JPH0250761B2 - - Google Patents

Info

Publication number
JPH0250761B2
JPH0250761B2 JP24564484A JP24564484A JPH0250761B2 JP H0250761 B2 JPH0250761 B2 JP H0250761B2 JP 24564484 A JP24564484 A JP 24564484A JP 24564484 A JP24564484 A JP 24564484A JP H0250761 B2 JPH0250761 B2 JP H0250761B2
Authority
JP
Japan
Prior art keywords
oil
pump
cleaning
vacuum pump
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP24564484A
Other languages
Japanese (ja)
Other versions
JPS61125410A (en
Inventor
Kunio Kashiwada
Hitoshi Atobe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP24564484A priority Critical patent/JPS61125410A/en
Publication of JPS61125410A publication Critical patent/JPS61125410A/en
Publication of JPH0250761B2 publication Critical patent/JPH0250761B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

〔技術分野〕 本発明は、真空ポンプに対して有害なガスを吸
引する真空ポンプのオイル中に、腐食性および摩
耗性不純分が蓄積して、真空ポンプの能力が低下
するのを防止するための、真空ポンプオイルの清
浄化方法に関する。 〔従来技術〕 従来、真空ポンプに対して有害なガスを吸引し
て減圧しなければならない、例えば半導体産業等
においては、使用する真空ポンプのオイルの清浄
化が重要な課題となつている。 特に、Alドライエツチング用ロタリー真空ポ
ンプでは、腐食性ガスの使用によるポンプ内の腐
食およびオイルの劣化、或いはAlCl3等の微粒子
の発生による回転部分の摩耗などによりその性能
が低下し、短時間で所定の真空度を保持出来なく
なり、分解、清掃しなければならず稼動率が低下
する。 このため、運転中の真空ポンプのオイルを一部
抜き出してポンプによつて循環させ、その循環経
路に取付けて有害物質を除去する活性アルミナ焼
結フイルター、或いは普通のカートリツジフイル
ター等が市販されている。 〔従来技術の問題点〕 しかし、上記市販のフイルターは、酸分、水
分、オイル分解物が殆ど除去されないので、オイ
ルの清浄化が充分に行なわれず、また、微粒子は
除去出来るが、7〜10日間程度で目詰りしてフイ
ルターへの導入圧が上昇するので、そのたびにフ
イルターを交換しなければならず、清浄効果が不
充分な上に、さらに人手と費用がかかる欠点があ
つた。 〔発明の目的および構成〕 本発明は上記の事情に鑑み、真空ポンプオイル
中に含まれる酸分、水分、微粒子、オイル分解物
を長時間にわたつて同時に除去出来る真空ポンプ
オイルの清浄化方法を提供することを目的とする
もので、その要旨は、酸分、水分、微粒子、オイ
ル分解物等を含有する真空ポンプオイルを、無定
形シリカアルミナと、ケイソウ土、ゼオライト或
いはシリカゲルから選ばれた少くとも1種とより
なる清浄剤に接触させる真空ポンプオイルの清浄
化方法にある。 〔発明の具体的構成および作用〕 第1図は、本発明に係る真空ポンプオイルの清
浄化方法を実施する装置の一例を示すもので、図
中符号1は、ドライエツチングチヤンバーであ
る。このドライエツチングチヤンバー1には、内
部を所定の真空度に減圧するロータリー真空ポン
プ(以下ポンプという)2が接続されている。こ
のポンプ2のケーシング2aには、ポンプオイル
の一部を抜出す配管が設けられ、ダイヤフラムポ
ンプ3、清浄筒4を経て、ポンプ2に循環される
ようになつており、清浄筒4は、ワンタツチで循
環ラインに着脱自在となつている。上記ポンプ2
と清浄筒4との間の配管には、ポンプ2の吐出圧
を指示する圧力計5が取付けられている。 上記清浄筒4には、無定形シリカアルミナ(例
えば日揮化学製、商品名N633 HN等)Aと、ケ
イソウ土、ゼオライト或いはシリカゲルから選ば
れた少くとも1種Bとを混合した清浄剤Cが充填
されている。 清浄剤CのAとBとの混合割合は、Aが多い方
がCの固化が発生せず、A/B=1/1〜3/1
が好ましい。 上記装置を用いてポンプ2のオイルを清浄化す
るには、先ず、ポンプ2を駆動して、ドライエツ
チングチヤンバー1内を所定の真空度に保持する
とともに、ポンプ2のオイルの一部を循環させ
る。その過程において、循環オイルを清浄筒4内
の清浄剤Cに接触させる。清浄剤Cはドライエツ
チングチヤンバー2より吸引され、オイル内に含
有される酸分、水分1μm以上の劣化物よりなる
微粒子、オイル分解物等よりなる不純分を同時に
除去するので、これら不純分がオイル内に蓄積す
ることがない。また、オイルの循環には、ダイヤ
フラムポンプを使用しているので、ギヤポンプの
ようにオイル中の不純分によつて摩耗され性能低
下するようなことはなく、オイル循環は、順調に
行なわれる。したがつて、ポンプ2の性能は低下
せず、ドライエツチングチヤンバー1内を長期に
わたつて所定の減圧度に保持することが出来る。 なお、上記清浄等4の圧損失は徐々に増大する
が、通常ダイヤフラムポンプ3の吐出圧が7Kg/
cm2に達した時点で、オイルの循環を停止し清浄筒
4を新しい清浄筒と交換する。この交換は、一般
に行なわれているような着脱自在なカートリツジ
方式が採用されワンタツチで行なわれ、取外され
た清浄筒4はオイルの入つた状態のまま清浄剤メ
ーカーに送られ、清浄剤Cが交換され、オイルが
回収される。したがつてユーザーは、交換に人手
を要せず、高価な真空ポンプオイル、例えばフオ
ンブリンオイル等のロス量も極めて少なく、経済
的である。 〔実施例、比較例〕 次に実施例、比較例を示して本発明を説明す
る。 実施例 1〜3 第1図の装置を用いてAlのドライエツチング
を行なつた。 すなわち、ポンプ2によりドライエツチングチ
ヤンバー1内を10〜20Paに補擬し、標準状態で
BCl3:270c.c./min、Cl2:30c.c./minを導入し
た。約48時間運転した後、ポンプ2のオイルを、
ダイヤフラムポンプ3を用いて50〜100c.c./min
で抜出し、清浄筒4を通して循環し、清浄化し
た。 使用したロータリーポンプ3のオイル量は3.5
、清浄筒4は、130mmφ×400mmL、清浄剤Cと
して、無定形シリカアルミナAとケイソウ土、ゼ
オライト或はシリカゲルより選ばれた少なくとも
1種Bを混合したもの約5を用いた。 上記清浄筒4の入口圧力が7Kg/cm2になるまで
運転を行なつたが、その場合オイルには変色が認
められなかつた。また、清浄筒4を交換して運転
を続けても真空ポンプの性能低下はなく、所定の
減圧度を保持することが出来た。 上記入口圧力が7Kg/cm2に達し、運転を停止し
た場合のオイル中の不純分を測定し、第1表に示
す。 不純分は測定の次の方法による。酸分はCl-
F-等であるがHCl換算値で示し、水分はカール
