JPH0251983B2 - - Google Patents

Info

Publication number
JPH0251983B2
JPH0251983B2 JP4253286A JP4253286A JPH0251983B2 JP H0251983 B2 JPH0251983 B2 JP H0251983B2 JP 4253286 A JP4253286 A JP 4253286A JP 4253286 A JP4253286 A JP 4253286A JP H0251983 B2 JPH0251983 B2 JP H0251983B2
Authority
JP
Japan
Prior art keywords
electrode
plating solution
potential range
platinum
formate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4253286A
Other languages
Japanese (ja)
Other versions
JPS62199774A (en
Inventor
Mikio Ogata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP4253286A priority Critical patent/JPS62199774A/en
Publication of JPS62199774A publication Critical patent/JPS62199774A/en
Publication of JPH0251983B2 publication Critical patent/JPH0251983B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1617Purification and regeneration of coating baths

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemically Coating (AREA)

Description

【発明の詳細な説明】 〔技術分野〕 本発明は、ホルムアルデヒドを環元剤とする実
質的に錯化剤を含まない無電解めつき液中に含ま
れるギ酸イオンの電解酸化除去方法に関するもの
である。
[Detailed Description of the Invention] [Technical Field] The present invention relates to a method for electrolytically oxidizing and removing formate ions contained in an electroless plating solution that uses formaldehyde as a ring agent and is substantially free of complexing agents. be.

〔従来技術〕[Prior art]

近年、電子機器産業、自動車産業等の発展に伴
つて、表面処理技術の一分野である無電解めつき
が目ざましい発展をとげている。
BACKGROUND OF THE INVENTION In recent years, electroless plating, which is a field of surface treatment technology, has made remarkable progress with the development of the electronic equipment industry, the automobile industry, etc.

ところで、このような無電解めつき液において
は、それに含まれる還元剤が酸化されその酸化物
がある一定量以上蓄積するとめつき液を廃棄しな
ければならなくなるため、コスト高になるという
欠点がある。しかも、この場合のめつき廃液は、
高濃度の重金属イオンやCOD、BOD物質等の公
害性物質が高濃度で含まれているので、高度の無
公害化処理を施すことが必要で、その廃棄処理に
は大きな負担が伴う。そこで、これらの不利を解
消するために、めつき液をリサイクル化し、再生
使用することが種々研究されている。
By the way, such electroless plating solutions have the disadvantage that the reducing agent contained therein is oxidized and if the oxide accumulates above a certain amount, the plating solution must be discarded, resulting in high costs. be. Moreover, the plating waste liquid in this case is
Since it contains high concentrations of polluting substances such as heavy metal ions, COD, and BOD substances, it is necessary to carry out advanced pollution-free treatment, and the disposal process is a heavy burden. Therefore, in order to eliminate these disadvantages, various studies have been conducted on recycling and reusing the plating solution.

ホルムアルデヒドを還元剤とする無電解めつき
液においては、ホルムアルデヒドはめつき液の使
用と共に、ギ酸に酸化され、めつき液中にはギ酸
イオンが蓄積するようになり、その蓄積量がある
一定値を超えるようになると廃棄されなければな
らなくなる。しかし、この廃めつき液からギ酸イ
オンを除去することが可能になれば、めつき液の
寿命は大きく延びることになり、大きな利点が得
られることは明らかである。めつき液中からのギ
酸イオンを除去するために、ギ酸イオンを電解酸
化して炭酸ガスとして除去することが検討されて
いるが、ギ酸イオンの酸化効率あるいは電流効率
等の点で未だ満足し得るものではなかつた。
In an electroless plating solution that uses formaldehyde as a reducing agent, formaldehyde is oxidized to formic acid as the plating solution is used, and formate ions accumulate in the plating solution, and the amount of accumulation reaches a certain value. When it exceeds the limit, it must be disposed of. However, it is clear that if it were possible to remove formate ions from this waste plating solution, the life of the plating solution would be greatly extended and a great advantage would be obtained. In order to remove formate ions from the plating solution, electrolytic oxidation of formate ions to remove them as carbon dioxide gas has been considered, but this method is still unsatisfactory in terms of oxidation efficiency of formate ions or current efficiency. It wasn't something.

〔目的〕〔the purpose〕

本発明は、ホルムアルデヒドを還元剤とする実
質的に錯化剤を含まない無電解めつき液からそれ
に含まれるギ酸イオンを電解酸化除去するに際
し、そのギ酸イオンの酸化効率あるいは電流効果
を高めるための方法を提供することを目的とす
る。
The present invention aims to improve the oxidation efficiency or current effect of formate ions when electrolytically removing formate ions from an electroless plating solution that uses formaldehyde as a reducing agent and is substantially free of complexing agents. The purpose is to provide a method.

〔構成〕 本発明によれば、ホルムアルデヒドを還元剤と
する実質的に錯化剤を含まない無電解めつき液中
に含まれるギ酸イオンを電解酸化して炭酸ガスと
して除去するに際し、アノード電極として白金系
電極を用いると共に、アノード電位を、銀/塩化
銀参照電極を基準として、−0.25V〜+0.4Vのギ
酸酸化電位域と+1.3V〜+1.8Vの水電解電位域
との間を交互に変動させることを特徴とするめつ
き中に含まれるギ酸イオンの電解酸化除去方法が
提供される。
[Structure] According to the present invention, when formate ions contained in an electroless plating solution that uses formaldehyde as a reducing agent and is substantially free of a complexing agent are electrolytically oxidized and removed as carbon dioxide gas, the anode electrode is used as an anode electrode. A platinum-based electrode is used, and the anode potential is set between -0.25V to +0.4V formic acid oxidation potential range and +1.3V to +1.8V water electrolysis potential range with respect to the silver/silver chloride reference electrode. Provided is a method for electrolytic oxidation removal of formate ions contained in plating, which is characterized by alternating variations.

本発明で用いるめつき液は、環元剤としてホル
ムアルデヒドを含み、かつ実質的に錯化剤を含ま
ないもので、その代表的なものとして、例えば、
硫酸銅及びホルムアルデヒドからなる無電解銅め
つき液を挙げることができる。もちろん、ホルム
アルデヒドを還元剤とする他の金属めつき液も使
用可能である。このようなホルムアルデヒドを含
むめつき液においては、めつきの進行と共に、め
つき液中にはホルムアルデヒドの酸化生成物であ
るギ酸イオンが蓄積するようになり、その蓄積量
が相当量(約0.8モル程度)になると、良質のめ
つきが行われなくなる。
The plating solution used in the present invention contains formaldehyde as a ring agent and does not substantially contain a complexing agent, and representative examples thereof include, for example:
Mention may be made of an electroless copper plating solution consisting of copper sulfate and formaldehyde. Of course, other metal plating solutions that use formaldehyde as a reducing agent can also be used. In such a plating solution containing formaldehyde, formate ions, which are oxidation products of formaldehyde, accumulate in the plating solution as plating progresses, and the accumulated amount reaches a considerable amount (approximately 0.8 mol). ), good quality plating will no longer be possible.

