JPH0250777B2 - - Google Patents

Info

Publication number
JPH0250777B2
JPH0250777B2 JP60072250A JP7225085A JPH0250777B2 JP H0250777 B2 JPH0250777 B2 JP H0250777B2 JP 60072250 A JP60072250 A JP 60072250A JP 7225085 A JP7225085 A JP 7225085A JP H0250777 B2 JPH0250777 B2 JP H0250777B2
Authority
JP
Japan
Prior art keywords
container
gravity
outer container
zero
inner container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60072250A
Other languages
Japanese (ja)
Other versions
JPS61230749A (en
Inventor
Ryojiro Akiba
Motonori Hinada
Hide Kimura
Michio Kunikata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP7225085A priority Critical patent/JPS61230749A/en
Publication of JPS61230749A publication Critical patent/JPS61230749A/en
Publication of JPH0250777B2 publication Critical patent/JPH0250777B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、地上で無重力状態で模擬する無重力
試験装置に係り、特に打上落下式無重力試験装置
に好適な試験容器に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a zero-gravity test device that simulates a zero-gravity state on the ground, and particularly relates to a test container suitable for a launch-drop type zero-gravity test device.

〔発明の背景〕[Background of the invention]

宇宙環境と地上とが大きく異なるのは、無重力
と超高真空の点である。近年、スペースシヤトル
の成功により、これら宇宙環境を利用した試験は
ますます盛んになつてゆくと考えられるが、宇宙
空間に出なければならないため、試験実施に当た
つては制約がある。また、ロケツト、人工衛星等
宇宙で作動させる機器を模擬環境下で確認試験等
を行う必要があるため、地上で容易に宇宙環境を
模擬することは必要不可欠である。
The main difference between the space environment and the Earth's environment is weightlessness and ultra-high vacuum. In recent years, with the success of the Space Shuttle, it is thought that tests using the space environment will become more popular, but there are restrictions on conducting tests because they must go into outer space. In addition, it is essential to easily simulate the space environment on the ground, as it is necessary to conduct confirmation tests in a simulated environment for equipment that operates in space, such as rockets and artificial satellites.

地上で宇宙環境を模擬する装置の一つとして、
打上落下式無重力試験装置がある。
As a device that simulates the space environment on the ground,
There is a launch-drop type weightless test device.

この種の従来の装置として、例えば、米国ルイ
ス研究センターの投下塔方式のものがある。すな
わち、内部を真空に保持する塔内で試験容器を自
由落下させるものである。このルイス研究センタ
ーの装置によれば、約5秒間の無重力状態が実現
でき、無重力レベルは10-4G程度の近似を得るこ
とができる。また、この装置においては、投下塔
底部より試験容器を打上げてから落下させ、無重
力状態継続時間を約2倍にすることも行われてい
る。
As a conventional device of this type, there is, for example, a drop tower type device at the Lewis Research Center in the United States. That is, the test container is allowed to fall freely within a tower whose interior is kept in vacuum. According to this Lewis Research Center device, it is possible to achieve a state of weightlessness for about 5 seconds, and the level of weightlessness can be approximated to about 10 -4 G. Additionally, in this device, the test container is launched from the bottom of the drop tower and then dropped, thereby approximately doubling the duration of the zero gravity state.

上記の例のように、投下塔式の無重力試験装置
では、短時間ではあるが、高精度の無重力状態が
得られる特長がある。しかし、真空中で試験容器
を打上げ、落下させる必要があるので、真空容器
(投下塔)が大型になり、真空排気設備も大型化
する。また、真空容器か大型であるため、装置の
保守点検或いは真空排気に時間を要する等、試験
実施に制約が生じる。
As in the above example, the drop tower type weightless test device has the advantage of being able to obtain a highly accurate weightless state, albeit for a short time. However, since it is necessary to launch and drop the test container in a vacuum, the vacuum container (drop tower) becomes large and the vacuum exhaust equipment also becomes large. Furthermore, since the vacuum container is large, it takes time to perform maintenance and inspection of the device or to evacuate the device, which imposes restrictions on test implementation.