フイツシヤー法、オイル分解物は液体クロマトで
行なつた。また、生成するAlCl3或いはその他劣
化物よりなる粒度1μm以上の微粒子の測定は、
JIS−KD102の工業排水試験方法中の懸濁物質試
験に準じ、0.45μmのメンブランフイルターで濾
過し、重量差によつて求めた。その際のオイルの
洗浄液及び溶媒としては、フロン113を使用した。 比較例 1、2 清浄剤を充填した清浄筒を用いる代りに、市販
の活性アルミナ焼結フイルター或いはカートリツ
ジフイルターを使用し、オイルの循環量を1900
c.c./minとした外は実施例と同じにしてオイルの
清浄化を行なつた。その結果、100〜200時間で入
口圧力が上昇し7Kg/cm2に達した時点で運転を停
止した。その際オイルは白黄色に変色していた。
さらにフイルターを交換し運転を継続したが、間
もなく真空ポンプの性能が低下し、20Pa以下の
真空度を保持することが出来なくなつた。 上記運転を停止した際のオイル中の不純分を測
定し第1表に示す。 表より本発明の方法が格段に優れていることが
わかる。
[Technical Field] The present invention is aimed at preventing corrosive and abrasive impurities from accumulating in the oil of a vacuum pump that sucks harmful gases into the vacuum pump, thereby preventing a reduction in the performance of the vacuum pump. This invention relates to a method for cleaning vacuum pump oil. [Prior Art] Conventionally, cleaning the oil of the vacuum pumps used has become an important issue in, for example, the semiconductor industry, where harmful gases have to be sucked into vacuum pumps to reduce the pressure. In particular, the performance of rotary vacuum pumps for Al dry etching deteriorates due to corrosion inside the pump due to the use of corrosive gases, deterioration of the oil, or abrasion of the rotating parts due to the generation of fine particles such as AlCl 3 . The predetermined degree of vacuum cannot be maintained, and the product must be disassembled and cleaned, resulting in a decrease in operating efficiency. For this reason, active alumina sintered filters or ordinary cartridge filters are commercially available that extract part of the oil from the vacuum pump during operation and circulate it through the pump, and are installed in the circulation path to remove harmful substances. There is. [Problems with the prior art] However, the above-mentioned commercially available filters hardly remove acid, moisture, and oil decomposition products, so the oil cannot be sufficiently cleaned. Since the filter becomes clogged within a few days and the pressure introduced into the filter increases, the filter must be replaced each time, which has the disadvantage that the cleaning effect is insufficient and that additional labor and cost are required. [Objective and Structure of the Invention] In view of the above circumstances, the present invention provides a vacuum pump oil cleaning method that can simultaneously remove acids, moisture, fine particles, and oil decomposition products contained in vacuum pump oil over a long period of time. The purpose is to provide vacuum pump oil containing acids, moisture, fine particles, oil decomposition products, etc., with amorphous silica alumina, diatomaceous earth, zeolite, or silica gel. The present invention provides a method for cleaning vacuum pump oil by bringing it into contact with a cleaning agent consisting of one type of cleaning agent. [Specific Structure and Effects of the Invention] FIG. 1 shows an example of an apparatus for implementing the vacuum pump oil cleaning method according to the present invention, and reference numeral 1 in the figure is a dry etching chamber. A rotary vacuum pump (hereinafter referred to as pump) 2 is connected to the dry etching chamber 1 to reduce the internal pressure to a predetermined degree of vacuum. The casing 2a of the pump 2 is provided with a pipe for extracting a part of the pump oil, and the pump oil is circulated to the pump 2 via a diaphragm pump 3 and a cleaning cylinder 4. It can be attached to and detached from the circulation line at will. Above pump 2