本発明は、このようなギ酸イオンの蓄積された
めつき液中から、ギ酸イオンをを電解酸化により
炭酸ガスとして除去し、再使用しようとするもの
であるが、この場合、本発明者は、種々研究の結
果、アノードとして白金系電極を用いると共に、
アノード電位を、ギ酸酸化電位域と水電解電位域
との間を変動させせる時には、長時間にわたつて
効率よくギ酸イオンの電解酸化を実施し得ること
を見出した。アノードとして白金系電極以外のも
のを用いた場合にはギ酸イオンの酸化電流密度は
非常に小さいか又は全く存在しない。また、白金
系電極を用いる場合、−0.25V〜+0.4Vにおいて
ギ酸イオンの電解酸化が行われ、ギ酸イオンを炭
酸ガスとして除去されるものの、時間と共にギ酸
イオンの電解酸化効率が著しく低下し、例えば、
定電位電解法では、電流密度が時間と共に著しく
減少するようになる。本発明者は、この点の改良
について鋭意研究を重ねた結果、アノード電位を
ギ酸酸化電位域からそれより高い水電解電位に上
げて短時間電解を行つた後、ギ酸酸化電位に戻す
と、再び良好なギ酸イオンの酸化分解が達成され
るこを見出した。図面に、白金電極をアノードし
て用い、ギ酸ナトリウム0.8モル/を含むPH4
の水溶液を電解酸化処理した時の白金電極特性を
示す。図面において、横軸はAgCl/Agを参照電
極としたアノード電位(V)を示し、縦軸は電流
密度(A/cm2)を示す。また矢印Aで示されるア
ノード電位域(−0.25V〜+0.4V)はギ酸が酸化
されて炭酸ガスが発生するギ酸酸化電位域を示
し、矢印Bで示されるアノード電位域は水の電解
によつて酸素が発生する水電解電位域(+1.3V
〜+0.8V)を示す。
The present invention attempts to remove formate ions as carbon dioxide gas by electrolytic oxidation from the formate solution in which formate ions have been accumulated, and reuse it. As a result of research, in addition to using platinum-based electrodes as anodes,
It has been found that when the anode potential is varied between the formic acid oxidation potential range and the water electrolysis potential range, electrolytic oxidation of formic acid ions can be carried out efficiently over a long period of time. When an anode other than a platinum-based electrode is used, the oxidation current density of formate ions is very small or does not exist at all. In addition, when using a platinum-based electrode, electrolytic oxidation of formate ions is performed at -0.25V to +0.4V, and the formate ions are removed as carbon dioxide gas, but the electrolytic oxidation efficiency of formate ions decreases significantly over time. for example,
Potentiostatic electrolysis causes the current density to decrease significantly with time. As a result of extensive research into improving this point, the present inventor found that after raising the anode potential from the formic acid oxidation potential range to a higher water electrolysis potential and performing electrolysis for a short time, returning it to the formic acid oxidation potential again. It has been found that good oxidative decomposition of formate ions can be achieved. The drawing shows PH4 containing 0.8 mol of sodium formate using a platinum electrode as an anode.
This shows the characteristics of a platinum electrode when an aqueous solution of is subjected to electrolytic oxidation treatment. In the drawings, the horizontal axis shows the anode potential (V) using AgCl/Ag as a reference electrode, and the vertical axis shows the current density (A/cm 2 ). In addition, the anode potential range (-0.25V to +0.4V) indicated by arrow A indicates the formic acid oxidation potential range where formic acid is oxidized and carbon dioxide gas is generated, and the anode potential range indicated by arrow B indicates the formic acid oxidation potential range due to water electrolysis. Water electrolysis potential range where oxygen is generated (+1.3V
~+0.8V).

本発明では、アノード電位を、前記ギ酸酸化電
位域Aと、水電解電位域Bとの間を交互に変動さ
せながら電解を継続する。この場合、ギ酸酸化電
位域Aに保持する時間は、通常、5〜15秒、好ま
しくは9〜11秒の範囲であり、一方、水電解電位
域Bに保持する時間は1〜5秒、好ましくは1〜
2秒である。アノード電位を変動させる方法は任
意であり、電解電位を直接変動させる方法の他、
電解電流を変化させる方法がある。実際上は、定
電流方式の電解装置を用い、アノード電位がギ酸
酸化電位域A内に位置するような定電流を所定時
間流し、次に、この電流よりも大きな定電流を流
して、より高いアノード電位を形成させ、アノー
ド電位が水電解電位域B内に位置させるようにし
て電解操作を行うのがよい。
In the present invention, electrolysis is continued while the anode potential is alternately varied between the formic acid oxidation potential range A and the water electrolysis potential range B. In this case, the time to be held in the formic acid oxidation potential range A is usually 5 to 15 seconds, preferably 9 to 11 seconds, while the time to be held in the water electrolysis potential range B is 1 to 5 seconds, preferably. is 1~
It is 2 seconds. Any method can be used to vary the anode potential; in addition to directly varying the electrolytic potential,
There is a method to change the electrolytic current. In practice, using a constant current electrolyzer, a constant current such that the anode potential is within the formic acid oxidation potential range A is passed for a predetermined period of time, and then a constant current larger than this current is passed to raise the anode potential to a higher level. It is preferable to perform the electrolytic operation by forming an anode potential and positioning the anode potential within the water electrolysis potential range B.

前記白金系電極としては、通常の白金電極の
他、白金めつきを施した電極、例えば、白金めつ
きチタン電極等が用いられる。本発明の場合は、
白金めつき電極の使用の方がより大きなアノード
電流が流れる点で好ましい。めつき液のPHは、通
常、4〜12の範囲であり、好ましくは4〜6であ
る。
As the platinum-based electrode, in addition to a normal platinum electrode, a platinum-plated electrode, such as a platinum-plated titanium electrode, can be used. In the case of the present invention,
The use of platinum-plated electrodes is preferable because a larger anode current flows. The pH of the plating solution is usually in the range of 4 to 12, preferably 4 to 6.

