス流れの抵抗増大、送風機出口圧力の増大を
来し、かつ過熱器、蒸発器、節炭器の夫々の出口
流体の温度が変化し、即ち設計条件が変わるので
採用することができない。 Figure 2 shows the structure of a vertically installed waste heat recovery boiler. In this type of boiler, the flue 7 is arranged parallel to the boiler installation surface (floor surface), that is, horizontally, and the superheater 6, evaporator 4, and economizer 1 are installed in the flue in order from the waste gas inflow side to the boiler installation surface. Position the panel with the surface perpendicular to the In this type of boiler, the evaporator uses the natural circulation of boiler water, so it is necessary to use a large boiler with a height (H) of 10 m or more. Therefore, in order to increase the boiler capacity, it is not necessary to increase the number of bends in the heat exchanger tube (the number of bends per panel), which is advantageous in manufacturing. However, if the length of the hanging heat exchanger tubes is increased, the height H of the flue 7 will increase, causing problems such as buckling of the flue 7 itself and insufficient vibration during an earthquake. In other words, by using a long tube, the ratio of the height H to the width D of the flue 7 becomes large, and as shown in Fig. 5, the center of gravity of the device is located more than 5 m above the bottom of the boiler. In order to shorten the construction period by dividing the heat transfer tube group of the boiler into multiple units, assembling them at the factory and transporting them to the site using a dolly, as shown in Figure 5, the floor of the dolly is pulled out from the unit after being delivered to the site. It requires a foundation with a height of approximately 1.2 m above the ground surface, and as the center of gravity is increasingly higher than the ground surface, earthquake resistance decreases. On the other hand, for a boiler with a large capacity, increasing the depth (flow direction) dimension (increasing the number of panels) without changing the height H and width D will configure each of the superheater, evaporator, and energy saver. By increasing the number of bends in a unit heat transfer tube, the heat transfer area of each tube may be increased, which increases the resistance of combustion gas flow, increases the blower outlet pressure, and increases the , the temperature of the outlet fluid of each of the evaporator and economizer changes, that is, the design conditions change, so it cannot be adopted.
〈考案の目的〉
この考案の目的は上述した問題点に鑑み、耐震
性が高く、かつ長尺の伝熱管を使用できるボイラ
を提供することができる。<Purpose of the invention> In view of the above-mentioned problems, the purpose of the invention is to provide a boiler that has high earthquake resistance and can use long heat exchanger tubes.
〈手段の概要〉
要するにこの考案は、節炭器、蒸発器、過熱器
等の伝熱部を、軸心をほぼ鉛直にした入口管寄せ
と、出口管寄せとを、複数本のほぼ水平に並列屈
曲する伝熱部よりなるパネルで接続して形成し、
ほぼ水平な煙道内廃ガス流れに前記パネル面を直
交させるとともに、前記蒸発器に対応するドラム
から垂下する下降管と蒸発器入口管寄せとを循環
ポンプを介して接続してなる耐震型廃熱回収ボイ
ラである。<Summary of the Means> In short, this idea consists of heat transfer parts such as economizers, evaporators, superheaters, etc., with an inlet header whose axis is approximately vertical, and an outlet header which are arranged in multiple approximately horizontal lines. Connected and formed by panels consisting of heat transfer parts bent in parallel,
Earthquake-resistant waste heat constructed by making the panel surface perpendicular to the almost horizontal flow of waste gas in the flue, and connecting a downcomer pipe hanging down from a drum corresponding to the evaporator and an evaporator inlet header via a circulation pump. It is a recovery boiler.
〈実施例〉 以下この考案の一実施例を説明する。<Example> An embodiment of this invention will be described below.
