JPH0250793B2 - - Google Patents
Info
- Publication number
- JPH0250793B2 JPH0250793B2 JP59263018A JP26301884A JPH0250793B2 JP H0250793 B2 JPH0250793 B2 JP H0250793B2 JP 59263018 A JP59263018 A JP 59263018A JP 26301884 A JP26301884 A JP 26301884A JP H0250793 B2 JPH0250793 B2 JP H0250793B2
- Authority
- JP
- Japan
- Prior art keywords
- flow
- liquid
- outflow chamber
- nozzle
- swirling flow
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000007788 liquid Substances 0.000 claims description 42
- 239000007921 spray Substances 0.000 claims description 28
- 238000009826 distribution Methods 0.000 claims description 25
- 239000006185 dispersion Substances 0.000 claims description 20
- 238000005507 spraying Methods 0.000 claims description 19
- 230000000694 effects Effects 0.000 claims description 5
- 238000009827 uniform distribution Methods 0.000 claims description 2
- 239000002245 particle Substances 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000010422 painting Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05B—SPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
- B05B1/00—Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
- B05B1/34—Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl
- B05B1/3405—Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl to produce swirl
- B05B1/341—Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl to produce swirl before discharging the liquid or other fluent material, e.g. in a swirl chamber upstream the spray outlet
- B05B1/3421—Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl to produce swirl before discharging the liquid or other fluent material, e.g. in a swirl chamber upstream the spray outlet with channels emerging substantially tangentially in the swirl chamber
- B05B1/3431—Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl to produce swirl before discharging the liquid or other fluent material, e.g. in a swirl chamber upstream the spray outlet with channels emerging substantially tangentially in the swirl chamber the channels being formed at the interface of cooperating elements, e.g. by means of grooves
- B05B1/3447—Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl to produce swirl before discharging the liquid or other fluent material, e.g. in a swirl chamber upstream the spray outlet with channels emerging substantially tangentially in the swirl chamber the channels being formed at the interface of cooperating elements, e.g. by means of grooves the interface being a cylinder having the same axis as the outlet
Landscapes
- Nozzles (AREA)
Description
【発明の詳細な説明】
産業上の利用分野
本発明は液体を微粒化して均一な分散量分布が
得られるように噴霧することを特徴とする液体噴
霧方法およびその装置に関し、例えば各種の燃焼
装置をはじめ、気液の反応、乾燥、塗装、調湿、
洗浄あるいは液体散布などの装置に利用するもの
である。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a liquid atomizing method and apparatus, which are characterized by atomizing a liquid and atomizing it so as to obtain a uniform dispersion amount distribution. including gas-liquid reactions, drying, painting, humidity control,
It is used for equipment such as cleaning or liquid spraying.
従来の技術
従来、液体を微粒化する場合には、被噴霧液体
を、流路を通して斜めあるいは接続方向に円筒状
の渦巻室に流入させ、室内を旋回させた後、渦巻
室の底面中心に設けたノズルから大気中に噴出さ
せることによつて液体を微粒化する構造の旋回形
噴霧ノズルが多く用いられている。Conventionally, when atomizing a liquid, the liquid to be sprayed is introduced into a cylindrical swirl chamber diagonally or in the connection direction through a flow path, swirled in the chamber, and then atomized liquid is placed at the center of the bottom of the swirl chamber. Swirl-type spray nozzles are often used, which have a structure that atomizes liquid by jetting it into the atmosphere from a nozzle.
発明が解決しようとする問題点
旋回形噴霧ノズルは構造が簡単であるにもかか
わらず、比較的低い噴射圧力の下で微細な液滴が
得られる等の優れた特徴を有しているが、構造上
渦巻室内の旋回流をノズルから噴出させて液体を
微粒化するため、その噴霧は中空の円錐状に広が
り、中心軸付近の分散量分布が極端に低下する欠
点があり、噴霧ノズルを固定して使用する場合に
はとくに不都合を生ずる。Problems to be Solved by the Invention Although the rotating spray nozzle has a simple structure, it has excellent features such as being able to obtain fine droplets under relatively low injection pressure. Due to its structure, the swirling flow in the swirl chamber is ejected from the nozzle to atomize the liquid, so the spray spreads in a hollow cone shape, which has the disadvantage that the dispersion distribution near the central axis is extremely reduced. This is particularly inconvenient when used in a vacuum.
問題を解決するための手段
本発明は前記の欠点を除去し、噴霧ノズル本体
内に複雑な構造物を設ける代りに被噴霧液体のも
つ運動エネルギの交換作用を利用することによつ
て、液体を均一な分散量分布が得られるように噴
霧する新しい液体噴霧方法およびその装置を提供
するものである。Means for Solving the Problem The present invention eliminates the above-mentioned drawbacks, and instead of providing a complicated structure within the spray nozzle body, the liquid to be sprayed is The present invention provides a new liquid spraying method and apparatus for spraying such that a uniform dispersion amount distribution is obtained.
第1の発明の均一な分散量分布をもつ液体噴霧
方法は、第1図に示すように流入口10より本体
1内に流入する被噴霧液体を、流路素子2により
旋回流とその中心部に流入するジエツト流とに分
流し、流出室6内において該旋回流と該ジエツト
流とを接触させることによつて、周速度および軸
速度のエネルギ交換作用を行わせた後にノズル7
から大気中に噴出させる。 As shown in FIG. 1, the liquid spraying method having a uniform dispersion amount distribution according to the first invention is characterized in that the liquid to be sprayed flowing into the main body 1 from the inlet 10 is turned into a swirling flow by the flow path element 2, and its central part is The jet flow is separated into the jet flow flowing into the nozzle 7, and the swirl flow and the jet flow are brought into contact with each other in the outflow chamber 6, thereby exchanging the energy of the circumferential velocity and the axial velocity.
into the atmosphere.
また第2の発明の均一な分散量分布をもつ液体
の噴霧装置は、第1の発明を実施するための装置
であつて、本体1内に流路素子2を設け、流路素
子2により本体1内を流入室3と流出室6とに2
分し、流路素子2には、その外周側に、被噴霧液
体の一部を通過させることにより、流出室6内に
旋回流を形成する旋回流形成流路4を設けるとと
もに、中心部に、被噴霧液体の他の部分を通過さ
せることにより前記旋回流の中心部にそれと接触
するジエツト流を形成するオリフイス5を設け、
本体1のオリフイス5に対向する位置に流出室6
と連通するノズル7を設けることにより、被噴霧
液体を均一な分散量分布をもつ噴霧として大気中
に流出させる構造を有する。 Further, the liquid spraying device having a uniform dispersion amount distribution according to the second invention is an apparatus for carrying out the first invention, in which a flow path element 2 is provided in the main body 1, and the flow path element 2 is connected to the main body by the flow path element 2. 1 into an inflow chamber 3 and an outflow chamber 6.
The flow path element 2 is provided with a swirling flow forming channel 4 on its outer circumferential side for forming a swirling flow in the outflow chamber 6 by passing a part of the liquid to be sprayed, and a swirling flow forming channel 4 is provided in the center thereof. , providing an orifice 5 for forming a jet flow in contact with the center of the swirling flow by passing another part of the liquid to be sprayed;
An outflow chamber 6 is located at a position facing the orifice 5 of the main body 1.
By providing a nozzle 7 that communicates with the sprayed liquid, the liquid to be sprayed is discharged into the atmosphere as a spray having a uniform dispersion amount distribution.
作 用
第1図〜第4図に例示するところに従つて、本
発明の均一な分散量分布をもつ液体噴霧方法およ
びその装置の作用を説明する。Effects The effects of the liquid spraying method and device having a uniform dispersion amount distribution of the present invention will be explained according to the examples shown in FIGS. 1 to 4.
第1図に示すように流入口を通つて本体1内の
流入室3に流入した液体の一部は、流路素子2の
外周側に設けられた旋回流形成流路4を通つて流
出室6内に流入し、前記流出室6内を旋回しなが
ら中心部に至る。このとき該旋回流の前記流出室
6内A−A断面上半径方向の周速度分布は第3図
に示すように中心O付近を除いた領域では自由渦
の法則に従い、流れが中心寄りに移動するに従つ
て周速度が増加する。同時に前記流入室3に流入
した液体の他の一部は、前記流路素子2の中心部
に設けられたオリフイス5を経て、前記流出室6
内を旋回する前記旋回流の中心部にジエツト流と
して流入する。このとき該ジエツト流は周速度を
もたず、前記旋回流と接触する境界面を通して、
前記旋回流のもつ増加した周速度による回転のエ
ネルギが前記ジエツト流に与えられ、周速度エネ
ルギの交換作用が行われる。他方前記流出室6内
A−A断面上の軸速度分布は第4図に示すごと
く、中心O付近の前記ジエツト流とその周囲を旋
回する前記旋回流との間に軸速度の差があり、該
ジエツト流と該旋回流がノズル7の方向に移動す
る間に軸速度エネルギの交換作用を生ずる。した
がつて前記流出室6内で行われるこれら周速度エ
ネルギおよび軸速度エネルギの交換作用によつ
て、前記ノズル7から流出する液体はノズル断面
上の半径位置に対応した周速度および軸速度をも
ち、該周速度および該軸速度を合成した速度で運
動を続けようとする。このとき前記合成した速度
のエネルギが液体の凝集力より大きい場合には該
液体は連続した状態を保つことができなくなり、
液滴に分裂して噴霧を形成する。したがつて本発
明の均一な分散量分布をもつ液体噴霧方法および
噴霧装置は液自身のもつ運動エネルギを有効に利
用して連続的に効率よくしかも安定した噴霧を生
成する噴霧方法および噴霧装置であつて、比較的
粘度の低い液を微粒化する場合には他に類をみな
い優れた特性をもつている。 As shown in FIG. 1, a part of the liquid that has flowed into the inflow chamber 3 in the main body 1 through the inlet is passed through the swirling flow forming channel 4 provided on the outer peripheral side of the channel element 2 to the outflow chamber. The liquid flows into the outflow chamber 6 and reaches the center while rotating inside the outflow chamber 6. At this time, the circumferential velocity distribution of the swirling flow in the radial direction on the A-A cross section in the outflow chamber 6 is as shown in FIG. The circumferential speed increases as the At the same time, another part of the liquid that has flowed into the inflow chamber 3 passes through an orifice 5 provided at the center of the flow path element 2, and then passes through the outflow chamber 6.
The swirling flow flows into the center of the swirling flow as a jet flow. At this time, the jet flow has no circumferential velocity and passes through the boundary surface in contact with the swirling flow.
The rotational energy due to the increased circumferential velocity of the swirling flow is applied to the jet flow, and the circumferential velocity energy is exchanged. On the other hand, as shown in FIG. 4, the axial velocity distribution on the A-A cross section in the outflow chamber 6 shows that there is a difference in axial velocity between the jet flow near the center O and the swirling flow swirling around it. While the jet stream and the swirl stream move toward the nozzle 7, an exchange of axial velocity energy occurs. Therefore, due to the exchange of circumferential velocity energy and axial velocity energy that takes place in the outflow chamber 6, the liquid flowing out from the nozzle 7 has a circumferential velocity and an axial velocity that correspond to the radial position on the nozzle cross section. , attempts to continue its motion at a speed that is a combination of the circumferential velocity and the axial velocity. At this time, if the energy of the synthesized velocity is greater than the cohesive force of the liquid, the liquid will not be able to maintain a continuous state.
Breaks up into droplets to form a spray. Therefore, the method and device for spraying a liquid with uniform distribution of the amount of dispersion of the present invention effectively utilizes the kinetic energy of the liquid itself to continuously and efficiently generate a stable spray. When atomizing liquids with relatively low viscosity, it has unparalleled excellent properties.
実施例
以下第1図〜第2図に例示するところにしたが
つて本発明の均一な分散量分布をもつ液体の噴務
方法および装置の実施例を説明する。第1図は本
発明の噴霧装置の1例で、噴霧装置の断面図を示
し、第2図に流路素子2の斜視図を示す。Embodiments Hereinafter, embodiments of the method and apparatus for jetting a liquid having a uniform dispersion amount distribution according to the present invention will be described with reference to FIGS. 1 and 2 as examples. FIG. 1 shows an example of the spray device of the present invention, and shows a sectional view of the spray device, and FIG. 2 shows a perspective view of the flow path element 2. As shown in FIG.
噴霧装置の本達1は1Aと1Bの2つの部分か
ら成り、流路素子2にはその外周側に旋回流形成
流路4を設けるとともに中心部にオリフイス5を
設け、該流路素子2を本体1Bの肩部9にはめ込
んだ後ねじ部8により本体1Aおよび1Bを結合
することによつて本体1内に流入室3と流出室6
を形成し、本体1Bのオリフイス5に対向する位
置に流出室6と連通するノズル7が設けられてい
る。 The head 1 of the spray device consists of two parts 1A and 1B, and the flow path element 2 is provided with a swirling flow forming flow path 4 on its outer circumferential side and an orifice 5 in the center. An inflow chamber 3 and an outflow chamber 6 are formed in the main body 1 by connecting the main bodies 1A and 1B with a threaded portion 8 fitted into the shoulder portion 9 of the main body 1B.
A nozzle 7 communicating with the outflow chamber 6 is provided at a position facing the orifice 5 of the main body 1B.
本発明の均一な分散量分布をもつ液体噴霧装置
の各部寸法は、例えば理論的には次のようにして
定めることができる。すなわち、流入口10を経
て本体1内の流入室3に流入した液の一部を流路
素子2の外周に設けた旋回流形成流路4を経て流
出室6内に旋回流として流入させると、該旋回流
は前記流出室内を旋回しながら中心方向に移動
し、前記流出室中心(O)付近で流れを軸方向に
変えノズル7を経て大気中に流出し、前記流出室
内を旋回する前記旋回流の中心部には空洞を生ず
る。これと同時に前記本体内の流入室3に流入し
た液の他の一部を前記流路素子2の中心に設けた
オリフイス5を経て前記流出室内にジエツト流と
して流入させると、前記旋回流と該ジエツト流の
接触する境界面を通して行われる前記旋回流およ
び該ジエツト流の有する運動エネルギの交換作用
により旋回流とジエツト流の混合流が形成され、
該混合流は前記流出室6に連通するノズル7より
大気中に流出し噴霧を形成する。したがつて、本
噴霧方法および噴霧装置を用いて均一な分散量分
布をもつ噴霧を生成するためには、前記のごとく
流出室6内に流入する旋回流によつて生ずる空洞
の直径を十分に考慮して前記流路素子のオリフイ
ス5の直径を前記空洞の直径にほぼ等しく定める
と同時に前記ジエツト流の運動量と前記旋回流の
運動量とをほぼ等しくすることが必要である。 The dimensions of each part of the liquid spraying device having a uniform dispersion amount distribution according to the present invention can be determined, for example, theoretically as follows. That is, when a part of the liquid that has flowed into the inflow chamber 3 in the main body 1 through the inflow port 10 is caused to flow into the outflow chamber 6 as a swirling flow through the swirling flow forming channel 4 provided on the outer periphery of the channel element 2, The swirling flow moves toward the center while swirling inside the outflow chamber, changes the flow to the axial direction near the center (O) of the outflow chamber, and flows out into the atmosphere through the nozzle 7. A cavity is created in the center of the swirling flow. At the same time, another part of the liquid that has flowed into the inflow chamber 3 in the main body is caused to flow into the outflow chamber as a jet flow through the orifice 5 provided at the center of the flow path element 2, and the swirl flow and the A mixed flow of the swirl flow and the jet flow is formed by the exchange of the swirl flow and the kinetic energy of the jet flow through the contacting boundary surfaces of the jet flow,
The mixed flow flows out into the atmosphere from a nozzle 7 communicating with the outflow chamber 6 to form a spray. Therefore, in order to generate a spray with a uniform dispersion amount distribution using the present spraying method and spraying device, the diameter of the cavity created by the swirling flow flowing into the outflow chamber 6 as described above must be made sufficiently large. In consideration, it is necessary to set the diameter of the orifice 5 of the flow path element approximately equal to the diameter of the cavity, and at the same time to make the momentum of the jet flow and the momentum of the swirling flow approximately equal.
前記空洞の直径は前記流路素子に設けた旋回流
形成流路断面積、ノズル断面積およびノズル半径
と流出室6に流入する旋回流の流入半径とに関係
し、次式で表わされる。すなわち、
ただし、
Km=(1/cosθ)(As/A)(re/rn)
ξ=√1−(c a)2
Km:流出室の形状係数
θ:旋回流形成流路の傾斜角(°)
As:旋回流形成流路断面積(m2)
A:ノズル断面積=πr2 em2
re:ノズル半径(m)
rn:旋回流流入半径(m)
ka:旋回流の変曲点半径比
kc:空洞係数=rc/re
rc:空洞半径(m)
前記(1)式中の変曲点半径比kaの値は実験的に次
式で表わされ、
ka≒1.25k
上記kと流出室の形状係数Kmとの関係は理論
的に次式で表わされる。 The diameter of the cavity is related to the cross-sectional area of the swirling flow forming channel provided in the flow channel element, the cross-sectional area of the nozzle, the nozzle radius, and the inlet radius of the swirling flow flowing into the outflow chamber 6, and is expressed by the following equation. That is, However, Km=(1/cosθ)(As/A)( re / rn ) ξ=√1−( ca ) 2 Km: Shape factor of outflow chamber θ: Inclination angle of swirl flow forming channel (° ) A s : Cross-sectional area of swirling flow forming channel (m 2 ) A: Nozzle cross-sectional area = πr 2 e m 2 r e : Nozzle radius (m) r n : Swirling flow inlet radius (m) k a : Swirling flow inlet radius (m) Inflection point radius ratio k c : Cavity coefficient = r c / r e r c : Cavity radius (m) The value of the inflection point radius ratio k a in the above equation (1) is experimentally expressed by the following equation. , k a ≈1.25k The relationship between the above k and the shape factor Km of the outflow chamber is theoretically expressed by the following equation.
Km=1/k√1−2−kln1/k(1+√1−2
)
したがつて上記(1)式を用いて流出室の形状から
前記空洞の直径を求め、流路素子中心に設けるオ
リフイスの直径を定めることができる。 Km=1/k√1− 2 −kln1/k(1+√1− 2
) Therefore, the diameter of the cavity can be determined from the shape of the outflow chamber using the above equation (1), and the diameter of the orifice provided at the center of the flow path element can be determined.
また本発明の噴霧方法および噴霧装置における
ジエツト流の運動量と旋回流の運動量との関係は
次式で表わされる。すなわち
Mj/Ms=(Cj/Cs)2(D/d)2Km (2)
ただし、
Mj:ジエツト流の運動量(Kg・m/s)
Ms:旋回流の運動量(Kg・m/s)
Cj:ジエツト流の流量係数
Cs:旋回流の流量係数
D:ノズルの直径(m)
d:流路素子に設けたオリフイスの直径(m)
Km:流出室の形状係数
前記(2)式中のジエツト流の流量係数Cjは実験的
に次式で表わされ、
Cj≒(0.62〜0.60)(D/d)2
ただし、
D:ノズルの直径(m)
d:流路素子に設けたオリフイスの直径(m)
また旋回流の流量係数Csは理論的に次式で表わ
される。すなわち
Cs=(ka/√1+2)Km
ただし、
ka:変曲点半径比
ξ=√1−(c a)2
kc:空洞係数
本発明の噴霧方法による噴霧装置を設計する場
合には前記流路素子に設けるオリフイスの直径d
を、(1)式から計算した空洞係数kcを用いて求めた
空洞の直径kcDにほぼ等しく定めるとともに、し
かも(2)式から計算したジエツト流と旋回流の運動
量の比Mj/Msがほぼ1に等しくなるように定め
る。 Further, the relationship between the momentum of the jet flow and the momentum of the swirling flow in the spraying method and spraying device of the present invention is expressed by the following equation. That is, Mj/M s = (Cj/C s ) 2 (D/d) 2 Km (2) where, Mj: Momentum of jet flow (Kg・m/s) M s : Momentum of swirling flow (Kg・m/s) s) Cj: Flow coefficient of jet flow C s : Flow coefficient of swirl flow D: Diameter of nozzle (m) d: Diameter of orifice provided in flow path element (m) Km: Shape coefficient of outflow chamber (2) above The flow rate coefficient Cj of the jet flow in the formula is experimentally expressed by the following formula, Cj≒(0.62~0.60)(D/d) 2where , D: Nozzle diameter (m) d: Nozzle diameter (m) The diameter of the orifice (m) and the flow coefficient Cs of the swirling flow are theoretically expressed by the following equation. That is, C s = (k a /√1 + 2 ) Km, where ka: inflection point radius ratio ξ = √1 − (ca ) 2 k c : cavity coefficient When designing a spray device using the spray method of the present invention, is the diameter d of the orifice provided in the flow path element.
is determined to be approximately equal to the cavity diameter k c D obtained using the cavity coefficient k c calculated from equation (1), and the momentum ratio of the jet flow and swirling flow calculated from equation (2) Mj/M Set s to be approximately equal to 1.
上述のように設計された噴霧装置に対して、流
量は次式で表わされ、
Q=(Cs+Cj)π/4D2√2・△
ただし、
Q:流量(m3/s)
Cs:旋回流の流量係数
Cj:ジエツト流の流量係数
D:ノズルの直径(m)
△H:噴射圧力と大気圧との差圧ヘツド(m)
g:重力加速度(m/s2)
前記噴霧装置に対して噴霧角は次式で与えられ
る。すなわち、
α=2tan-1{kc/√1−c 2}
ただし、
α:噴霧角(°)
kc:空洞係数
第5図は第1図に示す本発明の噴霧装置を用い
て実際に水の微粒化を行い、噴霧装置の直下1m
の水平面上で測定した噴霧の分散量分布を従来形
の噴霧装置についての測定結果と比較したもの
で、各部寸法を適正に定めた本発明の噴霧装置に
よつて生成される噴霧は中心軸付近で分散量分布
の良好な均一化がみられることを示している。 For the spray device designed as above, the flow rate is expressed by the following formula, Q = (C s + Cj) π/4D 2 √2・△ where, Q: flow rate (m 3 /s) C s : Flow coefficient of swirl flow Cj: Flow coefficient of jet flow D: Diameter of nozzle (m) △H: Differential pressure head between injection pressure and atmospheric pressure (m) g: Gravitational acceleration (m/s 2 ) Said spray device The spray angle is given by the following equation. That is, α=2tan -1 {k c /√1− c 2 } where α: spray angle (°) k c : cavity coefficient Figure 5 shows the actual results obtained using the spray device of the present invention shown in Figure 1. Water is atomized and placed 1m directly below the spray device.
This is a comparison of the spray dispersion amount distribution measured on a horizontal plane with the measurement results for a conventional spray device. This shows that the dispersion amount distribution is well uniformed.
また、第6図は前記分散量分布を測定した位置
において噴霧液滴の平均粒径を測定した結果を示
したもので、水の微粒化に各部寸法を適正に定め
た本発明の噴霧装置を用いた場合、分散量分布が
均一になるばかりでなく、液滴の平均粒径も平均
化され良好な噴霧が得られることを示している。 Furthermore, Fig. 6 shows the results of measuring the average particle size of the sprayed droplets at the positions where the distribution of the dispersion amount was measured. This shows that when used, not only the dispersion amount distribution becomes uniform, but also the average particle size of the droplets is averaged, resulting in a good spray.
発明の効果
本発明の均一な分散量分布をもつ液体噴霧方法
およびその装置は従来の噴霧方法およびその装置
と異なり、流体力学の原理に基づき本体内に流入
した被噴霧液体を、たとえば流路素子を経て一部
を旋回流として、他の一部をジエツト流として流
出室内に流入させ、旋回流およびジエツト流の運
動エネルギの交換作用を利用して前記旋回流と前
記ジエツト流とを混合させた後ノズルから大気中
に噴出する構造を有し、前記のごとく噴霧装置の
各部寸法を定めることによつて、微粒化された液
体の分散量分布および粒径分布が均一な噴霧を生
成することができる。したがつて噴霧装置を固定
して使用する場合の分散量分布の不均一を解消す
ることができるばかりでなく、粒径分布の不均一
も同時に解消することができる。Effects of the Invention Unlike conventional spraying methods and devices, the liquid spraying method and its device having a uniform dispersion amount distribution of the present invention are based on the principle of fluid dynamics, and the liquid to be sprayed that has flowed into the main body is transferred to, for example, a flow path element. A part of the flow is made into a swirl flow and the other part is made to flow into an outflow chamber as a jet flow, and the swirl flow and the jet flow are mixed by utilizing the exchange effect of kinetic energy of the swirl flow and the jet flow. It has a structure that ejects into the atmosphere from the rear nozzle, and by determining the dimensions of each part of the spray device as described above, it is possible to generate a spray with a uniform dispersion amount distribution and particle size distribution of the atomized liquid. can. Therefore, it is possible not only to eliminate the non-uniformity of the dispersion amount distribution when using a fixed spraying device, but also to eliminate the non-uniformity of the particle size distribution at the same time.
第1図は本発明の噴霧方法による噴霧装置の立
面図。第2図は流路素子の斜視図。第3図は流出
室内第1図A−A断面上の流れの周速度分布説明
図。第4図は前記A−A断面上の軸速度分布説明
図。第5図は本噴霧装置による噴霧の分散量分布
測定結果の1例を示す図。第6図は噴霧液滴の平
均粒径測定結果の1例を示す図である。
1:本体、2:流路素子、3:流入室、4:旋
回流形成流路、5:オリフイス、6:流出室、
7:ノズル。
FIG. 1 is an elevational view of a spraying device according to the spraying method of the present invention. FIG. 2 is a perspective view of the channel element. FIG. 3 is an explanatory diagram of the circumferential velocity distribution of the flow on the section AA in FIG. 1 of the outflow chamber. FIG. 4 is an explanatory diagram of the shaft velocity distribution on the AA cross section. FIG. 5 is a diagram showing an example of the results of measuring the distribution of spray dispersion using the present spray device. FIG. 6 is a diagram showing an example of the results of measuring the average particle size of sprayed droplets. 1: Main body, 2: Flow path element, 3: Inflow chamber, 4: Swirl flow forming flow path, 5: Orifice, 6: Outflow chamber,
7: Nozzle.
Claims (1)
ジエツト流とに分流し、該旋回流と該ジエツト流
とを接触させて、周速度および軸速度のエネルギ
交換作用を行わせた後にノズルから噴出させるこ
とにより、微粒化された液体を均一な分散量分布
が得られるように噴霧することを特徴とする液体
噴霧方法。 2 本体1内に流路素子2を設け、流路素子2に
より本体1内を流入室3と流出室6とに2分し、
流路素子2には、その外周側に、被噴霧液体の一
部を通過させることにより、流出室6内に旋回流
を形成する旋回流形成流路4を設けるとともに、
中心部に、被噴霧液体の他の部分を通過させるこ
とにより前記旋回流の中心部にそれと接触するジ
エツト流を形成するオリフイス5を設け、本体1
のオリフイス5に対向する位置に流出室6と連通
するノズル7を設けることにより、微粒化された
液体の均一な分散量分布をもつ噴霧を得られるよ
うにした液体噴霧装置。[Claims] 1. The liquid to be sprayed is divided into a swirling flow and a jet flow flowing into the center thereof, and the swirling flow and the jet flow are brought into contact with each other to create an energy exchange effect of the circumferential velocity and the axial velocity. A liquid spraying method characterized in that the atomized liquid is sprayed so as to obtain a uniform dispersion amount distribution by ejecting the liquid from a nozzle after the spraying is performed. 2. A flow path element 2 is provided in the main body 1, and the inside of the main body 1 is divided into two into an inflow chamber 3 and an outflow chamber 6 by the flow path element 2,
The flow path element 2 is provided with a swirling flow forming channel 4 on its outer circumferential side that forms a swirling flow in the outflow chamber 6 by passing a part of the liquid to be sprayed, and
An orifice 5 is provided in the center of the body 1 to form a jet flow in contact with the center of the swirling flow by passing another part of the liquid to be sprayed.
