JPH0251311A - Current differential relay - Google Patents

Current differential relay

Info

Publication number
JPH0251311A
JPH0251311A JP63198931A JP19893188A JPH0251311A JP H0251311 A JPH0251311 A JP H0251311A JP 63198931 A JP63198931 A JP 63198931A JP 19893188 A JP19893188 A JP 19893188A JP H0251311 A JPH0251311 A JP H0251311A
Authority
JP
Japan
Prior art keywords
current
relay
terminal
differential relay
circuitbreaker
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63198931A
Other languages
Japanese (ja)
Inventor
Yoshitaka Takahashi
高橋 良孝
Kazunobu Fukuda
和宜 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63198931A priority Critical patent/JPH0251311A/en
Publication of JPH0251311A publication Critical patent/JPH0251311A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To eliminate unnecessary trip due to function of a current operation relay by the uncompensated charge current component, when a system is charged from one terminal, by delaying the function of a current differential relay for a predetermined time after closing of a circuitbreaker at self terminal. CONSTITUTION:Function of a current differential relay 23 is delayed by a time (t2) through an ON delay timer 18 for an interval (t1) determined by an ON delay timer 17 from a time point when an output representing change of a self terminal circuitbreaker from open to close is produced, thereafter switching is made to the output from the current operation relay 23. A circuitbreaker is tripped on AND condition of the outputs from the current operation relay 23 and an under voltage relay 24. The current operation relay 23 may molfunction due to uncompensated charge current when the circuitbreaker is closed, but the circuitbreaker does not trip because of the delay function of the OFF delay timer.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は電力系統を保護する保護継電装置、とりわけ送
電線を電流差動原理に基づき保護する電流差動継電装置
に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a protective relay device for protecting a power system, particularly a current differential relay device for protecting power transmission lines based on the current differential principle. Regarding.

(従来の技術) 送電線の保護方式として各端子の電流の瞬時値を用いて
送電線の内外部事故を識別する電流差動方式が多用され
、この方式を採用した電流差動リレーが適用されている
(Prior art) As a protection method for power transmission lines, a current differential method is often used to identify internal and external faults on power transmission lines by using the instantaneous value of the current at each terminal, and current differential relays that use this method are often used. ing.

電流差動リレーを適用する際に問題となるのは保護区間
内充電容量の影響である。即ち第4図において、保護送
電線1の各A、B111にて変流器2八。
A problem when applying current differential relays is the effect of charging capacity within the protection zone. That is, in FIG. 4, a current transformer 28 is installed at each of A and B 111 of the protected power transmission line 1.

2Bを用いて各端の電流量t^、tHに対応する電気量
の瞬時値量を送受し合い、電流差動保護を行なう電流差
動リレー3A、 3Bは次の判定原理を採る。
The current differential relays 3A and 3B, which perform current differential protection by transmitting and receiving instantaneous values of electrical quantities corresponding to the current amounts t^ and tH at each end using the relays 2B, adopt the following determination principle.

(Idは差動電流であり事故電流に対応する。(Id is a differential current and corresponds to a fault current.

t^とtBは内部方向の電流を同極性となるように導入
する。) Id=lt^十tal        ・・・・・・■
ところが保護区間内充電容量Cの影響により、F点の外
部事故時に充電電流tcが流出するため、B端でのとり
込み量はto +tcとなる。したがって差動電流Id
は下記0式となる。
t^ and tB introduce currents in the internal direction so that they have the same polarity. ) Id=lt^tental ・・・・・・■
However, due to the influence of the charging capacity C within the protection zone, the charging current tc flows out in the event of an external fault at the F point, so the amount taken in at the B end becomes to +tc. Therefore, the differential current Id
becomes the following formula 0.

td=1t^+t^+tel     ・・・・・・■
0式において外部事故時にいはt^十tB =。
td=1t^+t^+tel ・・・・・・■
In the case of an external accident in Type 0, t^10tB =.

であるから0式はId=ltcl となり、内部充電容
量が大きいと電流差動リレーは誤動作する虞れがある。
Therefore, the formula 0 becomes Id=ltcl, and if the internal charging capacity is large, the current differential relay may malfunction.