〔効果〕〔effect〕

本発明のギ酸電解酸化法によれば、アノード電
位は、ギ酸酸化電位域と水電解電位域との間を交
互に変動させることから、アノード電極は常に活
性化され、高い電流効率でギ酸を酸化分解するこ
とができる。また、白金系電極の場合、第1図か
らわかるように、+0.5Vよりも貴の電位では不動
態特性を示すが、これはギ酸イオンの白金電極へ
の吸着によるもので、本発明の場合、このギ酸イ
オンは水電解電位域におけける電解により酸化分
解される。従つて、本発明によれば、ほぼ100%
に近い電流効率で長時間にわたつて連続的にめつ
き液中のギ酸イオンを電解酸化除去することがで
きる。
According to the formic acid electrolytic oxidation method of the present invention, the anode potential is alternately varied between the formic acid oxidation potential range and the water electrolysis potential range, so the anode electrode is constantly activated and oxidizes formic acid with high current efficiency. Can be disassembled. In addition, in the case of platinum-based electrodes, as can be seen from Figure 1, they exhibit passivity characteristics at potentials nobler than +0.5V, but this is due to the adsorption of formate ions to the platinum electrode, and in the case of the present invention , this formate ion is oxidized and decomposed by electrolysis in the water electrolysis potential range. Therefore, according to the invention, almost 100%
Formic acid ions in the plating solution can be removed by electrolytic oxidation continuously over a long period of time with a current efficiency close to .

〔実施例〕〔Example〕

次に本発明を実施例によりさらに詳細に説明す
る。
Next, the present invention will be explained in more detail with reference to Examples.

実施例 1 モデルめつき液として、ギ酸ナトリウム0.8モ
ル/を含むPH5.0の水溶液を用いた。この水溶
液を、白金電極を用い、定電位法により、温度40
℃、アノード電位+0.3Vの条件で電解を継続し
たところ、電解開始時の電流密度115mA/cm2は、
10分間後には50mA/cm2に低下し、白金電極表面
が不活性化されることが確認された。
Example 1 As a model plating solution, an aqueous solution containing 0.8 mol of sodium formate and having a pH of 5.0 was used. This aqueous solution was measured at a temperature of 40°C using a platinum electrode using a constant potential method.
When electrolysis was continued under the conditions of ℃ and anode potential +0.3V, the current density at the start of electrolysis was 115mA/ cm2 .
After 10 minutes, it decreased to 50 mA/cm 2 and it was confirmed that the platinum electrode surface was inactivated.

これに対し、本発明により、アノード電位+
0.3Vのギ酸酸化電位域で10秒間電解を行つた後、
+0.5Vの水電解電位域で1秒間電解を行い、そ
の後自然電位−0.15Vに1秒間戻し、再び+1.5V
のギ酸酸化電位域で電解を行う操作を繰返し行う
パルス電解を行つたところ、電解開始から10分後
でも電流密度は、電解開始時の115mA/cm2が維
持され、白金電極の表面状態は常に活性に保持さ
れることが確認された。このことにより、本発明
の場合、電流効率ほぼ100%で長時間にわたつて
めつき液中に含まれるギ酸イオンを酸化除去し得
ることが明らかである。
On the other hand, according to the present invention, the anode potential +
After electrolysis for 10 seconds in the formic acid oxidation potential range of 0.3V,
Electrolysis is performed for 1 second in the water electrolysis potential range of +0.5V, then returned to the natural potential of -0.15V for 1 second, and then +1.5V again.
When pulse electrolysis was performed in which electrolysis was repeated in the formic acid oxidation potential range of It was confirmed that it remained active. From this, it is clear that in the case of the present invention, formate ions contained in the plating solution can be oxidized and removed over a long period of time with approximately 100% current efficiency.

実施例 2 実施例1において、モデルめつき液として、ギ
酸ナトリウム0.8モル/及び硫酸銅0.04モル/
を含むPH4.5の水溶液を用いた以外は実施例1
と同様にして実験を行つた。この場合、カソード
電極には銅の析出が起つたが、白金電極(アノー
ド電極)はこれによつては影響を受けず、実施例
1と同様に、その表面状態は常に活性に保持され
ること確認された。
Example 2 In Example 1, sodium formate 0.8 mol/and copper sulfate 0.04 mol/
Example 1 except that an aqueous solution of PH4.5 containing
An experiment was conducted in the same manner. In this case, copper was deposited on the cathode electrode, but the platinum electrode (anode electrode) was not affected by this, and its surface state was always maintained in an active state as in Example 1. confirmed.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は白金電極をアノードとして用いてギ酸イ
オンを含む水溶液を電解酸化処理した時の白金電
極特性を示す。 図中、矢印Aはギ酸酸化電位域を示し、矢印B
は水電解電域を示す。
The drawing shows the characteristics of a platinum electrode when an aqueous solution containing formate ions is electrolytically oxidized using the platinum electrode as an anode. In the figure, arrow A indicates the formic acid oxidation potential range, and arrow B
indicates the water electrolysis field.