一方、投下塔式無重力試験装置に対し、大気中
で自由落下を行う方式が提案されている。この提
案の内容は、日本航空宇宙学会誌第18巻第202号
(1969年11月)、「無重力状態試験装置について」
と題する論文(長友信人著)にて述べられてい
る。すなわち、空気中で試験容器を自由落下させ
るためには試験容器に作用する空気抵抗力を除去
する必要があり、そのために空気抵抗力分の力を
外部から与えてやるという方式である。本提案で
は、外部から与える力としてリニアモータを挙げ
ている。
On the other hand, a method of performing free fall in the atmosphere has been proposed for the drop tower type weightless test device. The content of this proposal is published in Journal of the Japan Aeronautics and Astronautics Society, Vol. 18, No. 202 (November 1969), "About Zero Gravity Condition Test Equipment"
This is stated in a paper titled (written by Nobuto Nagatomo). That is, in order to allow the test container to fall freely in the air, it is necessary to remove the air resistance force acting on the test container, and for this purpose, a force equivalent to the air resistance force is applied from the outside. In this proposal, a linear motor is used as the force to be applied from the outside.

一般に無重力試験装置に要求される無重力レベ
ルは、10-4G以下であるのが望ましく、この点、
上記リニアモータ等の外力によつて空気抵抗力分
の加速を行う場合、上記レベルになるよう外力を
制御する必要がある。
In general, it is desirable that the zero gravity level required for a zero gravity test device is 10 -4 G or less;
When accelerating by the amount of air resistance force using an external force such as the linear motor, it is necessary to control the external force to the above level.

この外力の制御には、試験容器の位置、速度、
加速度を検出してリニアモータを制御する等の方
法がとられるが、しかし、制御すべき時間は極く
短い時間であるため、制御機器には高速処理能力
が要求される。したがつて、設備は簡略化されて
も、制御機器が複雑になるという問題がある。
Controlling this external force requires adjusting the position, speed, and
Methods such as detecting the acceleration and controlling the linear motor are used, but since the time to be controlled is extremely short, the control equipment is required to have high-speed processing capability. Therefore, even if the equipment is simplified, there is a problem in that the control equipment becomes complicated.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、空気中で試験容器を落下させ
又は打上げてから落下させる無重力試験に際し、
試験容器内に高精度の無重力状態を実現し得る無
重力試験装置を提供することにある。
The purpose of the present invention is to perform a zero gravity test in which a test container is dropped in the air or launched and then dropped.
An object of the present invention is to provide a zero gravity test device that can realize a highly accurate zero gravity state in a test container.

〔発明の概要〕[Summary of the invention]

本発明に係る無重力試験装置は、試験容器を外
容器と内容器からなる2重容器とするもので、特
に無重力状態模擬中は両者間に適切な間隔をとる
ように、外容器はこれに作用する空気抵抗力で減
速されるが、内容器には空気抵抗力が働かないよ
うにし、外容器とは機械的に接続しないようにす
ることにより、内容器に高精度の無重力状態を実
現可能である。
The zero-gravity test device according to the present invention uses a double-layered test container consisting of an outer container and an inner container, and the outer container acts on the outer container so as to maintain an appropriate distance between the two, especially when simulating a zero-gravity state. However, by preventing air resistance from acting on the inner container and not mechanically connecting it to the outer container, it is possible to achieve a highly accurate zero-gravity state for the inner container. be.

〔発明の実施例〕[Embodiments of the invention]

以下に本発明の一実施例を図面を参照して詳細
に説明する。
An embodiment of the present invention will be described in detail below with reference to the drawings.

第1図において、試験容器は外容器1と内容器
2とで構成されており、内容器2は外容器1の上
下方向にて支持解除装置3によつて通常は支持さ
れている。また、外容器1はリニアモータ(図示
せず)が取付けられている。
In FIG. 1, the test container is composed of an outer container 1 and an inner container 2, and the inner container 2 is normally supported by a support release device 3 in the vertical direction of the outer container 1. Further, a linear motor (not shown) is attached to the outer container 1.

次に、上記構成の無重力試験装置の動作を説明
する。
Next, the operation of the zero gravity test apparatus having the above configuration will be explained.

まず、試験容器が打上げられる場合であるが、
打上げでは、静止状態より所定高度まで打上げる
ための加速が必要であるから、第2図aに示すよ
うに、打上減速装置4によつて加速度を与えられ
る。この時点では、内容器2は外容器1に取付け
られた支持解除装置3によつて支持されたまゝ、
打上減速装置4から加速度を与えられる。
First, when the test vessel is launched,
During launch, it is necessary to accelerate the launch from a stationary state to a predetermined altitude, so acceleration is applied by the launch deceleration device 4, as shown in FIG. 2a. At this point, the inner container 2 is still supported by the support release device 3 attached to the outer container 1.
Acceleration is applied from the launch deceleration device 4.

その後、第2図bに示すように、打上減速装置
4から試験容器が離れると同時に、支持解除装置
3から内容器2が切り離される。打上後高度を増
すに従い、外容器1は空気抵抗力によつて減速さ
れるが、内容器2には空気力が働かないから、加
速度を与えられた状態で慣性力に従つて上昇す
る。したがつて、第2図cに示すように、外容器
1は、内容器2に対し、相対的に上部の間隔が狭
くなるような運動をする。
Thereafter, as shown in FIG. 2b, the test container is separated from the launch deceleration device 4, and at the same time, the inner container 2 is separated from the support release device 3. As the altitude increases after launch, the outer container 1 is decelerated by air resistance force, but since no air force acts on the inner container 2, it rises according to inertial force while being accelerated. Therefore, as shown in FIG. 2c, the outer container 1 moves in such a way that the distance between the upper parts becomes narrower relative to the inner container 2.

次に、打上高度に達して慣性力と重力が釣り合
つた時点で静止し、落下に入るが、落下では上昇
と逆になる。すなわち、上昇では外容器1と内容
器2の上部の隙間が狭ばまり、下部の隙間が広が
つたが、落下では、落下に伴い外容器2は空気抵
抗力を受けるので、内容器2に対して下部の隙間
が減少してくる。
Next, when it reaches the launch altitude and the inertia force and gravity are balanced, it comes to rest and begins to fall, which is the opposite of the ascent. In other words, when rising, the gap between the upper part of the outer container 1 and the inner container 2 narrows, and the gap at the lower part widens, but when falling, the outer container 2 is subjected to air resistance as it falls, so the inner container 2 On the other hand, the gap at the bottom decreases.

こうして、打上減速装置4に接する時点では、
打上時の隙間に戻ることになる。打上減速装置4
に接する時点で外容器1に設置された支持解除装
置3が作動し、内容器2を支持して減速される。
したがつて、外容器1の微小変位が内容器2との
間の隙間で吸収されるので、変位は伝わらない。
In this way, at the time of contacting the launch deceleration device 4,
It will return to the gap at launch. Launch decelerator 4
At the point in time when the inner container 2 comes into contact with the outer container 1, the support release device 3 installed on the outer container 1 is activated to support the inner container 2 and decelerate the inner container 2.
Therefore, minute displacements of the outer container 1 are absorbed by the gap between the outer container 1 and the inner container 2, so that the displacements are not transmitted.

かくして、内容器2では無重力レベルの変動が
生じないので、高精度の無重力状態が実現可能で
ある。
In this way, there is no fluctuation in the zero gravity level in the inner container 2, so a highly accurate zero gravity state can be achieved.

なお、外容器1と内容器2の間に空気が存在す
る場合、極く僅かではあるが、内容器2と外容器
1の相対運動による空気抵抗が働らく。これを除
去するためには、空気を排気すればよいので、小
容量の真空ポンプを備えるだけで十分である。
Note that when air exists between the outer container 1 and the inner container 2, air resistance due to the relative movement between the inner container 2 and the outer container 1 acts, although it is very small. To remove this, it is sufficient to evacuate the air, so it is sufficient to have a small-capacity vacuum pump.

また、上記実施例では外容器1をリニアモータ
で駆動する方式について説明したが、外容器1に
外力を加えない場合でも、内容器2と外容器1の
間に寸法的制約のあるものの、無重力状態の模擬
は可能である。
In addition, although the above embodiment describes a system in which the outer container 1 is driven by a linear motor, even when no external force is applied to the outer container 1, although there are dimensional restrictions between the inner container 2 and the outer container 1, it is possible to drive the outer container 1 without gravity. It is possible to simulate the state.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、大気中
での無重力試験装置における移動物体を外容器と
内容器とで構成し、特に空気抵抗力分の外力を直
接与えられる外容器から内容器が隔離されるの
で、外容器に対する空気抵抗力は内容器に対して
全く伝達されず、内容器内の無重力レベルに変動
が生じないから、高精度の無重力試験を実施する
ことができる。
As explained above, according to the present invention, a moving object in a zero-gravity testing apparatus in the atmosphere is composed of an outer container and an inner container, and in particular, the inner container is moved from the outer container to which an external force equivalent to air resistance is directly applied. Since it is isolated, the air resistance force applied to the outer container is not transmitted to the inner container at all, and the zero gravity level within the inner container does not change, making it possible to conduct a highly accurate zero gravity test.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例に係る無重力試験装
置の構造を示す図、第2図a,b及びcは各々上
記装置の作動状況を示す説明図である。 1……外容器、2……内容器、3……支持解除
装置、4……打上減速装置。
FIG. 1 is a diagram showing the structure of a zero-gravity testing device according to an embodiment of the present invention, and FIGS. 2 a, b, and c are explanatory diagrams showing the operating conditions of the device, respectively. 1... Outer container, 2... Inner container, 3... Support release device, 4... Launch deceleration device.