内部充電容量は送電線がケーブル区間であれば対地間で
大きな値を有するし、1000kV級の基幹系送電線な
どではその長距離化により、架空系であっても回線間の
あるいは回線内相間の充電容量が大きいことが知られて
いる。
The internal charging capacity has a large value between the ground and the cable section of the power transmission line, and due to the long distance of 1000kV class trunk power transmission lines, the internal charging capacity has a large value between lines or between phases within the line even in an overhead system. It is known for its large charging capacity.

このため、自端子の電圧値を用いて前記保護区間内充電
容量による電気量をリレー内部で補償し、充電電流によ
る誤動作を防止する対策が行なわれている。
For this reason, measures are taken to prevent malfunctions due to charging current by compensating the amount of electricity due to the charging capacity within the protected area inside the relay using the voltage value of its own terminal.

〔文献1:電気協同研究第41巻第4号「デジタルリレ
ーJP178r超高圧系電流差動リレーにおける充電電
流補償」 (昭61年1月21日発行)〕第5図は上記
技術を適用した従来装置の一例図である。A端の電圧は
線路側電圧変成器(線路PD)5八によりとり込み入力
処理部6Aにて、変流器(CT)2八からとり込まれた
電気量と共に同一時刻にサンプリングされ、アナログ−
デジタル変換される。
[Reference 1: Electric Kyodo Research Vol. 41 No. 4 "Charging current compensation in digital relay JP178r ultra-high voltage current differential relay" (published January 21, 1986)] Figure 5 shows a conventional system to which the above technology is applied. It is an example figure of a device. The voltage at the A terminal is taken in by the line side voltage transformer (line PD) 58, and sampled at the same time by the input processing unit 6A together with the amount of electricity taken in from the current transformer (CT) 28, and is converted into an analog signal.
converted to digital.

演算部7Aは前記入力処理部6A出力より次の演算を実
施する。
The calculation section 7A performs the following calculation based on the output of the input processing section 6A.

i、=t^−に匠       ・・・・・・■t 同様にB端においては下記演算を実施する。i,=t^-ni Takumi ・・・・・・■t Similarly, at the B end, the following calculation is performed.

t B −t’B  K !lL!L        
・・・・・・■t こうして得られた!A′、”B′は送受信部8^を介し
て対向電気所間で送受信される。演算部7Aは送受信部
出力を用いて0式の演算により電流差動判定を行なう。
t B −t'B K ! lL! L
・・・・・・■t This is how it was obtained! A' and "B" are transmitted and received between the opposing electrical stations via the transmitter/receiver section 8^.The arithmetic section 7A uses the output of the transmitter/receiver section to perform current differential determination by calculating the equation 0.

dt    dt ≧に、               ・・・・・・■
上式においてiA、t、は各端子における電流データで
あり、x d V A=はA端でとり込んだ電圧のdt 微分値に対応するデータ、x d V RはB端(Kは
定t の内部充電電流に対応する量となる。
dt dt ≧, ・・・・・・■
In the above equation, iA, t is the current data at each terminal, x d V A= is the data corresponding to the dt differential value of the voltage taken at the A terminal, and x d V R is the data corresponding to the dt differential value of the voltage taken at the A terminal (K is the constant t The amount corresponds to the internal charging current.

第4図の如く2@子構成においては内部充電電流の17
2ずつを各々の端子で補償することとなる。
In the 2@ child configuration as shown in Figure 4, the internal charging current is 17
2 at each terminal.

そしてに0はリレーの動作@度であり、この値上り差動
電流1dが大きい時に内部事故と判定するものである。
0 is the relay's operating degree, and when this rising differential current 1d is large, it is determined that there is an internal fault.

対向するB@においても上記と同様の楊或としている。The opposite B@ also has the same angle as above.

(発明が解決しようとする課題) 第6図の如く片端子(A端)から送電線1のみを充電す
る場合を考える。第6図ではA端子は電源端、B@子は
負荷@扱いとする。この時B端は休止端なのでBfli
ij子より伝達される電流データtBはA端子において
零として扱うのが一般的である。(送電線充電時に内部
事故が発生した場合でも確実に電流差動リレーを動作さ
せるため)したがってしゃ断器9A投入時to’=o、
i^=4Cから0式はId= lt’c  Kd!−L
l ≠0となる。
(Problems to be Solved by the Invention) Consider a case where only the power transmission line 1 is charged from one terminal (terminal A) as shown in FIG. In Figure 6, terminal A is treated as the power supply terminal, and terminal B is treated as load@. At this time, the B end is the rest end, so Bfli
Generally, the current data tB transmitted from the ij is treated as zero at the A terminal. (To ensure that the current differential relay operates even if an internal accident occurs while charging the power transmission line) Therefore, when the breaker 9A is turned on, to' = o,
From i^=4C, the 0 formula is Id= lt'c Kd! -L
l≠0.

dt 通常両端子のしゃ断器9A、 9Bが閉路している場合
で充電電流補償を考えるため 記のような場合充電電流tcの172シか補償していな
いことになり残り1/2が未補償分となるため、充電電
流補償が完全でない。この未補償分が電流差動リレーの
感度に、以上となると不要動作となる。一方、内部事故
の判定は一般的に主検出リレーである差動リレー出力1
5Aと、事故検出リレーとして系統の電圧が一定値以下
になることを検出する不足電圧リレー出力16AとのA
ND条件で行なう。線路側に電圧変成器がある場合、前
記のクースをタイムチャートで表わすと第7図となる。
dt Normally, when the circuit breakers 9A and 9B at both terminals are closed, charging current compensation is considered, so in the case shown below, only 172 of the charging current tc is compensated, and the remaining 1/2 is the uncompensated portion. Therefore, charging current compensation is not perfect. If this uncompensated amount exceeds the sensitivity of the current differential relay, unnecessary operation will occur. On the other hand, the determination of internal accidents is generally made using the differential relay output 1, which is the main detection relay.
5A and an undervoltage relay output of 16A that serves as an accident detection relay to detect when the system voltage falls below a certain value.
Perform under ND conditions. When there is a voltage transformer on the line side, the above-mentioned coos can be expressed as a time chart as shown in FIG. 7.

しゃ断器9Aを投入してから送電線に電圧が印加され不
足電圧リレーが復帰するまでの時間をt4、差動リレー
が前記充電電流の未補償分により不要動作するまでの時
間を幻とすると、t4 > 63の条件が成立するe4
− t3時間の間誤って内部事故と判定し、トリップす
る可能性がある。
Assuming that the time from turning on the breaker 9A until voltage is applied to the power transmission line and the undervoltage relay returns is t4, and the time until the differential relay operates unnecessarily due to the uncompensated portion of the charging current is illusory, e4 where the condition t4 > 63 is satisfied
- There is a possibility that it will be mistakenly determined to be an internal accident for t3 hours and trip.

C4の実際値の例;8〜28Ils C3の実際値の例;9〜25m5 本発明は上記問題点を解決するためになされたものであ
り、系統の電圧量をとり込み、保護送電線の内部充電電
流を補償する電流差動リレーを使用した場合、片端子か
らの系統充電時でも誤動作することなく、送電線保護を
行なうことの可能な保護継電装置を提供することを目的
としている。
Example of actual value of C4; 8 to 28 Ils Example of actual value of C3; 9 to 25 m5 The present invention was made to solve the above problems, and it takes in the voltage amount of the grid and It is an object of the present invention to provide a protective relay device that can protect a power transmission line without malfunctioning even during system charging from one terminal when using a current differential relay that compensates for charging current.

[発明の構成] (課題を解決するための手段) 上記目的を達成するために、本発明は自端しゃ断器投入
後の一定時間、電流差動リレーの動作を遅延させるよう
に構成した。
[Structure of the Invention] (Means for Solving the Problems) In order to achieve the above object, the present invention is configured to delay the operation of the current differential relay for a certain period of time after the self-ended breaker is closed.

(作 用) 上記構成をとることにより、片端子から系統充電時充電
電流の未補償分で電流差動リレーが誤動作しても、不足
電圧リレーとのへNO条件が成立しないことになり、不
要トリップを防止できる。
(Function) By adopting the above configuration, even if the current differential relay malfunctions due to the uncompensated portion of the charging current when charging from one terminal to the grid, the NO condition with the undervoltage relay will not be established, making it unnecessary. Trips can be prevented.

(実施例) 以下図面を参照して本発明の詳細な説明する。(Example) The present invention will be described in detail below with reference to the drawings.

