JPH0251267B2 - - Google Patents

Info

Publication number
JPH0251267B2
JPH0251267B2 JP60108288A JP10828885A JPH0251267B2 JP H0251267 B2 JPH0251267 B2 JP H0251267B2 JP 60108288 A JP60108288 A JP 60108288A JP 10828885 A JP10828885 A JP 10828885A JP H0251267 B2 JPH0251267 B2 JP H0251267B2
Authority
JP
Japan
Prior art keywords
film
superconducting
resistance
nitride
resistive film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60108288A
Other languages
Japanese (ja)
Other versions
JPS61267382A (en
Inventor
Yoshinobu Taruya
Shinichiro Yano
Mikio Hirano
Koji Yamada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP60108288A priority Critical patent/JPS61267382A/en
Publication of JPS61267382A publication Critical patent/JPS61267382A/en
Publication of JPH0251267B2 publication Critical patent/JPH0251267B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/10Junction-based devices

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は液体ヘリウム温度(4.2K)において
動作させる超電導回路用抵抗素子に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a resistance element for a superconducting circuit operated at liquid helium temperature (4.2 K).

〔発明の背景〕[Background of the invention]

従来の超電導スイツチング回路用抵抗膜として
は米国特許第3913120号に記載のようにAuIn2
金が用いられて来た。AuIn2合金はPb合金を主体
とする超電導回路あるいは製造工程において使用
され、リフトオフ工程に最も適した抵抗膜材料で
あつた。しかるに、Pb合金を主体とする超電導
回路よりさらに耐久性と信頼性に優れるNbある
いはNb化合物系超電導回路の製造工程はドライ
エツチングを主体とする工程が用いられる。この
ようなドライエツチング工程に対してAuIn2合金
は適応性が無い。さらにAuIn2合金は100℃前後
に加熱されることにより、抵抗値の変化を来たす
という特性を有していた。そこで、ドライエツチ
ング工程に対応できるとともに、抵抗値の経時変
化や、加熱処理による特性変化が無く、かつNb
あるいはNb化合物系超電導回路に適合する抵抗
膜材料として、MoあるいはTa膜などが考えられ
た。しかしながら、Moは表面層における腐食の
問題が、Taはベータ相の結晶構造が形成され望
ましいシート抵抗値(0.5〜10Ω/口)を得るの
が困難であるという問題があつた。
As a conventional resistive film for a superconducting switching circuit, an AuIn 2 alloy has been used as described in US Pat. No. 3,913,120. AuIn 2 alloy is used in superconducting circuits and manufacturing processes that mainly consist of Pb alloys, and was the most suitable resistive film material for the lift-off process. However, the manufacturing process of Nb or Nb compound-based superconducting circuits, which are more durable and reliable than superconducting circuits based on Pb alloys, uses a process that mainly uses dry etching. AuIn 2 alloy is not suitable for such a dry etching process. Furthermore, the AuIn 2 alloy had the property of causing a change in resistance value when heated to around 100°C. Therefore, it is compatible with the dry etching process, there is no change in resistance value over time, there is no change in characteristics due to heat treatment, and Nb
Alternatively, Mo or Ta films were considered as resistive film materials suitable for Nb compound-based superconducting circuits. However, Mo has a problem of corrosion in the surface layer, and Ta has a problem that a beta phase crystal structure is formed, making it difficult to obtain a desired sheet resistance value (0.5 to 10 Ω/hole).

〔発明の目的〕[Purpose of the invention]

本発明の目的は、ドライエツチング工程に対応
できるとともに、抵抗値の経時変化や加熱処理に
よる特性変化がなく、かつNbあるいはNb化合物
系超電導回路に適合し、しかも表面層が化学的に
安定であり、0.5〜10Ω/口の範囲でシート抵抗
を調節し得る抵抗膜材料を提供することにある。
The object of the present invention is to be compatible with a dry etching process, to have no change in resistance value over time or to change in characteristics due to heat treatment, to be compatible with Nb or Nb compound-based superconducting circuits, and to have a chemically stable surface layer. The object of the present invention is to provide a resistive film material whose sheet resistance can be adjusted in the range of 0.5 to 10 Ω/hole.