A pressure gauge 5 that indicates the discharge pressure of the pump 2 is attached to the piping between the pump 2 and the cleaning cylinder 4. The cleaning cylinder 4 is filled with a cleaning agent C that is a mixture of amorphous silica alumina (for example, manufactured by JGC Chemical, trade name N633 HN, etc.) A and at least one type B selected from diatomaceous earth, zeolite, or silica gel. has been done. The mixing ratio of A and B in cleaning agent C is such that the more A there is, the more solidification of C will not occur, and A/B = 1/1 to 3/1.
is preferred. To clean the oil in the pump 2 using the above device, first drive the pump 2 to maintain a predetermined degree of vacuum in the dry etching chamber 1, and at the same time, circulate some of the oil in the pump 2. let In the process, the circulating oil is brought into contact with the cleaning agent C in the cleaning cylinder 4. The cleaning agent C is sucked through the dry etching chamber 2 and simultaneously removes the acid content contained in the oil, fine particles of deterioration products with a moisture content of 1 μm or more, and impurities such as oil decomposition products. No accumulation in oil. Furthermore, since a diaphragm pump is used for oil circulation, unlike a gear pump, the oil does not suffer from wear and performance degradation due to impurities in the oil, and the oil circulates smoothly. Therefore, the performance of the pump 2 does not deteriorate, and the inside of the dry etching chamber 1 can be maintained at a predetermined reduced pressure for a long period of time. Note that the pressure loss of the above-mentioned cleaner 4 gradually increases, but normally the discharge pressure of the diaphragm pump 3 is 7 kg/
When the oil reaches cm 2 , oil circulation is stopped and the cleaning tube 4 is replaced with a new cleaning tube. This replacement can be done with one touch using a commonly used removable cartridge system, and the removed cleaning cylinder 4 is sent to a cleaning agent manufacturer with oil still in it, and the cleaning agent C is Replaced and oil collected. Therefore, the user does not need any manpower to replace the vacuum pump oil, and the amount of loss of expensive vacuum pump oil, such as fluorocarbon oil, is extremely small, which is economical. [Examples and Comparative Examples] Next, the present invention will be described with reference to Examples and Comparative Examples. Examples 1 to 3 Dry etching of Al was performed using the apparatus shown in FIG. In other words, the inside of the dry etching chamber 1 is simulated to 10 to 20 Pa by pump 2, and
BCl 3 : 270c.c./min and Cl 2 : 30c.c./min were introduced. After about 48 hours of operation, remove the oil from pump 2.
50-100c.c./min using diaphragm pump 3
It was taken out and circulated through the cleaning cylinder 4 to be cleaned. The oil amount of rotary pump 3 used was 3.5
The cleaning cylinder 4 had a diameter of 130 mm and a length of 400 mm. As the cleaning agent C, a mixture of amorphous silica alumina A and at least one type B selected from diatomaceous earth, zeolite, or silica gel was used. Operation was continued until the inlet pressure of the cleaning cylinder 4 reached 7 kg/cm 2 , but no discoloration was observed in the oil. Moreover, even if the cleaning tube 4 was replaced and the operation continued, the performance of the vacuum pump did not deteriorate, and a predetermined degree of pressure reduction could be maintained. When the inlet pressure reached 7 kg/cm 2 and the operation was stopped, the impurities in the oil were measured and are shown in Table 1. Impurities are determined by the following method. The acid content is Cl - ,
F -, etc., are shown in HCl equivalent values; moisture was determined by the Karl Fischer method, and oil decomposition products were determined by liquid chromatography. In addition, the measurement of fine particles with a particle size of 1 μm or more consisting of AlCl 3 or other degraded products,
According to the suspended solids test in the industrial wastewater test method of JIS-KD102, it was filtered with a 0.45 μm membrane filter and determined by the weight difference. Freon 113 was used as the oil cleaning liquid and solvent at that time. Comparative Examples 1 and 2 Instead of using a cleaning cylinder filled with cleaning agent, a commercially available activated alumina sintered filter or cartridge filter was used, and the oil circulation amount was reduced to 1900 ml.
Oil cleaning was carried out in the same manner as in the example except that the flow rate was cc/min. As a result, the inlet pressure increased in 100 to 200 hours, and the operation was stopped when it reached 7 kg/cm 2 . At that time, the oil had changed color to white-yellow.
Although the filter was replaced and operation continued, the performance of the vacuum pump soon deteriorated and it became impossible to maintain a vacuum level below 20 Pa. The impurities in the oil when the above operation was stopped were measured and are shown in Table 1. It can be seen from the table that the method of the present invention is significantly superior.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明に係る真空ポンプオ
イルの清浄化方法は、種々な不純分を同時に除去
し、オイル中の不純分濃度を低く保持するので、
真空ポンプの性能が持続される。さらに清浄剤の
圧損失が大きくなつた場合には、これを交換する
ことによつて、ポンプの性能はさらに持続される
ので、半導体産業などのように真空ポンプに対し
て有害なガスを吸引して所定の減圧度を保持しな
ければならない場合に、極めて経済的に使用出来
る方法である。
As described above, the vacuum pump oil cleaning method according to the present invention simultaneously removes various impurities and keeps the impurity concentration in the oil low.
The performance of the vacuum pump is maintained. Furthermore, if the pressure loss of the cleaning agent becomes large, replacing it will further maintain the performance of the pump. This method can be used extremely economically when a predetermined degree of vacuum must be maintained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の方法を実施する装置のフロ
ーを示す図である。 1……ドライエツチングチヤンバー、2……ロ
ータリー真空ポンプ(ポンプ)、2a……ケーシ
ング、3……ダイヤフラムポンプ、4……清浄
筒、5……圧力計、A……無定形シリカアルミ
ナ、B……ケイソウ土、ゼオライト、シリカゲル
中の少くとも1種、C……清浄剤。
FIG. 1 is a diagram showing the flow of an apparatus implementing the method of the present invention. 1...Dry etching chamber, 2...Rotary vacuum pump (pump), 2a...Casing, 3...Diaphragm pump, 4...Clean cylinder, 5...Pressure gauge, A...Amorphous silica alumina, B ... At least one of diatomaceous earth, zeolite, and silica gel, C... Detergent.