Claims (1)

【特許請求の範囲】 1 大気中を重力方向に移動させて無重力を模擬
する装置において、該移動物体を外容器及び外容
器に拘束されない内容器で構成したことを特徴と
する無重力試験装置。 2 前記外容器と内容器との間に連結・解除機構
を備えた特許請求の範囲第1項記載の無重力試験
装置。 3 前記外容器と内容器との間を真空若しくは大
気圧より低圧にした特許請求の範囲第1項又は第
2項記載の無重力試験装置。
[Scope of Claims] 1. A zero-gravity testing device for simulating zero-gravity by moving in the direction of gravity in the atmosphere, characterized in that the moving object is composed of an outer container and an inner container that is not restrained by the outer container. 2. The zero-gravity testing device according to claim 1, further comprising a connection/release mechanism between the outer container and the inner container. 3. The zero gravity test device according to claim 1 or 2, wherein a vacuum or a pressure lower than atmospheric pressure is maintained between the outer container and the inner container.
JP7225085A 1985-04-05 1985-04-05 Nongravity test apparatus Granted JPS61230749A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7225085A JPS61230749A (en) 1985-04-05 1985-04-05 Nongravity test apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7225085A JPS61230749A (en) 1985-04-05 1985-04-05 Nongravity test apparatus

Publications (2)

Publication Number Publication Date
JPS61230749A JPS61230749A (en) 1986-10-15
JPH0250777B2 true JPH0250777B2 (en) 1990-11-05

Family

ID=13483860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7225085A Granted JPS61230749A (en) 1985-04-05 1985-04-05 Nongravity test apparatus

Country Status (1)

Country Link
JP (1) JPS61230749A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2688919B2 (en) * 1988-05-12 1997-12-10 川崎重工業株式会社 Weightless drop capsule and method for maintaining posture of capsule
JP2664993B2 (en) * 1989-06-08 1997-10-22 宇宙開発事業団 Microgravity environment test equipment
DE202012001827U1 (en) * 2012-02-24 2013-05-27 Zarm-Fallturm-Betriebsges. Mbh Drop tower, as well as acceleration capsule and payload carrier for selbigen
CN112362289B (en) * 2021-01-13 2021-04-02 中国空气动力研究与发展中心高速空气动力研究所 Aircraft split test method and device, computer equipment and readable storage medium
CN112504613B (en) * 2021-02-03 2021-05-28 中国空气动力研究与发展中心高速空气动力研究所 Parallel aircraft interstage separation test method and device and readable storage medium

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US26784A (en) * 1860-01-10 Gold-sepabatob

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US26784A (en) * 1860-01-10 Gold-sepabatob

Also Published As

Publication number Publication date
JPS61230749A (en) 1986-10-15

Similar Documents

Publication Publication Date Title
CN108263645B (en) Ground physical simulation test system aiming at space spinning target capture and racemization
CN108408089B (en) Ground physical simulation test method aiming at space spinning target capture and racemization
US3083473A (en) Space flight environmental simulator
JPH0250777B2 (en)
RU2292292C2 (en) Mode of modelling of variable accelerations and an arrangement for its execution
US3989206A (en) Rotating launch device for a remotely piloted aircraft
CN110203396A (en) Suitable for the grenade instrumentation and projective techniques of unmanned plane sonde, detection system
CN112815942B (en) Near space vertical launch and orientation flight navigation guidance method and system
US3998411A (en) Speed overshoot correction system
JPS61146700A (en) Weightlessness test apparatus
JP3044934B2 (en) Separation method of drop-type zero-gravity experimental device
CN112729342B (en) Near-space vertical-drop transmitter-mounted navigation system ground test device
CA1325735C (en) Method and device for accelerating test pieces on a circular path, and the use of the device
CN112783184A (en) Method and system for controlling starting point of phase in vertical launching in near space
USRE26784E (en) Free-fall test facility
US3408870A (en) Zero gravity apparatus
JPS63163135A (en) Wind tunnel test apparatus
US2643547A (en) Gyroscope having erecting means to compensate for acceleration errors
SU1508788A1 (en) Ballistic gravimeter
Meyer Stability tests of spin-stabilized spacecraft in the presence of thrust
BURNS Free-flight wind tunnel test of hypersonic decelerators
HRASIAR Testing a satellite automatic nutation control system(on synchronous meteorological satellite)
CN117799868A (en) High-speed following and locking control method for simulating low-gravity motion process of spacecraft
OR n, & oſpgL
Fukuzawa Hardware simulation of retrieving a target by space manipulator in 0- gravity environment

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees