JPH0250951A - Method and apparatus for manufacturing transparent conductive film - Google Patents

Method and apparatus for manufacturing transparent conductive film

Info

Publication number
JPH0250951A
JPH0250951A JP63198882A JP19888288A JPH0250951A JP H0250951 A JPH0250951 A JP H0250951A JP 63198882 A JP63198882 A JP 63198882A JP 19888288 A JP19888288 A JP 19888288A JP H0250951 A JPH0250951 A JP H0250951A
Authority
JP
Japan
Prior art keywords
target
transparent conductive
conductive film
sputtering
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63198882A
Other languages
Japanese (ja)
Other versions
JPH0751745B2 (en
Inventor
Kyuzo Nakamura
久三 中村
Akira Ishibashi
暁 石橋
Yasushi Higuchi
靖 樋口
Yoshifumi Ota
太田 賀文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP63198882A priority Critical patent/JPH0751745B2/en
Publication of JPH0250951A publication Critical patent/JPH0250951A/en
Publication of JPH0751745B2 publication Critical patent/JPH0751745B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3421Cathode assembly for sputtering apparatus, e.g. Target using heated targets

Abstract

PURPOSE:To prevent black amorphous substances from precipitating in a target surface and to rapidly form a transparent conductive film having superior electric conductivity and light transmittance by carrying out sputtering while heating an oxide-type target to a specific temp. CONSTITUTION:Sputtering by means of plasma discharge is carried out while heating an In2O3-SnO2-type oxide target 10 to >=100 deg.C by means of heaters 13, by which a transparent conductive film of In1-xSnx (x=0 to 1) oxide type is formed on a substrate 4. The effect of increasing electric discharge current is produced from a heating temp. of 100 deg.C on and becomes constant at >= about 150 deg.C, and black substances precipitated in the target 10 surface can be dissipated. Accordingly, from 100 deg.C target temp. on, the rate of deposition is increased, and the electric resistivity of a thin film formed is reduced and light transmittance is increased.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は液晶表示装置等に使用される 1111−XS rrx系透明導電膜の製造方法及び製
造装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method and apparatus for manufacturing a 1111-XS rrx-based transparent conductive film used in liquid crystal display devices and the like.

(従来の技術) 従来、この種の透明導電膜の製造方法として、スパッタ
法、蒸着法、CVD法等が知られており、該透明導電膜
の用途によってこれらの方法のうち適当な方法を採用し
ている。このうちスパッタ法は、In−Sn合金ターゲ
ットを用いる場合と、 In203−SnO2系酸化物
ターゲットを用いる場合とがあるが、導電性と光透過率
が安定した膜か得られる利点のある後者の方が多く使わ
れている。
(Prior Art) Sputtering, vapor deposition, CVD, and other methods are conventionally known as methods for producing this type of transparent conductive film, and an appropriate method among these methods is adopted depending on the use of the transparent conductive film. are doing. Among these methods, the sputtering method uses an In-Sn alloy target or an In203-SnO2-based oxide target, but the latter method has the advantage of producing a film with stable conductivity and light transmittance. is often used.

後者のスパッタ法について更に説明すると、1n203
 SnO2系酸化物ターゲットをCuやSUS製のバッ
キングプレートに低融点金属のロウ材によりボンディン
グし、そのバッキングプレー1・を真空室内の基板と対
向するスパッタカソードに取付け、該カソードに負の電
圧を印加してスパッタを行う。この場合、該真空室には
、プラズマ放電を発生させるだめのガスとして、Ar等
の不活性ガスに02ガスを適当量含有させた混合ガスが
導入される。そして02ガスの混合量を変化させ、最適
の導電性と光透過率をもった透明導電膜を基板上に得る
。この際、ターゲットは、Arイオンによりボンバード
されて発熱するので、バッキングプレートの背面から水
冷される。
To further explain the latter sputtering method, 1n203
A SnO2-based oxide target is bonded to a backing plate made of Cu or SUS using a low-melting metal brazing material, and the backing plate 1 is attached to a sputtering cathode facing the substrate in a vacuum chamber, and a negative voltage is applied to the cathode. and perform sputtering. In this case, a mixed gas containing an appropriate amount of 02 gas in an inert gas such as Ar is introduced into the vacuum chamber as a gas for generating plasma discharge. Then, by changing the mixed amount of 02 gas, a transparent conductive film with optimal conductivity and light transmittance is obtained on the substrate. At this time, the target is bombarded with Ar ions and generates heat, so it is water-cooled from the back side of the backing plate.

(発明か解決しようとする課題) 前記従来のスパッタ法で透明導電膜を製造する場合、連
続的にスパッタを行なっていると、In2O3−SnO
2系酸化物ターゲットの表面が黒色に変色し、その程度
や面積がスパッタ時間とともに増加する現象か起る。そ
して、その結果、基板上への透明導電膜の析出速度が低
下し、作製した護膜の導電性と光透過率が悪化するとい
う問題か生ずる。
(Problem to be solved by the invention) When manufacturing a transparent conductive film by the conventional sputtering method, if sputtering is performed continuously, In2O3-SnO
A phenomenon occurs in which the surface of the 2-system oxide target turns black, and the degree and area of the change increases with sputtering time. As a result, the deposition rate of the transparent conductive film on the substrate decreases, resulting in a problem that the conductivity and light transmittance of the prepared protective film deteriorate.

この問題の原因について、発明者は種々の検討の結果、
次のようなことであることか究明された。即ち、前記タ
ーゲットの表面の黒色物は、In(Sn)Oの組成に近
い非晶質の物質で、InやSnは2価になっているもの
か多く、その電気抵抗は I 11203やSnO2に
較べて極めて高いこと、そして該黒色物は、スパッタ中
にターゲットより飛び出したInやSn原子がO原子と
共に再度ターケラト表面に析出することにより生成され
、−旦この物質が生成すると、電気抵抗か高いためスパ
ッタされにくく、その上に続々と析出するので、スパッ
タ時間と共に黒色物か増加し、これに伴なって析出速度
か低下すること、か原因であると分かった。従って、長
時間連続して多数枚の基板に順次透明導電膜を作製して
いる時には、その膜厚か徐々に薄くなるという問題か生
じる。
As a result of various studies regarding the cause of this problem, the inventor found that
It was determined that the following was the case. That is, the black material on the surface of the target is an amorphous material with a composition similar to In(Sn)O, and In and Sn are often divalent, and their electrical resistance is similar to that of I11203 and SnO2. The black material is produced by the In and Sn atoms ejected from the target during sputtering and re-precipitated on the Terkerat surface together with O atoms, and once this material is produced, the electrical resistance is high. It was found that this is because the black particles increase with sputtering time and the deposition rate decreases as the sputtering time increases. Therefore, when transparent conductive films are sequentially formed on a large number of substrates over a long period of time, the problem arises that the film thickness gradually becomes thinner.

また該黒色非晶物質も幾分スパッタされ、該膜中に混入
するが、該物質は電気抵抗が高く黒色であるため、形成
される透明導電膜の導電性と透過率か悪化する原因であ
ることも分った。
In addition, some of the black amorphous material is sputtered and mixed into the film, but since this material has high electrical resistance and is black, it causes deterioration in the conductivity and transmittance of the transparent conductive film formed. I also realized that.

特に透過率の悪化の問題は基板の温度か低い場合に著し
い。
In particular, the problem of deterioration of transmittance is significant when the temperature of the substrate is low.

本発明は、 1111−Xs nX系透明導電膜の製造
に伴なう前記問題点を解決する製造方法と装置を提案す
ることを目的とするものである。
An object of the present invention is to propose a manufacturing method and apparatus that solve the above-mentioned problems associated with manufacturing a 1111-Xs nX-based transparent conductive film.

(課題を解決するための手段) 本発明では、 1111−XS nx酸化物系(0≦x
≦1)透明導電膜を、 l112O3−8口02系酸化
物ターゲットを用いたスパッタ法により作成する方法に
おいて、該ターゲットを100℃以上に加熱し乍らスパ
ッタを行なうことにより、該ターゲットの表面に黒色の
非晶質物質の析出を防ぎ、導電性と光透過率の良い透明
導電膜を迅速に作製するようにした。
(Means for Solving the Problems) In the present invention, 1111-XS nx oxide system (0≦x
≦1) In a method of creating a transparent conductive film by a sputtering method using a l112O3-8 type oxide target, sputtering is performed while heating the target to a temperature of 100° C. or higher, thereby forming a transparent conductive film on the surface of the target. A transparent conductive film with good conductivity and light transmittance can be rapidly produced by preventing the precipitation of black amorphous substances.

そしてこの方法は、真空室内に、基板と1 lI20B
 −5nO7系酸化物ターゲットとを互に対向して設け
、該基板と該ターゲット間に生するプラズマ放電により
該基板に llT+ −xS nx酸化物系(0≦x≦
1)透明導電膜を形成するようにした装置に於て、該タ
ーゲットの表面を100℃以上に加熱するヒータを設け
た装置或は該ターゲットの背面から該ターゲットを10
0℃以上に加熱する熱媒体による加熱装置を設けて実施
される。
And in this method, the substrate and 1 lI20B are placed in a vacuum chamber.
-5nO7-based oxide targets are provided facing each other, and the plasma discharge generated between the substrate and the target causes the substrate to become llT+ -xS nx oxide-based (0≦x≦
1) In an apparatus designed to form a transparent conductive film, the target is heated to 100° C. or
This is carried out by providing a heating device that uses a heat medium to heat the temperature to 0° C. or higher.

(作 用) 真空室内の基板に対向して設けられたスパッタカソード
上に I 11203−3n02系酸化物ターゲットを
設け、該真空室内に02ガスを混入したArカスを導入
し、該カソードに負の電位を与えてスパッタにより該基
板上に透明導電膜を形成することは従来の場合と同様で
あるが、本発明では、この場合該ターゲットをヒータ又
は熱媒体による加熱装置で100℃以上に加熱し乍らス
パッタするもので、この加熱により該ターゲット上に前
期従来のもののような黒色の非晶質物質が析出すること
か防止される。これは、該非晶質物質は、非平衡物質で
あるため」00℃以上では存在できないためであり、1
00℃以上では結晶質の In2O3  SnO□にな
るか或はわずかの金属InとIn2O3−SnO2にな
る。そして金属Inは I 11203Sn02にくら
べてスパッタ率か高いので、すぐスパッタされてしまい
、ターゲット上に析出しない。
(Function) An I11203-3n02-based oxide target is provided on a sputtering cathode provided facing the substrate in a vacuum chamber, Ar scum mixed with 02 gas is introduced into the vacuum chamber, and a negative Forming a transparent conductive film on the substrate by applying a potential and sputtering is the same as in the conventional case, but in the present invention, in this case, the target is heated to 100° C. or higher with a heater or a heating device using a heat medium. This heating prevents a black amorphous material from being deposited on the target as in the prior art. This is because the amorphous substance is a non-equilibrium substance and cannot exist at temperatures above 00°C.
At temperatures above 00°C, it becomes crystalline In2O3SnO□ or becomes a small amount of metal In and In2O3-SnO2. Since metal In has a higher sputtering rate than I11203Sn02, it is sputtered immediately and is not deposited on the target.

い。stomach.

従って基板上に析出する H)203  SnO2は、
ターゲットと同質の物質であるから、導電性に富み、透
過性もよく比較的迅速に透明導電膜を形成出来る。
Therefore, H)203 SnO2 deposited on the substrate is
Since it is a substance of the same quality as the target, it has high conductivity and good transparency, and a transparent conductive film can be formed relatively quickly.

(実施例) 本発明の実施例を別紙図面につき説明するに、第1図及
び第2図に於て、符号(1)は、適当な真空排気手段に
接続される排気口(2)と、Arガスに02ガスを混入
したスパッタガスの導入口(3)を備えた真空室、(4
)及び(5)は該真空室(1)内に互に対向して設けた
基板及びスパッタカソードを示し、該基板(4)の背後
にこれを加熱するヒータ(6)を設けるようにした。ま
た該スパッタカソード(5)はバッキングプレー1− 
(7)の背後に磁石(8)を収容した容筒(9)を備え
るものとし、該磁石(8)により該バッキングプレート
(7)の前面にロウ材てホンディングした l 112
03−SnO3系酸化物ターゲット(1G+の表面に磁
界を形成してマグネトロン式のスパッタを行なえるよう
にした。(11)はアースシールド、qbは防着板であ
る。
(Embodiment) An embodiment of the present invention will be described with reference to the attached drawings. In FIGS. 1 and 2, reference numeral (1) indicates an exhaust port (2) connected to a suitable evacuation means; a vacuum chamber (4) equipped with an inlet (3) for a sputtering gas containing Ar gas mixed with 02 gas;
) and (5) show a substrate and a sputtering cathode that are provided facing each other in the vacuum chamber (1), and a heater (6) for heating the substrate (4) is provided behind the substrate (4). Moreover, the sputter cathode (5) is connected to the backing plate 1-
A container (9) containing a magnet (8) is provided behind the backing plate (7), and the magnet (8) is used to bond the front surface of the backing plate (7) with brazing material.
03-SnO3-based oxide target (1G+) A magnetic field was formed on the surface to enable magnetron sputtering. (11) is an earth shield, and qb is an anti-adhesion plate.

該ターゲット(10)は、第1図示の場合、ターゲット
(1G+の前方に設けたシース型ニクロム線ヒタやタン
タル線ヒータ等のヒータ(13により 100℃以上に
加熱されるようにし、この場合、該8筺(9)に冷却水
を配管i′14)(I41を介して循環させ、バッキン
グプレー1− (7)を水冷した。該ヒータ(13は可
変変圧器に接続され、加熱温度を調節するように構成さ
れる。
In the case shown in Figure 1, the target (10) is heated to 100°C or higher by a heater (13) such as a sheathed nichrome wire heater or a tantalum wire heater provided in front of the target (1G+). Cooling water was circulated through the pipe i'14) (I41) in the 8-casing (9), and the backing plate 1- (7) was water-cooled.The heater (13) was connected to a variable transformer to adjust the heating temperature. It is configured as follows.

第2図示の場合、該ターゲットa■は、高融点のロウ材
によりバッキングプレート(7)にポンディングされ、
その背後の容筒(9)に配管(14) (1@を介して
循環される例えばオイル系の耐熱温度が300℃以上の
熱媒体(+5)により加熱され、この場合、好ましくは
該熱媒体は自動温度調節式の加熱器により加熱される。
In the case shown in the second diagram, the target a is bonded to the backing plate (7) with a high melting point brazing material,
The cylinder (9) behind it is heated by a heat medium (+5) having an allowable temperature limit of 300°C or higher, for example, an oil system, which is circulated through the pipe (14) (1@), and in this case, it is preferable that the heat medium is heated by a self-temperature-controlled heater.

第1図示の装置に於いて、カソード(5)に、現在最も
代表的な l 11203に10%!1lin02か混
入した酸化物ターゲット(IOを設置し、ヒータ0eで
全く加熱せずに25時間の連続スパッタを行ない、ター
ゲット(IG+の表面に充分に黒色の非晶質物質を析出
させた。この状態ではターゲト(’IQ)の表面に抵抗
の大きい非晶質物質が析出しているので、スパッタ時の
放電インピーダンスか高い。具体的には、真空室(1)
のArガス圧が5 X 1O−3Torr。
In the device shown in the first diagram, the cathode (5) has 10% to the currently most typical l 11203! An oxide target (IO) mixed with 1lin02 was installed, and continuous sputtering was performed for 25 hours without heating at all with heater 0e, and a black amorphous substance was sufficiently deposited on the surface of the target (IG+). In this state Since an amorphous substance with high resistance is deposited on the surface of the target ('IQ), the discharge impedance during sputtering is high.Specifically, the vacuum chamber (1)
The Ar gas pressure was 5 x 1O-3Torr.

導入酸素ガス分圧か4 X 1O−5Torr、ターゲ
ット(IOの寸法が5インチX1Bインチである場合、
410V一定で放電させると、上記黒色状態のターゲッ
トa■ては、放電電流が1,9Aてあった。
The partial pressure of the introduced oxygen gas is 4 X 10-5 Torr, the target (if the dimensions of the IO are 5 inches X 1B inches,
When the target was discharged at a constant voltage of 410 V, the discharge current was 1.9 A for the black target a.

次に、基板(4)を代え、ヒータ(1,lcで加熱して
黒色のターゲットaOの表面を50℃から 200℃ま
で順次加熱して30分間保持し、前記具体例と同条件で
410Vで放電させて電流値を測定した。夕ゲット(1
0の表面温度はサーモラベルを用いて測定した。その結
果は第3図示の如くであった。
Next, the substrate (4) was replaced, and the surface of the black target aO was heated with a heater (1, lc) sequentially from 50°C to 200°C, held for 30 minutes, and heated at 410V under the same conditions as in the previous example. The current value was measured after discharging.
The surface temperature of 0 was measured using a thermolabel. The results were as shown in Figure 3.

この結果から分かるように、100℃より放電電流の増
大の効果が表われはじめ、150℃以上では一定となり
、2.2Aの電流か得られた。そして、この放電の後に
は、ターゲットq■の表面に析出していた黒色物質は消
失していた。この時の基板(4)に形成された透明導電
膜の析出速度、電気抵抗率及び550nmにおける光透
過率は第4図示の如くであった。尚、基板(4)の温度
は200℃一定とした。ターゲット(10の加熱用ヒタ
(13によっても基板(4)が加熱されるので、あらか
じめ基板(4)の温度が200℃になるように、それぞ
れのターゲット表面温度に対して基板加熱ヒータ(6)
の出力を調節した。
As can be seen from this result, the effect of increasing the discharge current began to appear at 100°C, and became constant at 150°C or higher, resulting in a current of 2.2A. After this discharge, the black substance deposited on the surface of target q had disappeared. The deposition rate, electrical resistivity, and light transmittance at 550 nm of the transparent conductive film formed on the substrate (4) at this time were as shown in the fourth diagram. Note that the temperature of the substrate (4) was kept constant at 200°C. Since the substrate (4) is also heated by the heating heater (13) of the target (10), the substrate heating heater (6) is used for each target surface temperature so that the temperature of the substrate (4) is 200°C in advance.
Adjusted the output.

第4図の結果から明らかなように、ターゲラh (10
)の温度が100℃から析出速度は増加し、電気抵抗率
は減少し、光透過率は増加する。そして150℃以上で
一定となる。
As is clear from the results in Figure 4, Targera h (10
) At a temperature of 100°C, the deposition rate increases, the electrical resistivity decreases, and the light transmittance increases. And it becomes constant above 150°C.

第2図示のカソード(3)を使用して前記の場合と同様
の実験を行なったが、同様の結果か得られた。
An experiment similar to that described above was conducted using the cathode (3) shown in the second figure, and similar results were obtained.

(発明の効果) 以上のように本発明の方法によるときは、In2O3−
SnO3系酸化物ターゲットを100℃以上に加熱し乍
らスパッタするようにしたので、該ターゲット上に黒色
物質を析出することなくスパッタを行なえ、迅速に透明
導電膜を製造できると共に導電性と光透過性の良い透明
導電膜が得られる効果があり、その方法は透明導電膜を
スパッタにより作成する装置に於てターゲット表面を加
熱するヒータ、或はその背面から熱媒体により加熱する
装置を設けた装置によって簡単に実施することか出来る
(Effect of the invention) As described above, when using the method of the present invention, In2O3-
Since sputtering is performed while heating the SnO3-based oxide target to 100°C or higher, sputtering can be performed without depositing a black substance on the target, and a transparent conductive film can be rapidly produced, while improving conductivity and light transmission. This method has the effect of obtaining a transparent conductive film with good properties, and the method is to use a device that creates a transparent conductive film by sputtering, and is equipped with a heater that heats the target surface, or a device that heats the target surface with a heat medium from the back side. It can be easily implemented by

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本発明の方法の実施に使用した製造
装置の断面図、第3図はターゲットの温度と放電電流の
関係を示す線図、第4図は本発明の方法により作製され
た透明導電膜の特性を示す線図である。 1コ (1)・・・真  空  室   (4)・・・基GG
 −1lT203 SnO2系酸化物り■・・・ヒ −
 タ  (+5+・・・熱ゲット (IiJ”099’10) 壽#F (田りυ10LリキV↓賓
Figures 1 and 2 are cross-sectional views of the manufacturing equipment used to carry out the method of the present invention, Figure 3 is a diagram showing the relationship between target temperature and discharge current, and Figure 4 is a diagram showing the relationship between target temperature and discharge current. FIG. 1 unit (1)...Vacuum chamber (4)...Group GG
-1lT203 SnO2-based oxide ■...He -
Ta (+5+...get heat (IiJ"099'10) Hisashi #F (Tari υ 10L Riki V ↓ Guest

Claims (1)

【特許請求の範囲】 1、In_1_−_xSnx酸化物系(0≦x≦1)透
明導電膜を、In_2O_3−SnO_2系酸化物ター
ゲットを用いたスパッタ法により作成する方法において
、該ターゲットを100℃以上に加熱し乍らスパッタを
行なうことを特徴とする透明導電膜の製造方法。 2、真空室内に、基板とIn_2O_3−SnO_2系
酸化物ターゲットとを互に対向して設け、該基板と該タ
ーゲット間に生ずるプラズマ放電により該基板にIn_
1_−_xSnx酸化物系(0≦x≦1)透明導電膜を
形成するようにしたものに於て、該ターゲットの表面を
100℃以上に加熱するヒータを設けたことを特徴とす
る透明導電膜の製造装置。 3、真空室内に、基板とIn_2O_3−SnO_2系
酸化物ターゲットとを互に対向して設け、該基板と該タ
ーゲット間に生ずるプラズマ放電により該基板にIn_
1_−_xSnx酸化物系(0≦x≦1)透明導電膜を
形成するようにしたものに於て、ターゲットの背面から
該ターゲットを100℃以上に加熱する熱媒体による加
熱装置を設けたことを特徴とする透明導電膜の製造装置
[Claims] 1. In a method for producing an In_1_-_xSnx oxide-based (0≦x≦1) transparent conductive film by sputtering using an In_2O_3-SnO_2-based oxide target, the target is heated at 100°C or above. 1. A method for producing a transparent conductive film, which comprises performing sputtering while heating the film. 2. A substrate and an In_2O_3-SnO_2-based oxide target are provided facing each other in a vacuum chamber, and In_
1_-_xSnx oxide-based (0≦x≦1) transparent conductive film, which is characterized in that it is equipped with a heater that heats the surface of the target to 100°C or higher. manufacturing equipment. 3. A substrate and an In_2O_3-SnO_2-based oxide target are provided facing each other in a vacuum chamber, and In_
1_-_xSnx oxide-based (0≦x≦1) transparent conductive film is formed, and a heating device using a heat medium is provided to heat the target to 100°C or higher from the back side of the target. Characteristic transparent conductive film manufacturing equipment.
JP63198882A 1988-08-11 1988-08-11 Method for producing transparent conductive film Expired - Fee Related JPH0751745B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63198882A JPH0751745B2 (en) 1988-08-11 1988-08-11 Method for producing transparent conductive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63198882A JPH0751745B2 (en) 1988-08-11 1988-08-11 Method for producing transparent conductive film

Publications (2)

Publication Number Publication Date
JPH0250951A true JPH0250951A (en) 1990-02-20
JPH0751745B2 JPH0751745B2 (en) 1995-06-05

Family

ID=16398496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63198882A Expired - Fee Related JPH0751745B2 (en) 1988-08-11 1988-08-11 Method for producing transparent conductive film

Country Status (1)

Country Link
JP (1) JPH0751745B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100101937A1 (en) * 2008-10-29 2010-04-29 Applied Vacuum Coating Technologies Co., Ltd. Method of fabricating transparent conductive film
JP2011119720A (en) * 2009-11-06 2011-06-16 Semiconductor Energy Lab Co Ltd Semiconductor element, method of manufacturing semiconductor device, and film-forming apparatus

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5338269A (en) * 1976-09-20 1978-04-08 Nippon Precision Circuits Input*output protecting circuit of mos ic
JPS5621308A (en) * 1979-07-23 1981-02-27 Spin Physics Inc Method and apparatus for forming magnetic film on substrate by sputtering magnetic subtance
JPS6147645A (en) * 1984-08-15 1986-03-08 Toshiba Corp Formation of thin film
JPS6293804A (en) * 1985-10-18 1987-04-30 ティーディーケイ株式会社 Transparent conductor film and formation of the same
JPS62186417A (en) * 1986-02-10 1987-08-14 日本板硝子株式会社 Manufacture of transparent conductive film
JPS63162864A (en) * 1986-12-26 1988-07-06 Matsushita Electric Ind Co Ltd Sputtering device
JPH01132760A (en) * 1987-11-19 1989-05-25 Matsushita Electric Ind Co Ltd Method and device for forming film by sputtering

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5338269A (en) * 1976-09-20 1978-04-08 Nippon Precision Circuits Input*output protecting circuit of mos ic
JPS5621308A (en) * 1979-07-23 1981-02-27 Spin Physics Inc Method and apparatus for forming magnetic film on substrate by sputtering magnetic subtance
JPS6147645A (en) * 1984-08-15 1986-03-08 Toshiba Corp Formation of thin film
JPS6293804A (en) * 1985-10-18 1987-04-30 ティーディーケイ株式会社 Transparent conductor film and formation of the same
JPS62186417A (en) * 1986-02-10 1987-08-14 日本板硝子株式会社 Manufacture of transparent conductive film
JPS63162864A (en) * 1986-12-26 1988-07-06 Matsushita Electric Ind Co Ltd Sputtering device
JPH01132760A (en) * 1987-11-19 1989-05-25 Matsushita Electric Ind Co Ltd Method and device for forming film by sputtering

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100101937A1 (en) * 2008-10-29 2010-04-29 Applied Vacuum Coating Technologies Co., Ltd. Method of fabricating transparent conductive film
JP2011119720A (en) * 2009-11-06 2011-06-16 Semiconductor Energy Lab Co Ltd Semiconductor element, method of manufacturing semiconductor device, and film-forming apparatus

Also Published As

Publication number Publication date
JPH0751745B2 (en) 1995-06-05

Similar Documents

Publication Publication Date Title
US4201649A (en) Low resistance indium oxide coatings
JP2936276B2 (en) Method and apparatus for manufacturing transparent conductive film
Hoffman et al. The compressive stress transition in Al, V, Zr, Nb and W metal films sputtered at low working pressures
EP1046727A2 (en) Method of film deposition on substrate surface and substrate produced by the method
CA1125700A (en) Vacuum deposition method
Howson et al. Deposition of transparent heat-reflecting coatings of metal oxides using reactive planar magnetron sputtering of a metal and/or alloy
US5116479A (en) Process for producing transparent conductive film comprising indium oxide
US3749658A (en) Method of fabricating transparent conductors
JPH0250951A (en) Method and apparatus for manufacturing transparent conductive film
Reza et al. Effect of sputtering target's grain size on the sputtering yield, particle size and coercivity (Hc) of Ni and Ni20Al thin films
Hao et al. Magnetron sputtering electrode on the BaTiO3-based PTCR ceramics and the effect of heat treatment on their properties
US4512864A (en) Low resistance indium oxide films
JPH09316632A (en) Method for depositing optically transparent and conductive layer on substrate consisting of transparent material
JP3506782B2 (en) Manufacturing method of optical thin film
JP2012067331A (en) Film deposition method and sputtering apparatus
JPH0273963A (en) Formation of thin film on low-temperature substrate
Petrov et al. Effect of ion bombardment during growth on the electrical resistivity of magnetron-sputtered carbon films
JPH0759747B2 (en) Method for producing transparent conductive film
JPH1046331A (en) Sputter film deposition method and its device
KR102430700B1 (en) Preparation method of ferromagnetic film and apparatus for ferromagnetic film
JPH08193264A (en) Method for cooling target
JPH089767B2 (en) Method for producing low resistance transparent conductive film
JPH05132771A (en) Sputtering apparatus and its method
JPH02240250A (en) Conductive color filter substrate and coating method
JPH07211164A (en) Manufacture of transparent conductive film

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees