JPH0251094A - Fuel assembly, fuel rod and reactor core - Google Patents

Fuel assembly, fuel rod and reactor core

Info

Publication number
JPH0251094A
JPH0251094A JP63199884A JP19988488A JPH0251094A JP H0251094 A JPH0251094 A JP H0251094A JP 63199884 A JP63199884 A JP 63199884A JP 19988488 A JP19988488 A JP 19988488A JP H0251094 A JPH0251094 A JP H0251094A
Authority
JP
Japan
Prior art keywords
fuel
region
weight ratio
regions
fuel assembly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63199884A
Other languages
Japanese (ja)
Inventor
Kazuya Ishii
一弥 石井
Taisuke Bessho
別所 泰典
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP63199884A priority Critical patent/JPH0251094A/en
Publication of JPH0251094A publication Critical patent/JPH0251094A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

PURPOSE:To increase an allowance for the stoppage of a reactor with a reduction in the degree of reaction between the periods of operation and stoppage by dividing a fuel assembly into two areas downstream from a point a half of a fuel effective length along the direction of the flow of a coolant. CONSTITUTION:The weight of <233>U contained in an upper one-third area of this fuel assembly is for example 3.3kg and the weight of a fissile substance, <235>U, contained in this area is -1.3kg. Therefore, a weight ratio of the <233>U is -0.72 with respect to the total fissile substance (<233>U to <235>U). On the other hand, as the weight of the <235>U is -6.6kg and that of the <233>U 0 in a lower two-third area. In this area, a weight ratio of <233>U is 0 with respect to the total fissile substance. As a result, in this fuel body, the weight ratio of the <233>U with respect to the total fissile substance becomes larger in the upper area than that in the lower area. When the fuel assembly thus arranged is mounted in an outer area 9, a change in the degree of reaction can be reduced between the periods of operation (high temperature) and stoppage (cold temperature) thereby improving an allowance for the stoppage of a reactor.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、沸騰水型原子炉に用いる燃料集合体に係り、
特に、炉停止余裕を確保するのに好適な燃料集合体に関
する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a fuel assembly used in a boiling water nuclear reactor,
In particular, the present invention relates to a fuel assembly suitable for ensuring reactor shutdown margin.

〔従来の技術〕[Conventional technology]

沸騰水型原子炉では、減速材である水の密度が、運転時
には約280℃と高温になり、かつ、ボイドが発生する
ため、常温時(約20℃)に比べて小さくなる。このた
め、炉心が潜在的にもつ反応度は、一般に、運転時より
も常温時の方が大きくなる。
In a boiling water reactor, the density of water, which is a moderator, reaches a high temperature of approximately 280° C. during operation, and voids are generated, so the density is lower than that at room temperature (approximately 20° C.). Therefore, the potential reactivity of the core is generally greater at room temperature than during operation.

一方、原子炉の設計では、安全性の観点から、常温状態
で、万一、もっとも反応度価値の大きい制御棒が挿入不
能となっても、原子炉が確実に停止できることが要求さ
れている。すなわち、もっとも反応度価値の大きい制御
棒が挿入されない状態での中性子実効増倍率と臨界状態
の中性子実効増倍率1.0  との差を十分確保する必
要がある。
On the other hand, in the design of nuclear reactors, from a safety perspective, it is required that the reactor can be reliably shut down at room temperature even if the control rod, which has the highest reactivity value, becomes unable to be inserted. That is, it is necessary to ensure a sufficient difference between the effective neutron multiplication factor in the state where the control rod with the highest reactivity value is not inserted and the effective neutron multiplication factor in the critical state of 1.0.

特に、高燃焼度化を図るには、高濃縮燃料を用いること
が必要となり、この場合、炉停止余裕の確保が重要な課
題となる。この炉停止余裕を確保する手段として、 (1)燃料集合体配置の変更 (2)制御棒の反応度価値を高める (3)可燃性毒物入り燃料棒の使用 が採られてきた。
In particular, in order to achieve high burnup, it is necessary to use highly concentrated fuel, and in this case, securing margin for reactor shutdown becomes an important issue. As a means to ensure margin for reactor shutdown, (1) changing the fuel assembly arrangement, (2) increasing the reactivity value of control rods, and (3) using fuel rods containing burnable poison have been adopted.

(1)では、制御棒の反応度価値が平均化するように燃
料をシャラフリングする。しかし、この手段は1時間が
かかり、プラント設備利用率を低下させるという欠点が
ある。
In (1), the fuel is shuffled so that the reactivity values of the control rods are averaged. However, this procedure has the disadvantage that it takes one hour and reduces plant capacity utilization.

(2)は挿入可能な制御棒の反応度制御能力を高めるこ
とにより、炉停止余裕を確保するものである。しかし、
運転時の余剰反応度制御では、制御棒による出力分布の
歪みが大きくなるなどの欠点がある。
(2) is to secure reactor shutdown margin by increasing the reactivity control ability of insertable control rods. but,
Surplus reactivity control during operation has drawbacks such as increased distortion in the power distribution caused by the control rods.

(3)は、ガドリニアなどの中性子吸収材を燃料に添加
することにより、燃料の反応度を抑え、余剰反応度制御
と共に炉停止余裕を確保する。特に。
In (3), by adding a neutron absorbing material such as gadolinia to the fuel, the reactivity of the fuel is suppressed, and surplus reactivity control and reactor shutdown margin are ensured. especially.

炉停止余裕確保の観点から、燃料上部に可燃性毒物の多
い領域を設けた燃料集合体が、特開昭59−10218
8号公報に提示されている。燃料の上部への対策が炉の
停止余裕にとって有効なのは、(a)燃料の下方から冷
却材である水が流入し、ボイドが発生する通常の沸騰水
型原子炉では、水の密度の高い燃料下部の出力が高くな
る傾向があり、燃料の上部の燃焼が下部に比べて進みに
くいため、上部に燃料物質が多く残存する。
From the viewpoint of securing margin for reactor shutdown, a fuel assembly with a region containing many burnable poisons above the fuel was proposed in Japanese Patent Laid-Open No. 59-10218.
It is presented in Publication No. 8. The reason why countermeasures to the upper part of the fuel are effective for the reactor shutdown margin is that (a) in a normal boiling water reactor, where water as a coolant flows in from below the fuel and voids are generated, the fuel has a high density of water; The output tends to be higher in the lower part, and the combustion of fuel in the upper part is slower than in the lower part, so more fuel substances remain in the upper part.

(b)ボイド率が大きい燃料上部では、運転時と常温時
との反応度差が下部に比べて大きい。
(b) In the upper part of the fuel where the void ratio is large, the difference in reactivity between operation and room temperature is larger than in the lower part.

という理由による。For this reason.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、上記従来技術は、燃料の上部に多くの可燃性毒
物を添加しているため、運転時に下部より低い燃料上部
での反応度がさらに小さくなる。
However, in the above conventional technology, since a large amount of burnable poison is added to the upper part of the fuel, the reactivity in the upper part of the fuel, which is lower than that in the lower part during operation, becomes even smaller.

このため、出力分布を燃料の下方へますます歪ませ、出
力分布平坦化の観点から好ましくない。
For this reason, the power distribution is further distorted toward the lower side of the fuel, which is undesirable from the viewpoint of flattening the power distribution.

本発明の目的は、運転時の軸方向出力分布を悪化させる
ことなく、炉の停止余裕の増大を図ることにある。
An object of the present invention is to increase the shutdown margin of the furnace without deteriorating the axial power distribution during operation.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、運転時と常温時の反応度の変化を小さくす
ることにより達成される。そのために、本発明の燃料集
合体では、運転時と常温時の水対燃料原子数比の変化が
大きく、反応度変化の大きい燃料上部に、283U を
含む燃料を用いる。あるいは、233U と同様の性質
をもつ他の核種、または、中性子吸収によりそのような
核種に転換する核種を含む燃料を、燃料の上部に用いる
The above object is achieved by reducing the change in reactivity between operation and room temperature. For this reason, in the fuel assembly of the present invention, the fuel containing 283U is used in the upper part of the fuel where the atomic ratio of water to fuel changes greatly between operation and room temperature, and the reactivity changes greatly. Alternatively, a fuel containing other nuclides with similar properties to 233U, or nuclides that convert to such nuclides by neutron absorption, is used in the upper part of the fuel.

[作用〕 以下、本発明の詳細な説明する。[Effect] The present invention will be explained in detail below.

第2図に、′85Uと233U の中性子エネルギに対
する再生率(ηニー個の中性子を吸収したときに新たに
発生する中性子数の平均値)の変化を示す。図に示した
ように、!86 Uは、共鳴エネルギ領域(1eV〜I
KeV)でのηRの値が、熱エネルギ領域(1eV以下
)での値9丁に比べて小さくなる。それに対し、ZIH
U は、共鳴エネルギ領域でのηRの値が、熱エネルギ
領域での値とほとんど同程度である。
FIG. 2 shows changes in the regeneration rate (average value of the number of newly generated neutrons when η neutrons are absorbed) for '85U and 233U with respect to neutron energy. As shown in the figure! 86 U is the resonance energy region (1 eV to I
The value of ηR in the thermal energy region (1 eV or less) is smaller than the value 9 in the thermal energy region (1 eV or less). On the other hand, ZIH
For U, the value of ηR in the resonance energy region is almost the same as the value in the thermal energy region.

一方、燃料上部では、運転時にはボイド率が高くなり水
対燃料原子数比が小さくなるため、中性子スペクトルは
硬くなり、共鳴エネルギ領域での反応の割合が大きくな
る。それに対し、常温時にはボイドは発生せず水対燃料
原子数比が大きくなるため、中性子スペクトルは軟らか
くなり、熱エネルギ領域での反応の割合が大きくなる。
On the other hand, in the upper part of the fuel, the void ratio increases during operation and the water-to-fuel atomic ratio decreases, so the neutron spectrum becomes hard and the proportion of reactions in the resonance energy region increases. On the other hand, at room temperature, no voids occur and the atomic ratio of water to fuel increases, so the neutron spectrum becomes softer and the proportion of reactions in the thermal energy region increases.

従って、運転時にボイド率が高くなり、運転時と常温時
の水対燃料原子数比の差が大きく、中性子スペクトルの
変化の大きい燃料上部に、235Uを含む燃料の代りに
233U を含む燃料を用いることにより、運転時と常
温時の燃料の再生率(η)の差を小さくすることができ
る。すなわち、このことにより、運転時と常温時の反応
度変化を小さくすることができ、炉停止余裕の増大が図
れる。
Therefore, a fuel containing 233U is used instead of a fuel containing 235U in the upper part of the fuel, where the void ratio is high during operation, the difference in the atomic ratio of water to fuel between operation and room temperature is large, and the neutron spectrum changes greatly. This makes it possible to reduce the difference in fuel regeneration rate (η) during operation and at room temperature. That is, this makes it possible to reduce the change in reactivity between operation and room temperature, thereby increasing the margin for reactor shutdown.

また、運転時の反応度を小さくする必要がないので、軸
方向の出力分布を悪化させないですむ。
Furthermore, since there is no need to reduce the reactivity during operation, there is no need to deteriorate the output distribution in the axial direction.

〔実施例〕〔Example〕

以下、本発明の燃料集合体を実施例を用いて詳細に説明
する。
Hereinafter, the fuel assembly of the present invention will be explained in detail using Examples.

第1図は、本発明の一実施例の燃料集合体を示す。燃料
集合体1は四角形状をしており、チャンネルボックス2
、六十二本の燃料体3と二本の水ロッド4から構成され
ている。また、本燃料集合体では水対燃料体積比は〜3
.0 で、中性子エネルギスペクトルの軟らかい体系で
ある。燃料体3は、上部1/3の領域では富化度1,8
5w/。
FIG. 1 shows a fuel assembly according to an embodiment of the present invention. The fuel assembly 1 has a rectangular shape, and the channel box 2
, 62 fuel bodies 3 and two water rods 4. In addition, in this fuel assembly, the water to fuel volume ratio is ~3
.. 0, which is a soft system of neutron energy spectrum. The fuel body 3 has an enrichment of 1.8 in the upper 1/3 region.
5w/.

の233U を天然ウランに混合している。一方、下部
2/3の領域では、濃縮度3.70w10のウラン燃料
を装荷している。
233U is mixed with natural uranium. On the other hand, in the lower two-thirds region, uranium fuel with an enrichment of 3.70w10 is loaded.

上部1/3の領域に含まれている”u の重量は3.3
 kg、また、この領域に含まれている核分裂性物質2
33Uの重量は〜1.3 kgである。よっテ”U (
7)、全積分R性物質(”’U ト235u )に対す
る重量比は〜0.72 となる。これに対して、下部2
/3の領域に含まれる28IIUの重量は〜6.6kg
、z8δUの重量はOであるから、この領域での288
U の全核分裂性物質に対する重量比はOとなる。従っ
て、本燃料集合体は、下部領域よりも上部領域で283
U の全核分裂性物質に対する重量比が大きくなってい
る。
The weight of “u” included in the upper 1/3 area is 3.3
kg, and the fissile material contained in this area2
The weight of 33U is ~1.3 kg. Yotte”U (
7), the weight ratio to the total integral R substance (''U 235u ) is ~0.72. On the other hand, the lower 2
The weight of 28IIU included in the /3 area is ~6.6kg
, the weight of z8δU is O, so 288 in this region
The weight ratio of U to total fissile material is O. Therefore, the present fuel assembly has 283 points in the upper region than in the lower region.
The weight ratio of U to total fissile material is increasing.

第3図に、本燃料集合体について中性子無限増倍率とボ
イド率の関係を示す。本発明の燃料集合体は上部1/3
に233U を装荷することにより、運転時のボイド率
70%の状態での中性子無限増倍率をあまり変えること
なく、冷温停止時の中性子無限増倍率をjullU濃縮
燃料だけで構成した燃料集合体に比べ、〜5%Δに/に
低くすることができる。この結果、炉停止余裕を〜1.
2 %Δに/に増大させることができる。
FIG. 3 shows the relationship between the infinite neutron multiplication factor and the void fraction for this fuel assembly. The fuel assembly of the present invention has an upper 1/3
By loading 233U into the fuel assembly, the infinite neutron multiplication factor during cold shutdown is improved compared to a fuel assembly composed only of JullU enriched fuel, without significantly changing the neutron infinite multiplication factor at a void rate of 70% during operation. , can be as low as/to ~5% Δ. As a result, the reactor shutdown margin was reduced to ~1.
It can be increased to/by 2%Δ.

第1図の例のように、z38U を用いた場合に運転時
と冷温停止時の反応度差を小さくできるのは、第2図で
説明したように、共鳴エネルギ領域(1〜10’eV)
での再生率ηR値が、熱エネルギ領域(1eV以下)で
のηTとほとんど同程度であることによる。
As explained in Fig. 2, when using z38U, the difference in reactivity between operation and cold shutdown can be reduced in the resonance energy region (1 to 10'eV), as explained in Fig. 2.
This is because the regeneration rate ηR value is almost the same as ηT in the thermal energy region (1 eV or less).

すなわち、運転時には平均中性子エネルギが高くなって
おり、再生率は共鳴エネルギ領域の値ηRとなり、冷温
停止時には、平均中性子エネルギが低くなるので、再生
率は熱エネルギ領域の値ηTとなる。238U の場合
、ηRとηTとがほとんど同程度であるので、運転時と
冷温停止時の反応度差も小さくなる。
That is, during operation, the average neutron energy is high, and the regeneration rate is the value ηR in the resonance energy region, and during cold shutdown, the average neutron energy is low, so the regeneration rate is the value ηT in the thermal energy region. In the case of 238U, since ηR and ηT are almost the same, the difference in reactivity between operation and cold shutdown is also small.

従って、第1図の例と同様の効果は233Uのかわりに
別の核分裂性物質を用いても期待できる。
Therefore, the same effect as in the example of FIG. 1 can be expected even if another fissile material is used instead of 233U.

しかし、その核分裂性物質は、共鳴エネルギ領域のηR
値と熱エネルギ領域におけるη丁の比が、代表的な核分
裂性物質である235U のエネルギ領域におけるηR
235とηT235の比よりも大きい、つまり、 ηR/ηT〉 ηR233/ηT23!1なる関係を満
足することが必要である。
However, the fissile material has a resonance energy region of ηR
The ratio of the value to η in the thermal energy region is ηR in the energy region of 235U, which is a typical fissile material.
235 and ηT235, that is, it is necessary to satisfy the following relationship: ηR/ηT> ηR233/ηT23!1.

第一の実施例で用いた233U は、!32Th の(
n+ γ)反応により生成したものを再処理して使って
いる。
233U used in the first example is! 32Th of (
n+ γ) The product produced by the reaction is reprocessed and used.

しかし、第4図の実施例のように、232T1.  を
使ってもよい。この燃料集合体101は、上部1/3の
領域に濃縮度3 、7 w / oのウランに3.0w
10のの”Th51を添加している。一方、下部2/3
の領域では濃縮度3.7w10のウランを装荷している
However, as in the embodiment of FIG. 4, 232T1. You may also use This fuel assembly 101 contains 3.0 w of uranium with an enrichment of 3 and 7 w/o in the upper 1/3 region.
10" Th51 is added. On the other hand, the lower 2/3
The area is loaded with uranium with an enrichment level of 3.7w10.

また、燃焼とともに234T)、  が、次の核反応、
zazTh(n 、 y ) 233Uを起し、上部で
233U が蓄積するので、これにより炉停止余裕改善
効果が得られる。
Also, with combustion, 234T), the following nuclear reaction,
zazTh(n, y) 233U is generated and 233U is accumulated in the upper part, so that the effect of improving the reactor shutdown margin can be obtained.

また、燃焼初期の余剰反応度が232Th による中性
子吸収により小さくなる。また、燃焼が進むにつれ、2
LI U が蓄積した反応度が高くなるので。
In addition, the surplus reactivity at the initial stage of combustion is reduced by neutron absorption by 232Th. Also, as combustion progresses, 2
Because LI U accumulates higher reactivity.

余剰反応度の制御が容易になるという利点もある。Another advantage is that excess reactivity can be easily controlled.

第5図は、本発明の第三の実施例である。本実施例の燃
料集合体は上部1/3の領域に富化度1.85w10の
z33 U  を天然ウランに混合した燃料5を、下部
2/3の領域には濃縮度3.7w10のウラン燃料6を
装荷した燃料棒3が三十六本 233U を含まない2
36U の濃縮度が3.7w10の燃料6を装荷した燃
料棒32が玉子六本で構成している。
FIG. 5 shows a third embodiment of the invention. In the fuel assembly of this example, fuel 5, which is a mixture of natural uranium and z33 U with an enrichment of 1.85w10, is placed in the upper 1/3 region, and uranium fuel with an enrichment of 3.7w10 is placed in the lower 2/3rd region. There are 36 fuel rods 3 loaded with 233U.
A fuel rod 32 loaded with fuel 6 having an enrichment of 3.7w10 and 36U is composed of six eggs.

一般に、チャンネルボックス2の外側のギャップ水や水
ロッド4の中の水は沸騰していない。そのため、これら
の非沸騰水の周りでは局所的に中性子減速の良い状態が
生じ、出力のピークが生じやすい。この点を考慮して、
本実施例では集合体内出力分布を平坦化するため、これ
らのギャップ水や水ロッドの周りにはz33 U  を
含まない燃料棒を配置した。これにより、径方向の出力
分布を改善することができる。
Generally, the gap water outside the channel box 2 and the water in the water rod 4 are not boiling. Therefore, a state of good neutron moderation occurs locally around these non-boiling waters, and a peak in output tends to occur. Considering this point,
In this example, in order to flatten the power distribution within the assembly, fuel rods not containing z33 U were arranged around these gap waters and water rods. This makes it possible to improve the radial power distribution.

本発明の燃料集合体を、1100MWe級沸騰水型原子
炉の炉心7に適用した例を第6図に示す。
FIG. 6 shows an example in which the fuel assembly of the present invention is applied to the core 7 of a 1100 MWe class boiling water reactor.

この図に示すように、764体の集合体を、492本の
炉心内側領域8と、180体の外周領域9と92体の最
外周領域10に分け、外側領域9に、本発明の第一ない
し第三の実施例の燃料集合体を装荷する。一般に原子炉
の炉心では、炉心の外側領域9で出力が小さくなる傾向
があり、燃焼が遅れる傾向がある。特に炉心上部では中
性子の洩れと中性子スペクトルが硬いため出力は小さく
燃焼が遅れるので、炉停止余裕を厳しくする原因となる
。しかし、これら燃料集合体を外側領域9に装置すれば
、(高温)運転時と冷温停止時の反応度変化を小さくす
ることができるので、炉停止余裕が改善できる。
As shown in this figure, an assembly of 764 bodies is divided into an inner core area 8 of 492 bodies, an outer peripheral area 9 of 180 bodies, and an outermost peripheral area 10 of 92 bodies. Then, the fuel assembly of the third embodiment is loaded. Generally, in the core of a nuclear reactor, the output tends to be lower in the outer region 9 of the core, and combustion tends to be delayed. Particularly in the upper part of the reactor core, neutron leakage and a hard neutron spectrum result in low output and delayed combustion, making it difficult to afford reactor shutdown. However, if these fuel assemblies are installed in the outer region 9, the change in reactivity during (high-temperature) operation and cold shutdown can be reduced, so that the margin for reactor shutdown can be improved.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、運転時と停止時の反応度差を小さくで
きるので、炉停止余裕を増すことができる。
According to the present invention, the difference in reactivity between operation and shutdown can be reduced, so the reactor shutdown margin can be increased.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の燃料集合体の横断面図(a
)及び燃料棒の縦断面図(b)、第2図は中性子エネル
ギと再生率ηの関係を示す図、第3図は運転時及び冷温
停止時の中性子無限増倍率(koo)の変化を示す図、
第4図は本発明の第二の実施例の燃料集合体の横断面図
(a)及び燃料棒の縦断面図(b)、第5図は本発明の
第三の実施例の燃料集合体の横断面図(a)及び燃料棒
の縦断面図(b)、第6図は本発明の燃料集合体を装荷
した炉心の横断面図である。 L、101・・燃料集合体、2・・・チャンネルボック
ス、3,31.32・・・燃料棒、4・・・水ロッド、
5・・・233U  を含むウラン燃料、6・・・23
3 U  を含まないウラン燃料、7・・・炉心、8・
・・炉心の内側領域、9・・・炉心の外側領域、10・
・・炉心の最外周領域、51、、.23zTh  ヲ含
ムウラン燃料、61、、.2327hを含まないウラン
燃料。
FIG. 1 is a cross-sectional view (a
) and a vertical cross-sectional view of the fuel rod (b), Figure 2 shows the relationship between neutron energy and regeneration rate η, and Figure 3 shows the change in the neutron infinite multiplication factor (koo) during operation and cold shutdown. figure,
FIG. 4 is a cross-sectional view (a) of a fuel assembly according to a second embodiment of the present invention and a vertical cross-sectional view of a fuel rod (b), and FIG. 5 is a fuel assembly according to a third embodiment of the present invention. FIG. 6 is a cross-sectional view of a reactor core loaded with a fuel assembly of the present invention. L, 101... Fuel assembly, 2... Channel box, 3, 31.32... Fuel rod, 4... Water rod,
Uranium fuel containing 5...233U, 6...23
3 Uranium fuel not containing U, 7...core, 8...
...Inner region of the core, 9...Outer region of the reactor core, 10.
...The outermost region of the core, 51, . 23zTh Muuran fuel containing 61, . Uranium fuel that does not contain 2327h.

Claims (1)

【特許請求の範囲】 1、多数本の燃料棒と水ロッドがチャンネルボックスで
取り囲まれ、その中を冷却材が前記燃料棒の長手方向に
沿つて流れるように構成した燃料集合体において、 前記燃料集合体を冷却材の流れ方向に沿つて燃料有効長
の1/2の点より下流で二つの領域に分割し、下流側領
域に含まれる^2^3^3Uの、領域に含まれる全核分
裂性物質に対する重量比が、上流側領域の重量比よりも
大きくなるように構成したことを特徴とする燃料集合体
。 2、特許請求の範囲第1項において、 中性子エネルギが1〜10^3eVにおける一個の中性
子を吸収したときに新たに発生する中性子数の平均値η
_Rと1eV以下におけるη_Tの比が、前記中性子エ
ネルギ範囲における^2^3^5Uのη_R^2^3^
5とη_T^2^3^5の比に対してη_R/η_T>
η_R^2^3^5/η_T^2^3^5となる関係を
満足する少なくとも一種類の核分裂性物質を^2^3^
3Uと置換えたことを特徴とする燃料集合体。 3、多数本の燃料棒と水ロッドがチャンネルボックスで
取り囲まれ、その中を冷却材が前記燃料棒の長手方向に
沿つて流れるように構成した燃料集合体において、 前記燃料集合体を冷却材の流れ方向に沿つて燃料有効長
の1/2の点より下流で二つの領域に分割し、下流側領
域に含まれる^2^3^2Thの前記領域に含まれる全
核分裂性物質に対する重量比が、上流側領域の重量比よ
りも大きくなるように構成したことを特徴とする燃料集
合体。 4、燃料装荷部分を長さの異なる二つの領域に分割し、
短い領域に含まれる^2^3^3Uの、前記領域に含ま
れる全核分裂性物質に対する重量比が、他領域の前記重
量比よりも大きくなるように構成したことを特徴とする
燃料棒。 5、特許請求の範囲第4項において、中性子エネルギが
1〜10^3eVにおける前記η_Rと1eV以下にお
ける前記η_Tの比が、エネルギ範囲における^2^3
^5Uのη_R^2^3^5とη_T^2^3^5の比
に対してη_R/η_T>η_R^2^3^5/η_T
^2^3^5となる関係に満足する、少なくとも、一種
類の核分裂性物質を^2^3^3Uと置換えたことを特
徴とする燃料棒。 6、燃料装荷部分を長さの異なる二つの領域に分割し、
短い領域に含まれる^2^3^2Thの前記領域に含ま
れる全核分裂性物質に対する重量比が、他域域の当該重
量比よりも大きくなるように構成したことを特徴とする
燃料棒。 7、特許請求の範囲第4項、第5項または第6項におい
て、 前記チャンネルボックスに面した集合体断面の最外周部
、及び、水ロッド近傍を除く場所に燃料棒を配置したこ
とを特徴とする燃料集合体。 8、特許請求の範囲第1項、第2項、第3項または第7
項において、 炉心の最外周を除く領域を半径方向に二つの領域に分割
し、その外側の領域に燃料集合体を装荷したことを特徴
とする原子炉の炉心。
[Scope of Claims] 1. A fuel assembly configured such that a large number of fuel rods and water rods are surrounded by a channel box, through which a coolant flows along the longitudinal direction of the fuel rods, comprising: Divide the assembly into two regions downstream from the 1/2 point of the effective length of the fuel along the flow direction of the coolant, and calculate the total nuclear fission of ^2^3^3U included in the downstream region. 1. A fuel assembly characterized in that the weight ratio of the active substance to the upstream region is larger than the weight ratio of the upstream region. 2. In claim 1, the average value η of the number of newly generated neutrons when one neutron is absorbed at a neutron energy of 1 to 10^3 eV
The ratio of _R and η_T below 1 eV is η_R^2^3^ of ^2^3^5U in the above neutron energy range.
η_R/η_T> for the ratio of 5 and η_T^2^3^5
At least one type of fissile material that satisfies the relationship η_R^2^3^5/η_T^2^3^5^2^3^
A fuel assembly characterized by replacing 3U. 3. In a fuel assembly configured such that a large number of fuel rods and water rods are surrounded by a channel box, and a coolant flows through the channel box along the longitudinal direction of the fuel rods, It is divided into two regions downstream from the 1/2 point of the fuel effective length along the flow direction, and the weight ratio of ^2^3^2Th contained in the downstream region to the total fissile material contained in the region is determined. , a fuel assembly characterized in that the weight ratio is larger than that of the upstream region. 4. Divide the fuel loading area into two regions with different lengths,
A fuel rod characterized in that a weight ratio of ^2^3^3U contained in a short region to all fissile material contained in said region is larger than said weight ratio of other regions. 5. In claim 4, the ratio of the η_R at a neutron energy of 1 to 10^3 eV and the η_T at a neutron energy of 1 eV or less is ^2^3 in the energy range.
For the ratio of η_R^2^3^5 and η_T^2^3^5 of ^5U, η_R/η_T>η_R^2^3^5/η_T
A fuel rod satisfying the relationship ^2^3^5, characterized in that at least one type of fissile material is replaced with ^2^3^3U. 6. Divide the fuel loading area into two regions with different lengths,
A fuel rod characterized in that the weight ratio of ^2^3^2Th included in the short region to the total fissile material contained in the region is larger than the weight ratio of other regions. 7. Claims 4, 5, or 6, characterized in that fuel rods are arranged at locations other than the outermost periphery of the cross section of the assembly facing the channel box and the vicinity of the water rods. fuel assembly. 8.Claim 1, 2, 3 or 7
2. A nuclear reactor core according to paragraph 1, characterized in that the region excluding the outermost periphery of the reactor core is divided into two regions in the radial direction, and fuel assemblies are loaded in the outer region.
JP63199884A 1988-08-12 1988-08-12 Fuel assembly, fuel rod and reactor core Pending JPH0251094A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63199884A JPH0251094A (en) 1988-08-12 1988-08-12 Fuel assembly, fuel rod and reactor core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63199884A JPH0251094A (en) 1988-08-12 1988-08-12 Fuel assembly, fuel rod and reactor core

Publications (1)

Publication Number Publication Date
JPH0251094A true JPH0251094A (en) 1990-02-21

Family

ID=16415210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63199884A Pending JPH0251094A (en) 1988-08-12 1988-08-12 Fuel assembly, fuel rod and reactor core

Country Status (1)

Country Link
JP (1) JPH0251094A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009222617A (en) * 2008-03-18 2009-10-01 Toshihisa Shirakawa Bleedable nuclear fuel assembly using non-plutonium-based nuclear fuel, and core of light water-cooled bwr

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009222617A (en) * 2008-03-18 2009-10-01 Toshihisa Shirakawa Bleedable nuclear fuel assembly using non-plutonium-based nuclear fuel, and core of light water-cooled bwr

Similar Documents

Publication Publication Date Title
JPH051912B2 (en)
JP2928606B2 (en) Fuel assembly
JPH0251094A (en) Fuel assembly, fuel rod and reactor core
JP3241071B2 (en) Light water reactor core
JPH0588439B2 (en)
JPH06174874A (en) Fuel assembly and reactor core
JPH0636047B2 (en) Fuel assembly for nuclear reactor
JP3075749B2 (en) Boiling water reactor
JP3093289B2 (en) Fuel assembly for boiling water reactor
JPH04265896A (en) Fuel assembly
JP3212744B2 (en) Fuel assembly
JPS59147295A (en) Fuel assembly
JP3596831B2 (en) Boiling water reactor core
JP3115392B2 (en) Fuel assembly for boiling water reactor
JPH08292281A (en) Fuel assembly for boiling water type reactor
JPH02170092A (en) Fuel assembly for boiling water reactor
JPH026786A (en) Fuel rod and fuel assembly for boiling water reactor
JPS6356513B2 (en)
JP2000180575A (en) Fuel assembly for boiling-water reactor and reactor core using it
JPS63231293A (en) Core for nuclear reactor
JPH10170673A (en) Mox fuel assembly and core of nuclear reactor
JPH07151883A (en) Fuel assembly for boiling water reactor
JPH1068789A (en) Mox fuel assembly and reactor core
JP2004020268A (en) Nuclear reactor core and its operation method
JPS60242391A (en) Fuel aggregate