Claims (1)

【特許請求の範囲】[Claims] 1 酸分、水分、微粒子、オイル分解物等の不純
分を含有する真空ポンプのオイルを、無定形シリ
カアルミナと、ケイソウ土、ゼオライト或いはシ
リカゲルから選ばれた少くとも1種とよりなる清
浄剤に接触させることを特徴とする真空ポンプオ
イルの清浄化方法。
1. Vacuum pump oil containing impurities such as acid, moisture, fine particles, and oil decomposition products is treated with a cleaning agent consisting of amorphous silica alumina and at least one selected from diatomaceous earth, zeolite, or silica gel. A method for cleaning vacuum pump oil, the method comprising contacting the vacuum pump oil.
JP24564484A 1984-11-20 1984-11-20 Method for purifying oil of vacuum pump Granted JPS61125410A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24564484A JPS61125410A (en) 1984-11-20 1984-11-20 Method for purifying oil of vacuum pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24564484A JPS61125410A (en) 1984-11-20 1984-11-20 Method for purifying oil of vacuum pump

Publications (2)

Publication Number Publication Date
JPS61125410A JPS61125410A (en) 1986-06-13
JPH0250761B2 true JPH0250761B2 (en) 1990-11-05

Family

ID=17136714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24564484A Granted JPS61125410A (en) 1984-11-20 1984-11-20 Method for purifying oil of vacuum pump

Country Status (1)

Country Link
JP (1) JPS61125410A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4842746A (en) * 1986-06-16 1989-06-27 Quadrex Hps Inc. Method of removing toxic agents for trichlorotrifluoroethane
WO2023100948A1 (en) * 2021-11-30 2023-06-08 大成技研株式会社 Oil/water separating system, adding device, and oil/water separating method
CN114344949B (en) * 2021-12-28 2023-05-12 安徽国孚润滑油工业有限公司 Raffinate oil adsorption device and method for spiral impact type auxiliary silica gel discharging of circulating raffinate oil

Also Published As

Publication number Publication date
JPS61125410A (en) 1986-06-13

Similar Documents

Publication Publication Date Title
US3489245A (en) Apparatus for flushing internal combustion engines
JPH0250761B2 (en)
EP0222495B1 (en) Liquid treatment
JPH02500419A (en) Method for separating and removing hydrocarbons from wastewater
CN211752917U (en) Water body filtering device for water environment treatment
JPS645928B2 (en)
JP2003305623A (en) Filtering device and processing device of high-viscosity liquid for finishing machine
JPH07105371B2 (en) Semiconductor substrate cleaning method
JPH1036999A (en) Method for removing impurity in plating liquid and device therefor
CA2254808A1 (en) Liquid and gas purification and filtration
US5785861A (en) Regeneration of perchloroethylene
JP3690986B2 (en) Cleaning method and apparatus for water reservoir
EP0529845A1 (en) Device and method for purification of liquids and for cleansing of the filtering material used in the device
JPH0651088B2 (en) Regeneration method of lubricating oil for vacuum pump
CN219251763U (en) Secondary membrane filter and sewage treatment equipment
CN213771716U (en) Cutting fluid sterilization liquid purification machine capable of efficiently separating oil residues
CN220642844U (en) Dichloromethane waste water treatment system
JPS6116492B2 (en)
CN101203290A (en) Static plate filter with a continuous flow to filter liquids
SU874122A1 (en) Filtering material
JP3285422B2 (en) Filtration treatment device and waste liquid treatment method
Evans The Physical Conditioning of Electroplating
JPS6044742A (en) Clean room
CN113274810A (en) Method for filtering flushing oil for direct coal liquefaction
RU1771470C (en) Slow filter