〔発明の概要〕[Summary of the invention]

本発明においてはNbあるいはNb化合物系超電
導回路に適合し、表面層が化学的に安定であり、
高い再現性と均一性をもつて作製し得る抵抗膜材
料としてW、あるいは40at.%までの窒素を含有
する窒化Wを用いる。必要とするシート抵抗値に
応じて、上記組成の範囲内で窒素の濃度を可変と
する。
The present invention is compatible with Nb or Nb compound-based superconducting circuits, and has a chemically stable surface layer.
W or W nitride containing up to 40 at.% nitrogen is used as a resistive film material that can be manufactured with high reproducibility and uniformity. The nitrogen concentration can be varied within the above composition range depending on the required sheet resistance value.

〔発明の実施例〕[Embodiments of the invention]

本発明を以下の実施例にもとづいて説明する。
本実施例においては、つぎに述べる方法により超
電導回路用抵抗膜の作製を行つた。スパツタ装置
中にSiOを200nm堆積したSiウエハを装着した。
ターゲツト材はWとした。スパツタは直流マグネ
トロンスパツタ方式を採用した。ターゲツトの寸
法は12.5cm×25cmであり、ターゲツトが上向き
で、Siウエハが下向きになるように配置した。こ
の状態でスパツタ装置を真空度10-4Paまで排気
し、しかる後に、Arを1Pa導入した。Arによる
直流放電を行い、ターゲツトに対して2W/cm2
電力を印加した。この条件におけるスパツタによ
りSiウエハ上に1nm/sの堆積速度でW膜を付着
した。W膜の膜厚は100nmとした。窒素を含む
W膜の場合は、スパツタ装置内に窒素を、膜中の
窒素濃度に対応した割合で導入し、Arと窒素の
混合ガス雰囲気中においてWのスパツタを行い、
Siウエハ上に窒化Wを堆積した。
The present invention will be explained based on the following examples.
In this example, a resistive film for a superconducting circuit was manufactured by the method described below. A Si wafer with 200 nm of SiO deposited was placed in a sputtering device.
The target material was W. The sputter uses a DC magnetron sputter method. The dimensions of the target were 12.5 cm x 25 cm, and it was arranged so that the target faced upward and the Si wafer faced downward. In this state, the sputtering device was evacuated to a vacuum level of 10 -4 Pa, and then Ar was introduced at 1 Pa. DC discharge was performed using Ar, and a power of 2 W/cm 2 was applied to the target. A W film was deposited on the Si wafer at a deposition rate of 1 nm/s by sputtering under these conditions. The thickness of the W film was 100 nm. In the case of a W film containing nitrogen, nitrogen is introduced into the sputtering device at a rate corresponding to the nitrogen concentration in the film, and W is sputtered in a mixed gas atmosphere of Ar and nitrogen.
W nitride was deposited on a Si wafer.

以上の方法によりウエハ全面にW膜、あるいは
窒化W膜を形成した。しかる後に、抵抗膜用レジ
ストパターンを形成した。レジストパターン形成
後、ウエハをプラズマエツチング装置に装着し、
SF6と窒素の混合ガス中においてWあるいは窒化
Wのエツチングを行つた。ガス中における窒素濃
度は5%とした。ガス圧は10Pa、入射パワー密
度は0.4W/cm2とした。この条件下において、膜
厚100nmのWあるいは窒化Wのエツチングは1
分以内で終了した。本パターン形成工程によつ
て、4端子法による膜の電気抵抗を測定するため
の抵抗膜パターンを完成した。
A W film or a W nitride film was formed on the entire surface of the wafer by the method described above. After that, a resist pattern for a resistive film was formed. After forming the resist pattern, the wafer is mounted on a plasma etching device,
Etching of W or W nitride was performed in a mixed gas of SF 6 and nitrogen. The nitrogen concentration in the gas was 5%. The gas pressure was 10 Pa, and the incident power density was 0.4 W/cm 2 . Under these conditions, etching of W or W nitride with a thickness of 100 nm is 1
Finished within minutes. Through this pattern forming process, a resistive film pattern for measuring the electrical resistance of the film by the four-terminal method was completed.

