JPH0250685B2 - - Google Patents

Info

Publication number
JPH0250685B2
JPH0250685B2 JP3180084A JP3180084A JPH0250685B2 JP H0250685 B2 JPH0250685 B2 JP H0250685B2 JP 3180084 A JP3180084 A JP 3180084A JP 3180084 A JP3180084 A JP 3180084A JP H0250685 B2 JPH0250685 B2 JP H0250685B2
Authority
JP
Japan
Prior art keywords
conductor
container
diameter
gas
support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3180084A
Other languages
Japanese (ja)
Other versions
JPS60176411A (en
Inventor
Katamasa Harumoto
Yoshiaki Horii
Tohei Nitsuta
Setsuyuki Matsuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Kansai Denryoku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp, Kansai Denryoku KK filed Critical Mitsubishi Electric Corp
Priority to JP3180084A priority Critical patent/JPS60176411A/en
Publication of JPS60176411A publication Critical patent/JPS60176411A/en
Publication of JPH0250685B2 publication Critical patent/JPH0250685B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、ガス絶縁線路、特にその小形化に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to gas insulated lines, and particularly to miniaturization thereof.

〔従来技術〕[Prior art]

近年、ガス絶縁開閉装置が、その小形化性、無
公害化性、保守の省力化性などにより、多用され
るようになり、これに伴つて送電線路についても
ガス絶縁化される場合が出てきた。即ち、固体絶
縁物で支えられた導体を容器中に収め、容器内に
SF6などの絶縁性能の優れたガスを封入して絶縁
した、ガス絶縁線路が用いられるようになつて来
た。
In recent years, gas-insulated switchgear has become widely used due to its compact size, non-polluting properties, and labor-saving maintenance properties, and as a result, power transmission lines are also becoming gas-insulated. Ta. In other words, a conductor supported by a solid insulator is placed inside a container.
Gas-insulated lines, which are insulated by filling them with a gas with excellent insulation performance such as SF 6 , have come into use.

このガス絶縁線路では、従来、ガス絶縁開閉装
置と同様に、低温時のSF6ガスの凝縮液化による
ガス密度低下に伴う絶縁耐力の低下を防ぐため、
5〜6気圧を上限としたガス圧で設計が行なわれ
てきた。
In this gas-insulated line, as with conventional gas-insulated switchgear, in order to prevent the dielectric strength from decreasing due to the decrease in gas density due to condensation and liquefaction of SF 6 gas at low temperatures,
Designs have been made with gas pressures up to 5-6 atmospheres.

しかし、このようなガス圧力ではガス絶縁線路
の寸法も大きくなり、ガス絶縁線路のコスト及び
それを収納する洞道などが過大となり著しくガス
絶縁線路の建設費が増嵩し、実用化への障壁とな
つていた。
However, with such gas pressure, the size of the gas insulated line becomes large, and the cost of the gas insulated line and the tunnel to house it become excessive, which significantly increases the construction cost of the gas insulated line, creating a barrier to practical use. It was becoming.

〔発明の概要〕[Summary of the invention]

そこで、これら従来の難点を解決克服するた
め、ガス絶縁線路が布設される地中温度が地上気
温程冬期に低下しない(例えば15℃位である。)
ことに着目し、ガス圧を、例えば、15気圧程度に
高めることを一条件として、ガス絶縁線路の小形
化を図ろうとするのが本発明の目的である。
Therefore, in order to overcome these conventional difficulties, the underground temperature where the gas insulated line is laid does not drop as much as the surface temperature in winter (for example, about 15 degrees Celsius).
Focusing on this, it is an object of the present invention to attempt to reduce the size of a gas insulated line, with one condition being that the gas pressure is increased to, for example, about 15 atmospheres.

上記のような高気圧のガス絶縁線路において
は、ガス空間の絶縁性能はガス圧上昇とともに高
めることが可能であり、所期の目標は達せられる
が、導体を支持する固体絶縁物に対しては絶縁性
能上種々の工夫を要する。この発明はその一環と
して固体絶縁物の部分における電界分布をその径
方向にほゞ均等にしたものであり、具体的には、
容器と導体との間に介在して上記導体を支持する
環状絶縁支持体が設けられた部分の容器の径を、
上記環状絶縁支持体が設けられてない部分の容器
の径より大きな径とすると共に、上記環状絶縁支
持体内に、該支持体と同心状をなし上記導体に近
い程径を大に形成した複数個の環状電極を埋設し
たものである。
In the above-mentioned high-pressure gas-insulated line, the insulation performance of the gas space can be improved as the gas pressure increases, and the desired goal can be achieved, but the insulation performance of the solid insulator supporting the conductor is insufficient. Various improvements are required in terms of performance. As part of this invention, the electric field distribution in the solid insulator is made almost uniform in the radial direction, and specifically,
The diameter of the container at the part where the annular insulating support that is interposed between the container and the conductor and supports the conductor is provided,
The diameter of the annular insulating support is larger than that of the portion of the container where the annular insulating support is not provided, and a plurality of holes are formed in the annular insulating support, concentrically with the support and increasing in diameter as they are closer to the conductor. It has a ring-shaped electrode embedded in it.

〔発明の実施例〕[Embodiments of the invention]

第1図は、この発明によるガス絶縁線路の一実
施例を示す縦断面図で、同図において、1は導
体、2はこの導体1を支持する環状絶縁支持体
で、その軸線方向の両端2A,2B側にほゞ円錐
台形状に突出した形状をなしている。この支持体
2は上記導体1を支持していると共に、その支持
面となる内周面2Cはその軸線方向全長及び周方
向全長に亘つて導体1に密着し、導体1の外周面
と支持体2の全内周面2Cとの間に空間が生じな
いようにしてある。3A,3Bは環状絶縁支持体
2が設けられてない部分において上記導体1を囲
繞した小径の管状の容器、4A,4Bは上記支持
体2が設けられている部分において上記支持体2
及び導体を囲繞した大径の管状の容器で、夫々中
空円錐台形状をなし各一端は上記小径の容器3
A,3Bと同径をなし且つ溶接等により該小径容
器3A,3Bに気密に接続されている。5は円環
状の金属製の接続フランジ部材で、その全内周面
5Aは上記環状絶縁支持体2の外周面に密着し、
上記支持体2との間に空間が形成されないように
してある。そしてこの接続フランジ部材5の外周
面には上記各大径容器4A,4Bの他端が溶接等
により気密に接続されている。6A,6B…6N
は上記環状絶縁支持体2内に上記導体1に対し、
また相互に同心状に所定距離を隔てて埋設された
多数の円環状の金属製電極で、上記環状絶縁支持
体2における径方向に見た電界分布が均等になる
ように、径の小さい方の電極、例えば6Aは、抹
の小さい方の電極、例えば6Bに比べて、軸線方
向の長さが長がく形成されており、また何れの電
極6A,6B…6Nも上記環状絶縁支持体2との
間に空間が生じないようにしてある。7は上記導
体1と環状絶縁支持体2と容器3A,3B,4
A,4Bとで形成された容器内絶縁空間、8はこ
の絶縁空間に封入されたSF6ガス等の絶縁性に秀
れた高気圧絶縁ガスである。
FIG. 1 is a longitudinal sectional view showing an embodiment of a gas insulated line according to the present invention. In the figure, 1 is a conductor, 2 is an annular insulating support that supports this conductor 1, and both ends 2A in the axial direction are shown in FIG. , 2B, and has a substantially truncated conical shape. This support 2 supports the conductor 1, and the inner circumferential surface 2C serving as the supporting surface is in close contact with the conductor 1 over its entire axial and circumferential length, and the outer circumferential surface of the conductor 1 and the support No space is created between the entire inner circumferential surface 2C of No.2. 3A and 3B are small-diameter tubular containers surrounding the conductor 1 in the part where the annular insulating support 2 is not provided, and 4A and 4B are the supports 2 in the part where the support 2 is provided.
and a large-diameter tubular container surrounding the conductor, each in the shape of a hollow truncated cone, with each end connected to the small-diameter container 3 above.
It has the same diameter as A and 3B, and is airtightly connected to the small diameter containers 3A and 3B by welding or the like. Reference numeral 5 denotes an annular metal connection flange member, the entire inner circumferential surface of which 5A is in close contact with the outer circumferential surface of the annular insulating support 2;
No space is formed between the support body 2 and the support body 2. The other ends of the large-diameter containers 4A, 4B are hermetically connected to the outer peripheral surface of the connecting flange member 5 by welding or the like. 6A, 6B...6N
is for the conductor 1 within the annular insulating support 2,
In addition, a large number of annular metal electrodes are buried concentrically at a predetermined distance from each other, and the one with the smaller diameter The electrode, for example 6A, is formed to have a longer axial length than the smaller electrode, for example 6B, and all electrodes 6A, 6B...6N are connected to the annular insulating support 2. This is done so that there is no space between them. 7 is the conductor 1, the annular insulating support 2, and the containers 3A, 3B, 4.
An insulating space 8 in the container formed by A and 4B is a high-pressure insulating gas having excellent insulating properties such as SF 6 gas sealed in this insulating space.

現在用いられているガス絶縁母線における絶縁
ガスは4〜6気圧程度のガス圧としてあるが、本
発明の例では15気圧のSF6ガスを用いる。このた
めガス中の絶縁耐力は4〜6気圧の場合の3倍程
度にまで上るが、通常の絶縁支持体の絶縁耐力
は、同じ径では極限的設計を行うとしても1.5倍
程度にしか向上しない。従つて、絶縁支持体部の
容器の径は約1/1.5にし、絶縁支持体の電解強度
の上昇を耐圧可能な値に押える代り、ガス絶縁部
の容器径は耐圧可能な約1/3に縮小する、即ち、
絶縁支持体部を大径容器とし、絶縁支持体が設け
られてないガス絶縁部を小径とするのが良いこと
が分る。
The insulating gas in the gas insulated bus bar currently used has a gas pressure of about 4 to 6 atmospheres, but in the example of the present invention, SF 6 gas of 15 atmospheres is used. For this reason, the dielectric strength in gas increases to about three times that in the case of 4 to 6 atmospheres, but the dielectric strength of a normal insulating support will only improve by about 1.5 times with the same diameter even if extreme design is performed. . Therefore, the diameter of the container in the insulating support section is reduced to approximately 1/1.5, and instead of suppressing the increase in electrolytic strength of the insulating support to a value that can withstand pressure, the diameter of the container in the gas insulating section is reduced to approximately 1/3 that can withstand pressure. reduce, i.e.
It has been found that it is better to make the insulating support part a large-diameter container, and to make the gas insulating part, where no insulating support is provided, a small-diameter container.

さて、本発明では上記のように、上記絶縁支持
体2に、同心状の電極6A,6B…6Nを固体絶
縁物で一体化した構造のものを用いてある。同心
状の電極6A,6B…6Nは夫々の間の静電容量
をほゞ等しく導体1から容器までの電位分布を
ほゞ一様にしている。この電極のない場合、導体
1に近い程電界が高くなり第2図aのような電界
分布となつている。第2図aにおいて、9は電界
強度を示し、同図から明らかなように、導体1の
近傍での電界強度(9MAX)が最大、容器4の
近傍での電界強度(9MIN)が最小となつてい
る。即ち、容器4から導体1に近かくなる程電界
強度は大きくなつている。
Now, in the present invention, as described above, the insulating support 2 has a structure in which concentric electrodes 6A, 6B, . . . , 6N are integrated with a solid insulator. The concentric electrodes 6A, 6B, . . . , 6N have substantially the same capacitance between them, making the potential distribution from the conductor 1 to the container substantially uniform. In the absence of this electrode, the electric field becomes higher as it approaches the conductor 1, resulting in an electric field distribution as shown in FIG. 2a. In Figure 2a, 9 indicates the electric field strength, and as is clear from the figure, the electric field strength (9MAX) near the conductor 1 is the maximum, and the electric field strength (9MIN) near the container 4 is the minimum. ing. That is, the closer the conductor 1 is from the container 4, the greater the electric field strength becomes.

これに対し、第1図に示すこの発明の一実施例
の場合には、第2図bに示すように、導体1の近
傍での電界強度9と容器4近傍での電界強度9と
は同じになつている。即ち、容器4から導体1に
亘り(径方向に)電界強度が一定となつている。
On the other hand, in the case of the embodiment of the present invention shown in FIG. 1, as shown in FIG. 2b, the electric field strength 9 near the conductor 1 and the electric field intensity 9 near the container 4 are the same. It's getting old. That is, the electric field strength is constant from the container 4 to the conductor 1 (in the radial direction).

耐電圧設計は最高電界部が許容電界値を越えな
い条件で行なわれるので、本発明のように平等電
界の場合の容器径はかなり小さくなる。例えば、
上記の例で電界改善用の電極6A,6B…6Nの
ない通常の絶縁支持体が用いられている場合、容
器大径部が容器小径部の2倍近く必要であつたも
のが、電界改善用電極6A,6B…6N付の絶縁
スペーサ付の場合は1.3倍位の拡大で済むことに
なる。
Since the withstand voltage design is performed under the condition that the highest electric field portion does not exceed the allowable electric field value, the container diameter becomes considerably small in the case of a uniform electric field as in the present invention. for example,
In the above example, if a normal insulating support without electrodes 6A, 6B...6N for improving the electric field was used, the large diameter part of the container would have been nearly twice as large as the small diameter part of the container. In the case of an insulating spacer with electrodes 6A, 6B, . . . , 6N, the size can be expanded by about 1.3 times.

容器4内径D1、導体1外径D2の同心円筒に電
圧Eが加わる時の最大電界Eは、 E=2V/D2eoD1/D2 であり、D1/D2は一般にe=2.72に近い値が最も電 界が低くて小形化されるためこの比率でガス絶縁
線路の容器4と導体1は設計されることが多い。
しかし、上記の例で容器の大径部4A,4Bは導
体1径はほぼそのままとして容器のみ大きくなる
ので、D1/D2が4〜5倍になり、導体部の電界
集中が特に大きくなるので本発明のように、同心
円筒電極で径方向に亘る電界強度を平等にする効
果は大きい。又、ガス絶縁線路の径方向の小形化
は、それ自身の小形化のみならず、それを設置す
る洞道などの小形化も図れるので、本発明のよう
に容器最大径部の小形化は、経済的効果が非常に
大きい。
The maximum electric field E when a voltage E is applied to a concentric cylinder with an inner diameter D 1 of the container 4 and an outer diameter D 2 of the conductor 1 is E=2V/D 2 e o D 1 /D 2 , and D 1 /D 2 is generally Since a value close to e=2.72 results in the lowest electric field and miniaturization, the container 4 and conductor 1 of the gas insulated line are often designed with this ratio.
However, in the above example, in the large-diameter parts 4A and 4B of the container, the diameter of the conductor 1 remains almost the same and only the container becomes larger, so D 1 /D 2 increases by 4 to 5 times, and the electric field concentration in the conductor part becomes particularly large. Therefore, as in the present invention, the effect of equalizing the electric field strength in the radial direction by using concentric cylindrical electrodes is great. Further, by reducing the size of the gas insulated line in the radial direction, it is possible to reduce not only the size of the line itself but also the tunnel in which it is installed. The economic effect is very large.

〔発明の効果〕〔Effect of the invention〕

この発明は上記のように、上記容器と上記導体
との間に介在して上記導体を支持する環状絶縁支
持体が設けられた部分の容器の径を、上記支持体
が設けられてない部分の容器の径より大きな径と
すると共に、上記支持体内に、該支持体と同心状
をなし上記導体に近い程径を大に形成した複数個
の環状電極を埋設し、上記支持体部分において径
方向に亘る電界分布をほゞ均等にしたので、信頼
性を阻害することなく、ガス絶縁線路を小形化で
き、ひいてはガス絶縁線路を収納する洞道等を経
済的に構成できる等の効果を奏するものである。
As described above, the present invention provides that the diameter of the container in the portion where the annular insulating support interposed between the container and the conductor and supporting the conductor is provided is the diameter of the container in the portion where the support is not provided. A plurality of annular electrodes having a diameter larger than the diameter of the container and concentric with the support and having a larger diameter closer to the conductor are buried in the support, and the electrodes are arranged in a radial direction in the support portion. Since the electric field distribution is made almost uniform, the gas insulated line can be made smaller without impairing its reliability, and furthermore, the tunnel etc. that accommodate the gas insulated line can be constructed economically. It is.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例を示す縦断面図、
第2図aはこの発明を適用しない場合の電界分布
を示す図、第2図bはこの発明の一実施例による
電界分布を示す図である。 図において、1は導体、2は環状絶縁支持体、
3A,3Bは小径の容器、4A,4Bは大径の容
器、6A,6B…6Nは環状電極、8は高圧力絶
縁ガスである。
FIG. 1 is a longitudinal sectional view showing an embodiment of the present invention;
FIG. 2a is a diagram showing the electric field distribution when the present invention is not applied, and FIG. 2b is a diagram showing the electric field distribution according to one embodiment of the present invention. In the figure, 1 is a conductor, 2 is an annular insulating support,
3A and 3B are small diameter containers, 4A and 4B are large diameter containers, 6A, 6B...6N are annular electrodes, and 8 is a high pressure insulating gas.

Claims (1)

【特許請求の範囲】[Claims] 1 高圧力の絶縁ガスが封入された容器内に導体
を配設してなるガス絶縁線路において、上記容器
と上記導体との間に介在して上記導体を支持する
環状絶縁支持体が設けられた部分の容器の径を、
上記支持体が設けられてない部分の容器の径より
大きな径とすると共に、上記支持体内に、該支持
体と同心状をなし上記導体に近い程径を大に形成
した複数個の環状電極を埋設し、上記支持体部分
において径方向に亘る電界分布をほゞ均等にした
ことを特徴とするガス絶縁線路。
1. In a gas insulated line in which a conductor is placed in a container filled with high-pressure insulating gas, an annular insulating support is provided between the container and the conductor to support the conductor. The diameter of the container of the part,
A plurality of annular electrodes are provided within the support, the diameter of which is larger than the diameter of the container in the portion where the support is not provided, and which is concentric with the support and has a larger diameter as it approaches the conductor. 1. A gas insulated line, characterized in that the line is buried and the electric field distribution in the radial direction is substantially uniform in the support portion.
JP3180084A 1984-02-21 1984-02-21 Gas insulating line Granted JPS60176411A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3180084A JPS60176411A (en) 1984-02-21 1984-02-21 Gas insulating line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3180084A JPS60176411A (en) 1984-02-21 1984-02-21 Gas insulating line

Publications (2)

Publication Number Publication Date
JPS60176411A JPS60176411A (en) 1985-09-10
JPH0250685B2 true JPH0250685B2 (en) 1990-11-05

Family

ID=12341143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3180084A Granted JPS60176411A (en) 1984-02-21 1984-02-21 Gas insulating line

Country Status (1)

Country Link
JP (1) JPS60176411A (en)

Also Published As

Publication number Publication date
JPS60176411A (en) 1985-09-10

Similar Documents

Publication Publication Date Title
KR100505375B1 (en) Bushing
US20100018753A1 (en) High voltage device, high voltage bushing and method of assembling said device
US4774385A (en) Electrical bushing for use with a gas insulated electrical apparatus
US8088996B2 (en) High voltage DC bushing and device comprising such high voltage bushing
JPH0250685B2 (en)
US4214118A (en) Electrical bushing
US4780577A (en) Electrical bushing of a gas insulated electrical apparatus
US3934071A (en) Air entrance bushing for gas-insulated bus
US4328391A (en) Gas insulated transmission line having tapered particle trapping ring
WO1980000287A1 (en) Improved air entrance bushing for gas-insulated bus
JPS6233708B2 (en)
US2099666A (en) High voltage liquid-filled bushing
JPH05196174A (en) Insulated vacuum valve
US2215290A (en) High pressure gas filled cable
JPH0721983B2 (en) Circuit switchgear
JP3135342B2 (en) Gas insulated switchgear
JP2724086B2 (en) Gas insulated bushing
RU2319242C1 (en) Polymeric support insulator characterized in enhanced reliability
JPS6117091B2 (en)
JPS6041619Y2 (en) butsing
JPS5848742Y2 (en) Butsuing through the wall
JPS626818Y2 (en)
SU660136A1 (en) Super high-voltage gas-insulated bus-bar
JPS647542Y2 (en)
JPS5924482B2 (en) butsing