Claims (1)

【特許請求の範囲】[Claims] 1 ホルムアルデヒドを還元剤とする実質的に錯
化剤を含まない無電解めつき液中に含まれるギ酸
イオンを電解酸化して炭酸ガスとして除去するに
際し、アノード電極として白金系電極を用いると
共に、アノード電位を、銀/塩化銀参照電極を基
準として、−0.25〜+0.4Vのギ酸酸化電位域と+
1.3V〜+1.8Vの水電解電位域との間を交互に変
動させることを特徴とするめつき液中に含まれる
ギ酸イオンの電解酸化除去方法。
1. When electrolytically oxidizing formate ions contained in an electroless plating solution containing formaldehyde as a reducing agent and substantially free of complexing agents and removing them as carbon dioxide gas, a platinum-based electrode is used as an anode electrode, and a platinum-based electrode is used as an anode electrode. The potentials were changed from −0.25 to +0.4 V formate oxidation potential range and + with respect to the silver/silver chloride reference electrode.
A method for electrolytic oxidation removal of formate ions contained in a plating solution, characterized by alternating between a water electrolysis potential range of 1.3V to +1.8V.
JP4253286A 1986-02-27 1986-02-27 Electrolytic oxidation removal method for formate ion contained in plating liquid Granted JPS62199774A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4253286A JPS62199774A (en) 1986-02-27 1986-02-27 Electrolytic oxidation removal method for formate ion contained in plating liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4253286A JPS62199774A (en) 1986-02-27 1986-02-27 Electrolytic oxidation removal method for formate ion contained in plating liquid

Publications (2)

Publication Number Publication Date
JPS62199774A JPS62199774A (en) 1987-09-03
JPH0251983B2 true JPH0251983B2 (en) 1990-11-09

Family

ID=12638686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4253286A Granted JPS62199774A (en) 1986-02-27 1986-02-27 Electrolytic oxidation removal method for formate ion contained in plating liquid

Country Status (1)

Country Link
JP (1) JPS62199774A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5230782A (en) * 1991-07-22 1993-07-27 International Business Machines Corporation Electrolytic process for reducing the organic content of an aqueous composition and apparatus therefore
US6942810B2 (en) * 2003-12-31 2005-09-13 The Boc Group, Inc. Method for treating metal-containing solutions

Also Published As

Publication number Publication date
JPS62199774A (en) 1987-09-03

Similar Documents

Publication Publication Date Title
US4051001A (en) Process for regenerating etching solution
US4028199A (en) Method of producing metal powder
KR850000047A (en) How to clean the metal filter
CN105858818B (en) A kind of method that the more metal nano electrodes of Zn/Cu/Ti efficiently remove nitrate in groundwater
JPH09262583A (en) Preparation of acidic water and alkaline water
US2945791A (en) Inert lead dioxide anode and process of production
US6827832B2 (en) Electrochemical cell and process for reducing the amount of organic contaminants in metal plating baths
CA2027656C (en) Galvanic dezincing of galvanized steel
CA1169020A (en) Aqueous electrowinning of metals using fuel oxidizable at the anode
JPH0251983B2 (en)
JPH1018073A (en) Electrolysis with addition of ultrasonic vibration
US5372683A (en) Method and apparatus for the electrolytic extraction of metals from a solution containing metal ions
US3425920A (en) Electrolytic method of regenerating organic acid cleaning solution for ferrous metals
JPH05192662A (en) Electrolytic method and device for reducing amount of organic substance contained in aqueous composition
JPH028794B2 (en)
US3841978A (en) Method of treating a titanium anode
USRE28849E (en) Surface preparation process for recoating of used coated metallic electrodes
JPH02310382A (en) Method for regenerating ferric chloride etching composition
US4222826A (en) Process for oxidizing vanadium and/or uranium
US4085014A (en) Elimination of impurities from sea water cell feed to prevent anode deposits
JP3534367B2 (en) Wastewater treatment method and apparatus
JPH0333780B2 (en)
US4319968A (en) Electrolytically decomposing method for iron-cyanide complex
Afifi et al. The formation of lead dioxide electrodes by the planté process
Lin et al. Treatment of photographic effluents by electrochemical method

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term