尚、超電導回路に用いる抵抗膜の形成工程とし
ては、抵抗の長さを規定するための絶縁膜用リフ
トオフレジストパターン形成工程、SiO絶縁膜堆
積工程、およびリフトオフ工程、さらに超電導配
線用Nb膜堆積工程、超電導配線膜用レジストパ
ターン形成工程およびNb膜のエツチング工程を
含む。
The formation process of the resistive film used in the superconducting circuit includes a lift-off resist pattern formation process for an insulating film to define the length of the resistor, a SiO insulating film deposition process, a lift-off process, and an Nb film deposition process for superconducting wiring. , including a step of forming a resist pattern for a superconducting wiring film and a step of etching a Nb film.

以上の製造工程により作製したWあるいは窒化
W膜は、その特性が安定であり、絶縁膜を被覆し
た状態においては200℃における加熱処理に対し
て、1%の精度で抵抗値の変化をきたさなかつ
た。さらに幅5μmを有する抵抗膜の抵抗値の均
一性に関しては、抵抗率の抵抗素子間分布は±2
%以内であり、また抵抗値の抵抗素子間分布の主
要な要因は寸法の不均一性によるものであつた。
The W or nitride W film produced by the above manufacturing process has stable characteristics, and when coated with an insulating film, the resistance value does not change with an accuracy of 1% even after heat treatment at 200°C. Ta. Furthermore, regarding the uniformity of the resistance value of a resistive film with a width of 5 μm, the distribution of resistivity between resistive elements is ±2
%, and the main factor in the distribution of resistance values among resistive elements was due to non-uniformity of dimensions.

抵抗値の調節に関して、窒化Wの抵抗率の窒化
W中における窒素濃度依存性を第1図に示した。
第1図に示すごとく、窒化Wの抵抗率は10-7Ω/
mから2×10-6Ω/mまで変化した。つまり膜厚
100nmのシート抵抗値として1Ωから20Ωまで
の値が得られた。なお、シート抵抗が大き過ぎる
場合、発熱によつて抵抗膜および周辺回路の温度
上昇をもたらす。この点からシート抵抗は10Ω以
下が望ましく、窒化W中の窒素濃度としては
40at.%以下となる。この領域における抵抗を示
す窒化W膜はすべて200℃における加熱処理に対
して、1%の精度で抵抗値の変化をきたさなかつ
た。
Regarding the adjustment of the resistance value, FIG. 1 shows the dependence of the resistivity of nitrided W on the nitrogen concentration in nitrided W.
As shown in Figure 1, the resistivity of W nitride is 10 -7 Ω/
m to 2×10 -6 Ω/m. In other words, the film thickness
Sheet resistance values at 100 nm ranged from 1Ω to 20Ω. Note that if the sheet resistance is too large, heat generation will cause the temperature of the resistive film and peripheral circuits to rise. From this point of view, it is desirable that the sheet resistance is 10Ω or less, and the nitrogen concentration in W nitride is
40at.% or less. All of the W nitride films exhibiting resistance in this region showed no change in resistance value with an accuracy of 1% when subjected to heat treatment at 200°C.

つぎに、超電導回路中における抵抗体としての
性能を確認するために、前述のごとき作製工程を
通じて超電導回路の作製を行つた。すなわち、こ
れらはSiウエハ上における窒化W膜のスパツタに
よる形成工程、レジストパターンの形成およびプ
ラズマエツチングによるパターン形成工程、絶縁
膜用リフトオフレジストパターン形成工程、SiO
絶縁膜堆積工程、およびリフトオフ工程、さらに
超電導配線用Nb膜堆積工程、超電導配線用レジ
ストパターン形成工程およびNb膜のプラズマエ
ツチングによるパターン形成工程、さらには超電
導素子用の膜形成およびパターン形成工程を含
む。超電導素子用の膜としてはNb、NbNおよび
PbIn合金等の超電導膜、SiO絶縁膜等を用いる。
これら回路作製工程を通じた後、抵抗膜の抵抗特
性を測定した。この結果によれば、超電導回路作
製工程を通じた後の抵抗膜の抵抗特性と抵抗膜の
みの作製工程を通じた後の抵抗特性との間に全く
差異を認められなかつた。このことは窒化W膜の
表面層が超電導回路作製中におけるパターン形成
工程等によつて汚染等による劣化の影響を受けな
いことを意味する。
Next, in order to confirm the performance as a resistor in a superconducting circuit, a superconducting circuit was fabricated through the fabrication process described above. In other words, these include a process for forming a W nitride film on a Si wafer by sputtering, a process for forming a resist pattern and a pattern using plasma etching, a process for forming a lift-off resist pattern for an insulating film, and a process for forming a lift-off resist pattern on an SiO wafer.
Including an insulating film deposition process, a lift-off process, a Nb film deposition process for superconducting wiring, a resist pattern forming process for superconducting wiring, a pattern forming process by plasma etching of the Nb film, and a film forming and pattern forming process for superconducting elements. . Nb, NbN and
Superconducting films such as PbIn alloys, SiO insulating films, etc. are used.
After going through these circuit fabrication steps, the resistance characteristics of the resistive film were measured. According to the results, no difference was observed between the resistance characteristics of the resistive film after passing through the superconducting circuit manufacturing process and the resistance characteristics after passing through the process of manufacturing only the resistive film. This means that the surface layer of the W nitride film is not affected by deterioration due to contamination or the like during the pattern forming process during the fabrication of the superconducting circuit.

抵抗膜として重要なパラメータの1つである配
線電極膜との接触抵抗に関しては、Nb配線膜を
形成する前の工程として、抵抗膜を含むウエハ表
面全面をArの高周波プラズマ中に晒した場合、
接触抵抗は零であつた。
Regarding the contact resistance with the wiring electrode film, which is one of the important parameters for a resistive film, when the entire surface of the wafer including the resistive film is exposed to high-frequency Ar plasma as a step before forming the Nb wiring film,
Contact resistance was zero.

なお、窒化W膜の膜厚再現性は±3nmであつ
たので、膜厚0.05μm以下の抵抗膜の場合、抵抗
値再現性に問題を生じる。通常配線用Nb膜等の
膜厚は通常0.2〜1.0μmとしているので、抵抗膜
端部における配線膜の被覆性の問題等から、抵抗
膜の膜厚上限は1.0μmである。
Note that since the film thickness reproducibility of the W nitride film was ±3 nm, a problem arises in resistance value reproducibility in the case of a resistive film with a film thickness of 0.05 μm or less. Since the thickness of the Nb film for wiring is usually 0.2 to 1.0 μm, the upper limit of the thickness of the resistive film is 1.0 μm due to problems such as coverage of the wiring film at the ends of the resistive film.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、超電導スイツチング回路用抵
抗膜として、W、あるいは40%以内の窒素を含む
Wを用いることにより、以下のごとき効果を有す
る。
According to the present invention, by using W or W containing up to 40% nitrogen as a resistive film for a superconducting switching circuit, the following effects can be obtained.

(1) ドライエツチングを主体とする超電導スイツ
チング回路形成工程に適応できる。
(1) It can be applied to superconducting switching circuit formation processes that mainly involve dry etching.

(2) 膜中の窒素濃度を選ぶことにより、0.5Ωか
ら10Ωまでの任意のシート抵抗を得られる。
(2) By selecting the nitrogen concentration in the film, any sheet resistance from 0.5Ω to 10Ω can be obtained.