第1図は第6図のA端子スはB端子に設置される電流差
動継電装置の機能を示すブロック図である。自端子のし
ゃ断器が開又は開から閏に変化(しゃ断器投入)したと
きに出力するしゃ断器゛閉゛°出力22が、オンデイレ
イタイマ17で定まるC1時間までは電流差動リレーの
出力23をオンデイレイタイマ18によりC2時間遅ら
せ、以後は電流差動リレーのそのままの出力C切替え、
その出力と不足電圧リレー出力24とのAND構成によ
り、しゃ断器トリラグ指令を出力するように構成してい
る。
FIG. 1 is a block diagram showing the functions of a current differential relay device installed between the A terminal and the B terminal in FIG. 6. The breaker closed output 22, which is output when the breaker of its own terminal is open or changes from open to leap (when the breaker is closed), is the output 23 of the current differential relay until time C1 determined by the on-delay timer 17. is delayed for C2 time by the on-delay timer 18, and thereafter the output C of the current differential relay is switched as is.
An AND configuration of this output and the undervoltage relay output 24 is configured to output a breaker trilag command.

第2図に相手端しゃ断器間、自端しゃ断器投入時の本回
路の応動タイムチャートを示す。しゃ断器投入により送
電線には電圧が印加されるので、不足電圧リレーは復帰
時間t4の後復帰する。電流差動リレーは充電電流補償
の未補償分により未補償分が動作値を越えた場合は動作
時間03の後動作する。オンデイレイタイマ18の出力
信号18Aは電流差動リレー動作のC2後に′1゛とな
る。
FIG. 2 shows a response time chart of this circuit when the breaker at the opposite end is closed and the breaker at the own end is closed. Since voltage is applied to the power transmission line by turning on the breaker, the undervoltage relay returns after the return time t4. The current differential relay operates after operation time 03 if the uncompensated portion exceeds the operating value due to the uncompensated portion of charging current compensation. The output signal 18A of the on-delay timer 18 becomes '1' after C2 of the current differential relay operation.

ここでtl> C4l1ax及びt2+6311n >
C41aXの間係を満足するようにオンデイレイタイマ
17及び18を構成することにより、電流差動リレーが
充電電流の未補償分で誤動作しても、確実に不要トリッ
プを防止できる。
Here tl>C4l1ax and t2+6311n>
By configuring the on-delay timers 17 and 18 to satisfy the interval of C41aX, unnecessary tripping can be reliably prevented even if the current differential relay malfunctions due to the uncompensated portion of the charging current.

但し、 631n ; 63のとりうる最小値 t41aX ; C4のとりうる最大値上記実施例では
しゃ断器閉信号を用いて電流差動リレーの出力にタイマ
を付加するか否かを制御しているが、第3図に示す如く
しヤ断器投入指令25継続中及びオフデイレイタイマ2
6により引延した時間は電流差動リレーの出力23を遅
らせるようにしても、実施例と同様の効果があることは
言うまでもない。
However, 631n; the minimum possible value of 63; t41aX; the maximum possible value of C4; In the above embodiment, the breaker close signal is used to control whether or not to add a timer to the output of the current differential relay; As shown in FIG.
It goes without saying that even if the output 23 of the current differential relay is delayed for the time extended by 6, the same effect as in the embodiment can be obtained.

[発明の効果] 以上説明したように、本発明によれば内部充電電流補償
を各端電流に加え伝送し、得られた電気量で電流差動保
護を行なうものにおいて、相手端が休止端であるために
生じる内部充電電流の未補償分で、系統充電時に電流差
動リレーが誤動作したとしても、しゃ断器投入時の少時
限のみ電流差動リレーの動作出力を遅らせること番こよ
り、確実に不要トリップを防止することができる。
[Effects of the Invention] As explained above, according to the present invention, in a device in which internal charging current compensation is added to the current at each end and transmitted, and current differential protection is performed using the obtained electrical quantity, when the other end is a rest end, Even if the current differential relay malfunctions during grid charging due to the uncompensated internal charging current that occurs due to the uncompensated internal charging current, it is definitely unnecessary because the operational output of the current differential relay is delayed for a short time when the breaker is closed. Trips can be prevented.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の装置構成倒閣、第2図は本
発明の詳細な説明するタイムチャート、第3図は本発明
の他の実施例の装置構成倒閣、第4図は内部充電電流の
影響を説明する図、第5図は充電電流補償を行なってい
る電流差動装置の従来構成倒閣、第6図は従来装置の問
題点を説明する図、第7図は従来装置の問題点を説明す
るタイムチャートである。 Id・・・差動電流−tc・・・充電電流3A、 3B
・・・電流差動リレー  9A、 9B・・・しゃ断器
代理人 弁理士  則 近  憲 佑 同   第子丸 健 第5図 第3図 第7図 −一争t
Fig. 1 shows the equipment configuration of one embodiment of the present invention, Fig. 2 shows a time chart for explaining the invention in detail, Fig. 3 shows the equipment configuration of another embodiment of the invention, and Fig. 4 shows the internal structure. Figure 5 is a diagram explaining the influence of charging current. Figure 5 is a diagram showing the conventional configuration of a current differential device that performs charging current compensation. Figure 6 is a diagram explaining the problems of the conventional device. Figure 7 is a diagram explaining the problems of the conventional device. It is a time chart explaining the problem. Id...Differential current -tc...Charging current 3A, 3B
... Current differential relay 9A, 9B ... Circuit breaker agent Patent attorney Norihiro Ken Yudo Daishimaru Ken Figure 5 Figure 3 Figure 7 - One dispute

Claims (1)

【特許請求の範囲】[Claims] 相手端子電流に対して相手端子電圧による充電電流補償
量を合成して得られる電気量を相手端電気所から受信し
、自端子電流に対して自端子電圧による充電電流補償量
を合成して得られる電気量と前記相手端電気所から受信
した電気量とを用いて差動電流を得て、差動リレーにて
電力系統を保護する電流差動継電装置において、前記差
動リレーは自端しや断器投入後の所定時間、動作を遅延
させることを特徴とする電流差動継電装置。
The amount of electricity obtained by combining the amount of charging current compensation due to the voltage at the other end terminal with respect to the current at the other end is received from the other end electrical station, and the amount of electricity obtained by combining the amount of charging current compensation due to the own terminal voltage against the current at the own terminal is received. In a current differential relay device that protects a power system with a differential relay by obtaining a differential current using the amount of electricity received from the electric power station received from the opposite end electric power station, the differential relay has its own terminal. A current differential relay device characterized by delaying operation for a predetermined period of time after the circuit breaker is turned on.
JP63198931A 1988-08-11 1988-08-11 Current differential relay Pending JPH0251311A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63198931A JPH0251311A (en) 1988-08-11 1988-08-11 Current differential relay

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63198931A JPH0251311A (en) 1988-08-11 1988-08-11 Current differential relay

Publications (1)

Publication Number Publication Date
JPH0251311A true JPH0251311A (en) 1990-02-21

Family

ID=16399349

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63198931A Pending JPH0251311A (en) 1988-08-11 1988-08-11 Current differential relay

Country Status (1)

Country Link
JP (1) JPH0251311A (en)

Similar Documents

Publication Publication Date Title
WO2001029948A8 (en) Improved restraint-type differential relay
KR100554502B1 (en) Directional ground relay system
CN101212137A (en) Circuit protection system
CA2007778A1 (en) Directional comparison blocking protective relay system
US5566082A (en) Method of detecting a fault section of busbar
US3558981A (en) Ground relay system for multiple substation protection
US3633071A (en) Differential protective circuit
EP0319151A3 (en) Circuit to prevent uncontrolled tripping of a protective relay
JPH0251311A (en) Current differential relay
Kasztenny et al. Application of current differential protection to tapped transmission lines
JPH05122835A (en) Reverse power flow preventer for power system
Kasztenny et al. A new algorithm for digital low-impedance protection of busbars
JPH02101923A (en) Current differential relay device
JPH0251312A (en) Current differential relay
Sevov et al. Differential Protection in Low-Voltage Buses: An Exploration of Principles and Models
JPH02214416A (en) Current differential relay
JPS5840749Y2 (en) Busbar protection relay device
JPH0121686B2 (en)
JPH06105451A (en) Line protection relay device
JPH05111148A (en) Network relay device
JPS6245483Y2 (en)
JP2898555B2 (en) Current differential protection relay
JPS6059810B2 (en) Phase comparison relay device
JPS5927165B2 (en) Phase comparison transport protection relay device
JPS5836571B2 (en) Phase comparison transport protection relay system