第3図において、煙道7はボイラ設置面に対し
て平行(水平)に配置してあり、幅Dは高さHに
対して大きくした形状となつている。この煙道7
に対して廃ガスGの流入側から順に過熱器6、蒸
発器4、節炭器1が配置してある。これら各伝熱
面を構成する伝熱管は全てボイラ設置面に対して
平行に配置してある。この様に伝熱管を配置する
ことにより煙道7の幅Dに対応する長尺の伝熱管
の使用が可能となり、パネル単位伝熱面積当りの
伝熱管の曲げ数を減少できるので伝熱管の製作費
用を安価にすることができる。但し伝熱管が水平
配置なのでボイラ水用循環ポンプを必要とする。 In FIG. 3, the flue 7 is arranged parallel (horizontally) to the boiler installation surface, and the width D is larger than the height H. This flue 7
A superheater 6, an evaporator 4, and a energy saver 1 are arranged in this order from the waste gas G inflow side. All of the heat transfer tubes constituting each of these heat transfer surfaces are arranged parallel to the boiler installation surface. By arranging the heat exchanger tubes in this way, it is possible to use long heat exchanger tubes corresponding to the width D of the flue 7, and the number of bends of the heat exchanger tubes per unit heat transfer area of the panel can be reduced, so the manufacturing of the heat exchanger tubes is possible. Costs can be reduced. However, since the heat transfer tubes are arranged horizontally, a circulation pump for boiler water is required.
第4図は煙道7の形状と、この煙道内に配置す
るボイラの製造費指数との開係を示す。先ず煙道
7の形状は煙道7の高さHと幅Dの比として示
す。また製造指数とは、煙道7の形状によつて第
3図に示す伝熱管の曲折数、長さ、煙道に使用す
る材料の量が変化することにより材料費、加工費
等の変動状態を示す。ここで前記比D/Hが1の
場合の製造指数を100とすれば、D/Hが上昇す
るに従つて製造指数は下降しD/Hが約5の場合
に最低となり、さらにD/Hが上昇すると伝熱管
の水平長さが大となり、伝熱管の垂れ下り(湾
曲)防止の支柱、架台の設置等部材の費用が増加
するとの理由から製造指数は上昇する。これらの
理由によりボイラ煙道7のD/Hは約2から8の
間、好適には4から6の間とする。 FIG. 4 shows the relationship between the shape of the flue 7 and the manufacturing cost index of the boiler disposed within the flue. First, the shape of the flue 7 is shown as the ratio of the height H to the width D of the flue 7. In addition, the manufacturing index refers to the fluctuation state of material costs, processing costs, etc. due to changes in the number of bends and length of heat exchanger tubes shown in Figure 3, and the amount of material used for the flue, depending on the shape of the flue 7. shows. Here, if the manufacturing index when the ratio D/H is 1 is 100, then as D/H increases, the manufacturing index decreases and becomes the lowest when D/H is about 5, and then D/H As the temperature rises, the horizontal length of the heat exchanger tube increases, and the manufacturing index increases because the cost of components such as supports and mounting frames to prevent the heat exchanger tube from sagging (curving) increases. For these reasons, the D/H of the boiler flue 7 is between about 2 and 8, preferably between 4 and 6.
次に第2図に対応する煙道断面を模式に示す第
5図および第3図に対応する煙道断面を模式に示
す第6図についての煙道の形状と耐震度合を示
す。図においてGRは煙道の重心を、KWは横方
向の応力を、Wは重力方向の応力を示す。H1,
H2は前記応力が加わつた場合の煙道底面から重
心GRまでの高さを示す。図からも明らかなとお
り、第5図に示す縦長、つまりH1/D1の大きい
煙道では応力KWにより倒壊する虞れがあるが、
第6図の如くH2/D2の小さい煙道では倒壊する
虞れは殆んどない。第7図はH1/D1またはH2/
D2と震度の関係を示し、範囲Aは煙道7の安定
範囲、範囲B(斜線部)は転倒力発生範囲を示す。
この図からも第6図の如きH2/D2の小さい煙道
の方が耐震性が高いことがわかる。 Next, the shape and seismic resistance of the flue are shown in FIG. 5, which schematically shows a cross section of the flue corresponding to FIG. 2, and FIG. 6, which schematically shows a cross section of the flue corresponding to FIG. 3. In the figure, GR indicates the center of gravity of the flue, KW indicates the stress in the lateral direction, and W indicates the stress in the direction of gravity. H1 ,
H 2 represents the height from the bottom of the flue to the center of gravity GR when the stress is applied. As is clear from the figure, there is a risk of collapse due to the stress KW in the vertically long flue shown in Figure 5, that is, with a large H 1 /D 1 .