(3) 抵抗値の一様性に関して、抵抗率の不均一性
に起因する抵抗値の分布は2%以内である。
(3) Regarding the uniformity of resistance values, the distribution of resistance values due to non-uniformity of resistivity is within 2%.

(4) 200℃までの加熱、あるいは室温と動作温度
である液体ヘリウム温度間における温度サイク
ルに対して、抵抗値の変化は皆無である。
(4) There is no change in resistance when heated up to 200°C or temperature cycled between room temperature and the operating temperature of liquid helium.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は窒化W膜の膜中窒素濃度と抵抗率の関
係を示すグラフである。
FIG. 1 is a graph showing the relationship between the nitrogen concentration in the W nitride film and the resistivity.

Claims (1)

【特許請求の範囲】[Claims] 1 超電導材料から構成されるスイツチング回路
に用いられる抵抗素子において、該抵抗素子の抵
抗体の元素構成をタングステンあるいは40at.%
以内の窒素を成分として含む窒化タングステンと
し、かつ膜厚が1μm以下0.05μm以上なることを
特徴とする超電導回路用抵抗素子。
1. In a resistance element used in a switching circuit made of a superconducting material, the elemental composition of the resistor of the resistance element is tungsten or 40at.%.
A resistance element for a superconducting circuit, characterized in that it is made of tungsten nitride containing nitrogen as a component, and has a film thickness of 1 μm or less and 0.05 μm or more.
JP60108288A 1985-05-22 1985-05-22 Resistance element for superconducting circuit Granted JPS61267382A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60108288A JPS61267382A (en) 1985-05-22 1985-05-22 Resistance element for superconducting circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60108288A JPS61267382A (en) 1985-05-22 1985-05-22 Resistance element for superconducting circuit

Publications (2)

Publication Number Publication Date
JPS61267382A JPS61267382A (en) 1986-11-26
JPH0251267B2 true JPH0251267B2 (en) 1990-11-06

Family

ID=14480863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60108288A Granted JPS61267382A (en) 1985-05-22 1985-05-22 Resistance element for superconducting circuit

Country Status (1)

Country Link
JP (1) JPS61267382A (en)

Also Published As

Publication number Publication date
JPS61267382A (en) 1986-11-26

Similar Documents

Publication Publication Date Title
US4145699A (en) Superconducting junctions utilizing a binary semiconductor barrier
EP0082183B1 (en) Thin film resistor material and method
US4760369A (en) Thin film resistor and method
US4591821A (en) Chromium-silicon-nitrogen thin film resistor and apparatus
US4682143A (en) Thin film chromium-silicon-carbon resistor
US4470190A (en) Josephson device fabrication method
US3380156A (en) Method of fabricating thin film resistors
US4975389A (en) Aluminum metallization for semiconductor devices
US8482375B2 (en) Sputter deposition of cermet resistor films with low temperature coefficient of resistance
US5243221A (en) Aluminum metallization doped with iron and copper to prevent electromigration
US3458847A (en) Thin-film resistors
JP3980409B2 (en) Method and structure for forming a refractory metal-silicon-nitrogen capacitor
JPH0251267B2 (en)
US3498832A (en) Material and method for producing cermet resistors
US3585073A (en) Electric film resistors
US3594225A (en) Thin-film resistors
Thiel et al. TCR control of Ni/Cr resistors
Jiao et al. Stability of RuO2 thin film resistors
US3382100A (en) Rhenium thin film resistors
JPH11354303A (en) Thin film resistor, its manufacture, and wiring board incorporating the same
JPH06140401A (en) Integrated circuit device
US3575833A (en) Hafnium nitride film resistor
US20020125986A1 (en) Method for fabricating ultra high-resistive conductors in semiconductor devices and devices fabricated
US4536780A (en) Superconductive tunneling junction resistor and method of fabrication
Karulkar A closed system fabrication of chromium silicide thin film resistors

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term