By providing a nozzle 7 that communicates with an outflow chamber 6 at a position facing an orifice 5, a spray having a uniform distribution of atomized liquid can be obtained.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59263018A JPS61141950A (en) | 1984-12-14 | 1984-12-14 | Liquid spray method and apparatus having uniform dispersion amount distribution |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59263018A JPS61141950A (en) | 1984-12-14 | 1984-12-14 | Liquid spray method and apparatus having uniform dispersion amount distribution |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61141950A JPS61141950A (en) | 1986-06-28 |
JPH0250793B2 true JPH0250793B2 (en) | 1990-11-05 |
Family
ID=17383737
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59263018A Granted JPS61141950A (en) | 1984-12-14 | 1984-12-14 | Liquid spray method and apparatus having uniform dispersion amount distribution |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61141950A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
USRE44252E1 (en) | 2002-01-10 | 2013-06-04 | Cummins-Allison Corp. | Coin redemption system |
US8950566B2 (en) | 1996-05-13 | 2015-02-10 | Cummins Allison Corp. | Apparatus, system and method for coin exchange |
US9129271B2 (en) | 2000-02-11 | 2015-09-08 | Cummins-Allison Corp. | System and method for processing casino tickets |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4874631B2 (en) * | 2005-11-10 | 2012-02-15 | 康元 糸島 | Injection nozzle |
-
1984
- 1984-12-14 JP JP59263018A patent/JPS61141950A/en active Granted
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8950566B2 (en) | 1996-05-13 | 2015-02-10 | Cummins Allison Corp. | Apparatus, system and method for coin exchange |
US9129271B2 (en) | 2000-02-11 | 2015-09-08 | Cummins-Allison Corp. | System and method for processing casino tickets |
USRE44252E1 (en) | 2002-01-10 | 2013-06-04 | Cummins-Allison Corp. | Coin redemption system |
Also Published As
Publication number | Publication date |
---|---|
JPS61141950A (en) | 1986-06-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4415275A (en) | Swirl mixing device | |
US20100258648A1 (en) | Ultrasonic atomizing nozzle with cone-spray feature | |
EP0057720B1 (en) | Variable gas atomization | |
JPS60232265A (en) | Air type spray nozzle device | |
CA2700566C (en) | Ultrasonic atomizing nozzle with variable fan-spray feature | |
JPH04271860A (en) | Cone-shaped air atomizing nozzle assembly | |
EP0408801B1 (en) | Spray drying apparatus | |
KR20120014581A (en) | Projector and member for spraying a coating material, and spraying method using such a sprayer | |
CN111299001B (en) | Superfine atomizing nozzle applied to spray freeze drying device | |
US4688724A (en) | Low pressure misting jet | |
JPH0250793B2 (en) | ||
CN106621637A (en) | Dry fog box | |
CN100387357C (en) | Circular spray type spray nozzle | |
US11278923B2 (en) | Spraying apparatus | |
JP4718811B2 (en) | Method for making liquid into fine particles and nozzle used therefor | |
JPH0315493B2 (en) | ||
CN209772450U (en) | Spray gun nozzle capable of quenching and cooling | |
JP2606318Y2 (en) | Two-fluid spray nozzle | |
JP2003117442A (en) | Method for atomizing liquid and nozzle used for the same | |
JPH0975786A (en) | Pressure spray nozzle and spraying method | |
GB2133301A (en) | Swirl mixing device | |
JPH09239296A (en) | Rotary atomizing type coating apparatus | |
RU2449838C1 (en) | Impact spray atomiser | |
JPS6212438Y2 (en) | ||
JPS61118164A (en) | Foam generator |