As shown in Figure 6, there is little risk of collapse in a flue with a small H 2 /D 2 ratio. Figure 7 shows H 1 /D 1 or H 2 /
The relationship between D 2 and seismic intensity is shown, where range A shows the stable range of flue 7, and range B (shaded area) shows the range where overturning force occurs.
This figure also shows that a flue with a small H 2 /D 2 as shown in Figure 6 has higher earthquake resistance.
〈考案の効果〉
この考案を実施することによりD/Hが適正値
の水平管よりなる伝熱管パネルを形成し水平伝熱
管の一のベンド部から次のベンド部までの長さを
変えるだけでベンド部数を増加することなしに伝
熱面積を大にすることができ、しかもダクト底面
からの重心位置は変えないですむので製造費が安
価にして、かつ伝熱管群の重心を低くした熱交換
器を形成でき、しかも耐震性の高い廃熱回収ボイ
ラを形成することができる。<Effect of the invention> By implementing this invention, a heat exchanger tube panel consisting of horizontal tubes with an appropriate D/H value can be formed, and the length from one bend of the horizontal heat exchanger tube to the next bend can be changed. The heat transfer area can be increased without increasing the number of bends, and the position of the center of gravity from the bottom of the duct does not need to be changed, which reduces manufacturing costs and lowers the center of gravity of the heat exchanger tube group. It is possible to form a waste heat recovery boiler with high earthquake resistance.
第1図は横置形廃熱回収ボイラの斜視図、第2
図は縦置形廃熱回収ボイラの斜視図、第3図はこ
の考案に係る廃熱回収ボイラの斜視図、第4図は
ボイラ製造費指数と煙道形状の関係を示す線図、
第5図は第2図に対応する煙道の横断面を模式に
した煙道の変形状態を示す図面、第6図は第3図
に対応する煙道の横断面を模式にした煙道の変形
状態を示す図面、第7図は震度と煙道形状の関係
を示す線図である。
1……節炭器、4……蒸発器、6……過熱器、
7……煙道、H……煙道の高さ、D……煙道の
幅。
Figure 1 is a perspective view of a horizontal waste heat recovery boiler, Figure 2
Figure 3 is a perspective view of a vertically installed waste heat recovery boiler, Figure 3 is a perspective view of the waste heat recovery boiler according to this invention, Figure 4 is a diagram showing the relationship between boiler manufacturing cost index and flue shape,
Fig. 5 is a diagram showing the deformed state of the flue, which is a schematic cross-section of the flue corresponding to Fig. 2, and Fig. 6 is a diagram showing the flue deformation state, which is a schematic cross-section of the flue corresponding to Fig. 3. The drawing showing the deformed state, FIG. 7, is a diagram showing the relationship between the seismic intensity and the flue shape. 1... Energy saver, 4... Evaporator, 6... Superheater,
7... Flue, H... Flue height, D... Flue width.
Claims (1)
をほぼ鉛直にした入口管寄せと、出口管寄せと
を、複数本のほぼ水平に並列屈曲する伝熱管よ
りなるパネルで接続して形成し、ほぼ水平な煙
道内廃ガス流れに前記パネル面を直交させると
ともに、前記蒸発器に対応するドラムから垂下
する下降管と蒸発器入口管寄せとを循環ポンプ
を介して接続してなることを特徴とする耐震型
廃熱回収ボイラ。 2 実用新案登録請求の範囲第1項記載の耐震型
廃熱回収ボイラにおいて、煙道の幅Dと高さH
との比を1以上好ましくは2乃至8にした耐震
型廃熱回収ボイラ。[Scope of Claim for Utility Model Registration] 1. Heat transfer parts such as energy savers, evaporators, superheaters, etc. are arranged in a plurality of substantially horizontally parallel inlet headers and outlet headers whose axes are approximately vertical. A downcomer pipe and an evaporator inlet header are connected to each other by a panel made of bent heat transfer tubes, with the panel surface perpendicular to the substantially horizontal flue gas flow, and a downcomer pipe and an evaporator inlet header are suspended from a drum corresponding to the evaporator. An earthquake-resistant waste heat recovery boiler characterized by being connected via a circulation pump. 2. In the earthquake-resistant waste heat recovery boiler described in claim 1 of the utility model registration claim, the width D and height H of the flue
An earthquake-resistant waste heat recovery boiler having a ratio of 1 or more, preferably 2 to 8.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1981066716U JPH025203Y2 (en) | 1981-05-11 | 1981-05-11 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1981066716U JPH025203Y2 (en) | 1981-05-11 | 1981-05-11 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS57178901U JPS57178901U (en) | 1982-11-12 |
JPH025203Y2 true JPH025203Y2 (en) | 1990-02-08 |
Family
ID=29862741
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1981066716U Expired JPH025203Y2 (en) | 1981-05-11 | 1981-05-11 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH025203Y2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3865342B2 (en) * | 1998-03-04 | 2007-01-10 | 株式会社東芝 | Natural circulation evaporator, exhaust heat recovery boiler, and startup method thereof |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5536881A (en) * | 1978-09-08 | 1980-03-14 | Canon Inc | Sound overlap device for sound cine camera |
-
1981
- 1981-05-11 JP JP1981066716U patent/JPH025203Y2/ja not_active Expired
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5536881A (en) * | 1978-09-08 | 1980-03-14 | Canon Inc | Sound overlap device for sound cine camera |
Also Published As
Publication number | Publication date |
---|---|
JPS57178901U (en) | 1982-11-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RO126434A2 (en) | Heat exchanger assembled in the factory for the solar collector | |
JPS6353476B2 (en) | ||
EP2245406B1 (en) | Heat exchanger | |
ITRM950141A1 (en) | IMPROVEMENT IN SINGLE PASSING BOILERS AND STEAM GENERATORS, WITH SINGLE AND MULTIPLE PIPES AND RIBS. | |
CN101558265B (en) | Evaporator surface structure of a circulating fluidized bed boiler and a circulating fluidized bed boiler with such an evaporator surface structure | |
US3976127A (en) | Heat exchanger assemblies | |
JPH025203Y2 (en) | ||
US4245694A (en) | Supports for closely spaced tubes | |
AU2017436110B2 (en) | A boiler construction | |
JPH0652121B2 (en) | Vertical gas passage | |
CN105222122B (en) | It is applied to the superheater of boiler | |
JP2873045B2 (en) | Exhaust heat recovery heating device | |
CN217330812U (en) | Formula of turning back heat pipe convection heat exchanger | |
WO2022113484A1 (en) | Support mechanism for exhaust heat recovery boilers | |
JPH0318803Y2 (en) | ||
JP2519490B2 (en) | Waste heat recovery boiler | |
US6718915B1 (en) | Horizontal spiral tube boiler convection pass enclosure design | |
RU2101609C1 (en) | Economizer | |
JPH0311524Y2 (en) | ||
SU1746116A1 (en) | Boiler gas duct heat transfer surface | |
RU2042879C1 (en) | Device for securing coil pipes of horizontal pipe banks for fluidized bed boiler | |
JPS61149707A (en) | Moisture separating reheater | |
JPS58200896A (en) | Support frame | |
JPS591903A (en) | Steam generator | |
JPS6241591A (en) | Heat exchanger |