JPH0250965A - Formation of heat-resistant electrode - Google Patents

Formation of heat-resistant electrode

Info

Publication number
JPH0250965A
JPH0250965A JP19945388A JP19945388A JPH0250965A JP H0250965 A JPH0250965 A JP H0250965A JP 19945388 A JP19945388 A JP 19945388A JP 19945388 A JP19945388 A JP 19945388A JP H0250965 A JPH0250965 A JP H0250965A
Authority
JP
Japan
Prior art keywords
iron
tin
org
compd
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19945388A
Other languages
Japanese (ja)
Other versions
JP2707620B2 (en
Inventor
Kazuyuki Ozaki
和行 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nok Corp
Original Assignee
Nok Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nok Corp filed Critical Nok Corp
Priority to JP19945388A priority Critical patent/JP2707620B2/en
Publication of JPH0250965A publication Critical patent/JPH0250965A/en
Application granted granted Critical
Publication of JP2707620B2 publication Critical patent/JP2707620B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To form a heat-resistant electrode stable even at high temp. by impressing a high-frequency wave having specified power density on the monomeric gaseous mixture of an org. iron compd. and an org. tin compd. to form a plasma-polymerized film consisting of iron and tin and having a specified composition. CONSTITUTION:A high-frequency power having >=0.34W/cm<2>, or preferably 0.34-2.0W/cm<2>, power density is impressed on the monomeric gaseous mixture consisting of an org. iron compd. and an org. tin compd. and having a specified composition. The discharge pressure is preferably controlled to about 10<-3>-10<1>Torr. Iron pentacarbonyl, etc., are used as the org. iron compd., and tetramethyltin, dibutyltin diacetate, etc., as the org. tin compd. A plasma- polymerized film contg. about 90-20% elemental iron and about 10-80% elemental tin is formed on a matrix of alumina, glass, etc., by the plasma discharge caused by the high-frequency wave. By this method, a heat-resistant electrode stable even at a high temp. of >= about 400 deg.C is formed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、耐熱性電極の形成方法に関する。更に詳しく
は、鉄−錫系の廉価な耐熱性電極の形成方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method of forming a heat-resistant electrode. More specifically, the present invention relates to a method of forming an inexpensive heat-resistant iron-tin electrode.

〔従来の技術〕および〔発明が解決しようとする課題〕
電極材料としては、従来から一般的にAu、 Ag、P
t、 Ni、 Ti、 Cr、 Cu、 Fe、 Sn
、 Znあるいはこれらの合金などが用いられている。
[Prior art] and [Problem to be solved by the invention]
Conventionally, electrode materials have generally been Au, Ag, and P.
T, Ni, Ti, Cr, Cu, Fe, Sn
, Zn, or an alloy thereof.

これらの電極材料中、Au、 Ag、Ptは高価なため
汎用には使用することができず、一方Cu、 Sn、 
Feなどは廉価であることから一般的に多く使用されて
いるものの、これらの廉価な材料は300℃以上では徐
々に酸化されるため、それに伴って電気的特性が変化す
るのを避けることができない。
Among these electrode materials, Au, Ag, and Pt are expensive and cannot be used for general purpose, while Cu, Sn,
Although Fe and other materials are commonly used because they are inexpensive, these inexpensive materials are gradually oxidized at temperatures above 300°C, so changes in electrical characteristics cannot be avoided. .

本発明の目的は、廉価な鉄−錫系電極材料を用い、40
0℃以上の高温でも安定な耐熱性電極の形成方法を提供
することにある。
The object of the present invention is to use inexpensive iron-tin based electrode materials,
The object of the present invention is to provide a method for forming a heat-resistant electrode that is stable even at high temperatures of 0°C or higher.

〔課題を解決するための手段〕[Means to solve the problem]

かかる本発明の目的は、有機鉄化合物および有機錫化合
物の混合モノマーガスを用い、これに電力密度0.34
11/d以上の高周波を印加し、鉄約90〜20元素X
および錫約10〜80元素2のプラズマ重合膜を基質上
に形成させて耐熱性電極となすことにより達成される。
The object of the present invention is to use a mixed monomer gas of an organic iron compound and an organic tin compound, and to add a power density of 0.34 to the mixed monomer gas.
Approximately 90 to 20 elements of iron are applied by applying a high frequency of 11/d or more.
This is achieved by forming a plasma polymerized film of about 10 to 80 elements of tin on a substrate to form a heat-resistant electrode.

混合モノマーガスの一方の成分である有機鉄化合物とし
ては、例えば鉄ペンタカルボニルなどが用いられ、また
他方の成分である有機錫化合物としては、例えばテトラ
メチル錫、テトラエチル錫、テ1ヘラーn−ブチル錫、
ジブチル錫ジアセテートなどが用いられる。
As the organic iron compound that is one component of the mixed monomer gas, for example, iron pentacarbonyl is used, and as the organic tin compound that is the other component, for example, tetramethyltin, tetraethyltin, Te1heller n-butyl, etc. are used. tin,
Dibutyltin diacetate and the like are used.

これらの混合モノマーガスは、形成されるプラズマ重合
膜中に鉄が約90〜20元素X、また錫が約10〜80
元素2の割合で含有されるように用いられる。
These mixed monomer gases contain approximately 90 to 20 elements of iron and approximately 10 to 80 elements of tin in the plasma polymerized film formed.
It is used so that it is contained in a ratio of 2 elements.

鉄の含有割合がこれより多くなると、その耐熱性は低下
して鉄のみと同等のレベルに落ち、一方鉄がこれより少
ない割合になると、錫のみと同等つまり酸化錫と同じ特
性しか示さないようになる。
If the iron content is higher than this, its heat resistance will decrease to the same level as iron alone, while if the iron content is lower than this, it will show the same properties as tin alone, that is, the same properties as tin oxide. become.

なお、形成されたプラズマ重合膜中の鉄および錫の定量
は、ESCA (X線光電子分光分析)により行われる
Note that the determination of iron and tin in the formed plasma polymerized film is performed by ESCA (X-ray photoelectron spectroscopy).

かかる混合モノマーガスを用いてのプラズマ重合膜の形
成は、先の本出願人による提案(特開昭6362877
号公報)の如く、有機錫化合物のプラズマ重合膜の形成
に必要な0.34W/−以上、一般には0.34〜2.
OW/cJの電力密度を有する高周波電力によって行わ
れる。この際の混合モノマーガス流量は約10〜500
cc/分であり、また放電圧力は10−3〜101To
rrのオーダーである。
Formation of a plasma polymerized film using such a mixed monomer gas was previously proposed by the applicant (Japanese Patent Laid-Open No. 6362877).
0.34 W/- or more necessary for forming a plasma polymerized film of an organotin compound, generally 0.34 to 2.
This is done with high frequency power having a power density of OW/cJ. The mixed monomer gas flow rate at this time is approximately 10 to 500
cc/min, and the discharge pressure is 10-3 to 101To
It is of the order of rr.

このようにして、例えばアルミナ、ガラス、ステンレス
スチール、プラスチックなどの各種基質上に、種々の元
素比を有するプラズマ重合膜を形成させることができ、
この鉄−錫プラズマ重合膜は耐熱性電極として用いられ
る。
In this way, plasma polymerized films with various element ratios can be formed on various substrates such as alumina, glass, stainless steel, plastic, etc.
This iron-tin plasma polymerized film is used as a heat-resistant electrode.

〔発明の効果〕〔Effect of the invention〕

本発明方法によって形成される耐熱性電極は400℃迄
安定であり、従来耐熱性が必要とされるために金や白金
の電極が用いられていた用途に、これらの高価な材料に
代って用いることができる。
The heat-resistant electrode formed by the method of the present invention is stable up to 400°C, and can replace these expensive materials in applications where gold or platinum electrodes were conventionally used because heat resistance was required. Can be used.

このようにすぐれた耐熱性が発揮される原因について検
討したところ、プラズマ重合膜に酸化鉄のバリヤ層が形
成されていることがX線光電子分光分析により確認され
た。つまり、膜表面に形成された酸化鉄により、膜内部
への酸素の供給が遮断され、内部の鉄および錫がそのま
まの状態で保存されているため、抵抗率が一定に保たれ
るものと考えられる。
When the reason for such excellent heat resistance was investigated, it was confirmed by X-ray photoelectron spectroscopy that an iron oxide barrier layer was formed in the plasma polymerized film. In other words, the iron oxide formed on the film surface cuts off the supply of oxygen to the inside of the film, and the iron and tin inside are preserved as they are, so the resistivity is thought to be kept constant. It will be done.

〔実施例〕〔Example〕

次に、実施例について本発明を説明する。 Next, the present invention will be explained with reference to examples.

実施例] テトラメチル錫流量100cc/分、鉄ペンタカルボニ
ル流量100cc/分、放電圧力8 X 1O−2To
rr、放電電力100111(0,57W/cJ)、放
電時間5分間の条件下で、13.56M)Izの高周波
放電によるプラズマ重合を行ない、ガラス基質上に膜厚
1μmのプラズマ重合膜を形成させた。形成されたプラ
ズマ重合膜は、鉄と錫とが1=1の元素比を有していた
Example] Tetramethyltin flow rate 100cc/min, iron pentacarbonyl flow rate 100cc/min, discharge pressure 8 x 1O-2To
rr, discharge power 100111 (0.57 W/cJ), discharge time 5 minutes, plasma polymerization was performed by high frequency discharge of 13.56 M) Iz, and a plasma polymerized film with a thickness of 1 μm was formed on the glass substrate. Ta. The plasma polymerized film thus formed had an elemental ratio of iron and tin of 1=1.

この鉄−錫プラズマ重合膜を基質に付したまま恒温槽に
入れ、250℃になったところでその温度に30分間保
持し、それを取り出して室温下で抵抗率を測定し、その
後再び恒温槽に戻して温度を」二げ、400℃および5
00℃に加熱したものについて、同様に室温下で抵抗率
を測定した。
This iron-tin plasma polymerized film was placed on the substrate in a constant temperature bath, and when it reached 250°C, it was kept at that temperature for 30 minutes, taken out and the resistivity was measured at room temperature, and then placed in the constant temperature bath again. Return the temperature to 400℃ and 5
The resistivity of the sample heated to 00°C was similarly measured at room temperature.

比較例 実施例1に準じ、鉄ペンタカルボニルのみを用い、鉄プ
ラスマ重合膜を基質」二に形成させた。
Comparative Example According to Example 1, an iron plasma polymerized film was formed on the substrate using only iron pentacarbonyl.

この鉄プラズマ重合膜について、それぞれ250℃およ
び300℃に加熱したものの抵抗率を室温下で測定した
The resistivities of the iron plasma polymerized films heated to 250° C. and 300° C. were measured at room temperature, respectively.

以上の実施例1および比較例での測定結果は、第1図の
グラフに示され、この結果から次のようなことがいえる
The measurement results in the above Example 1 and Comparative Example are shown in the graph of FIG. 1, and the following can be said from the results.

比較例(鉄プラズマ重合膜)の場合には、加熱温度の上
昇と共に徐々に抵抗率が上り、300℃以上では抵抗率
がかなり大きな値となり、酸化の進んでいることが分る
。これに対し、実施例1(鉄−錫プラズマ重合膜)の場
合には、400℃迄の加熱では抵抗率に殆んど変化がな
く、外見上も加熱前と同様に金属光沢を示していた。そ
して、500℃に迄加熱すると、始めて高い抵抗率を示
した。従って、この薄膜電極の耐熱性は、400℃であ
るといえる。
In the case of the comparative example (iron plasma polymerized film), the resistivity gradually increases as the heating temperature increases, and the resistivity reaches a considerably large value at 300° C. or higher, indicating that oxidation is progressing. On the other hand, in the case of Example 1 (iron-tin plasma polymerized film), there was almost no change in resistivity when heated up to 400°C, and the film showed the same metallic luster in appearance as before heating. . When it was heated to 500°C, it showed high resistivity for the first time. Therefore, it can be said that the heat resistance of this thin film electrode is 400°C.

実施例2 実施例1において、テトラメチル錫流量100cc/分
に対し鉄ペンタカルボニルの流量を200cc/分に変
更すると、鉄と錫との元素比が2=1のプラズマ重合膜
が得られた。
Example 2 In Example 1, when the flow rate of iron pentacarbonyl was changed to 200 cc/min with respect to the flow rate of tetramethyltin 100 cc/min, a plasma polymerized film with an elemental ratio of iron to tin of 2=1 was obtained.

この鉄−錫プラズマ重合膜について、同様にして耐熱性
を調べると、400℃迄一定の抵抗率を示した。更に、
400℃の雰囲気中に100時間放置しても、抵抗率に
変化がみられず、その耐熱安定性の点でも良好なことが
確認された。
When the heat resistance of this iron-tin plasma polymerized film was similarly examined, it showed a constant resistivity up to 400°C. Furthermore,
Even after being left in an atmosphere at 400° C. for 100 hours, no change in resistivity was observed, and it was confirmed that the heat resistance stability was also good.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は、実施例1および比較例でそれぞれ形成されたプ
ラズマ重合膜の耐熱性を示すグラフである。
The drawing is a graph showing the heat resistance of plasma polymerized films formed in Example 1 and Comparative Example.

Claims (1)

【特許請求の範囲】[Claims] 1、有機鉄化合物および有機錫化合物の混合モノマーガ
スを用い、これに電力密度0.34w/cm^2以上の
高周波を印加し、鉄約90〜20元素%および錫約10
〜80元素%のプラズマ重合膜を基質上に形成させるこ
とを特徴とする耐熱性電極の形成方法。
1. Using a mixed monomer gas of an organic iron compound and an organic tin compound, a high frequency with a power density of 0.34 w/cm^2 or more is applied to it, and approximately 90 to 20 element % of iron and approximately 10 element % of tin are added.
A method for forming a heat-resistant electrode, comprising forming a plasma polymerized film containing ~80 element % on a substrate.
JP19945388A 1988-08-10 1988-08-10 Method of forming heat-resistant electrode Expired - Fee Related JP2707620B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19945388A JP2707620B2 (en) 1988-08-10 1988-08-10 Method of forming heat-resistant electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19945388A JP2707620B2 (en) 1988-08-10 1988-08-10 Method of forming heat-resistant electrode

Publications (2)

Publication Number Publication Date
JPH0250965A true JPH0250965A (en) 1990-02-20
JP2707620B2 JP2707620B2 (en) 1998-02-04

Family

ID=16408066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19945388A Expired - Fee Related JP2707620B2 (en) 1988-08-10 1988-08-10 Method of forming heat-resistant electrode

Country Status (1)

Country Link
JP (1) JP2707620B2 (en)

Also Published As

Publication number Publication date
JP2707620B2 (en) 1998-02-04

Similar Documents

Publication Publication Date Title
CA1066538A (en) Alumina forming coatings containing hafnium for high temperature applications
US3476586A (en) Method of coating carbon bodies and the resulting products
CA1157298A (en) Resistor composition and method of manufacture thereof
JPS59103216A (en) Electric contact
US5776550A (en) Oxidation inhibitor coating
US5709938A (en) Cathode targets of silicon and transition metal
US3564565A (en) Process for adherently applying boron nitride to copper and article of manufacture
JPH03177568A (en) Sputtering target and film composed essentially of silicon dioxide
US6217722B1 (en) Process for producing Ti-Cr-Al-O thin film resistors
JPH0250965A (en) Formation of heat-resistant electrode
JPS59204625A (en) Manufacture of transparent electrically conductive film
US3018198A (en) Film resistor and method of making same
Christian et al. Siliconizing of molybdenum metal in indium-silicon melts
CA1040984A (en) Method for passivating chromium
Hauser Crucial role of residual gases in amorphization of crystalline films
JPS62502975A (en) Cr↓2O↓3 protective coating and its manufacturing method
JPS62291101A (en) Metal film resistor and manufacture of the same
JPH05221689A (en) Radiant heat-shield glass
JP2000239827A (en) Laminated structural body and its production
US4205299A (en) Thin film resistor
US3611246A (en) Chromium-carbon and chromium-nickel-carbon resistive films
Maury et al. Study of the properties of in situ Pt-doped SnO2 thin films prepared by metal-organic chemical vapour deposition
US3315208A (en) Nitrogen stabilized titanium thin film resistor and method of making same
Munitz et al. Electrical resistance and Auger electron spectroscopy characteristics of interdiffusion in Au/metal bilayer films
JPS6252028B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees