JPH0250443B2 - - Google Patents

Info

Publication number
JPH0250443B2
JPH0250443B2 JP58025529A JP2552983A JPH0250443B2 JP H0250443 B2 JPH0250443 B2 JP H0250443B2 JP 58025529 A JP58025529 A JP 58025529A JP 2552983 A JP2552983 A JP 2552983A JP H0250443 B2 JPH0250443 B2 JP H0250443B2
Authority
JP
Japan
Prior art keywords
monomer
mold
refractive index
lens
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58025529A
Other languages
Japanese (ja)
Other versions
JPS59152406A (en
Inventor
Juichi Aoki
Motoaki Yoshida
Masaaki Funaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP58025529A priority Critical patent/JPS59152406A/en
Publication of JPS59152406A publication Critical patent/JPS59152406A/en
Publication of JPH0250443B2 publication Critical patent/JPH0250443B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/1221Basic optical elements, e.g. light-guiding paths made from organic materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0012Arrays characterised by the manufacturing method
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0087Simple or compound lenses with index gradient
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12083Constructional arrangements
    • G02B2006/12102Lens
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/005Arrays characterized by the distribution or form of lenses arranged along a single direction only, e.g. lenticular sheets

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は屈折率勾配をもつたプラスチツク光伝
送体の製造方法に関する。 従来、屈折率が中心軸からの距離の2乗にほぼ
比例して次第に減小する屈折率分布を有する透明
体が凸レンズとして作用することが知られてい
る。このような伝送体においては、中心軸の屈折
率をNOとすると、中心軸からのXの距離におけ
る屈折率Nは(1)式で表わされる。 ここでAは正の定数(屈折率分布定数)であ
る。 N=NO(1―1/2AX2) (1) このような分布を有する棒状体の一端より入射
した光束は、中心軸のまわりを蛇行しながら進行
する。蛇行する光路の周期Lは(2)式で表わされ
る。 屈折率分布が(3)式で表わされる場合には凹レンズ
となる。ここでBは正の定数である。 N=NO(1+1/2BX2) (3) 上記のような屈折率分布をもつ光伝送体とし
て、円柱状のもの以外に平板状基材に外表面から
肉厚方向に(1)式あるいは(3)式で表わされるような
屈折率分布を与えたいわゆるスラブレンズも知ら
れている。かかる屈折率勾配をもつた光伝送体を
プラスチツク材料で成形する場合、従来はまず屈
折率がNaの重合体Paを形成する単量体Maを一
部重合させて所望のレンズ形状、例えば円柱体を
成形し、このレンズ母材を上記屈折率Naとは異
なる屈折率Nbの重合体Pbを形成する単量体Mb
の液中に浸漬して母材表面から内部へ向けての単
量体Mbの拡散濃度勾配に基づく屈折率分布を与
えた後、重合を完了させるという方法が実施され
ている。 しかしながら、上記従来方法では当初準備すべ
き単量体Maのレンズ母材は重合がほぼ完了する
程度まで進行していないと形状を保持することが
できず、このため単量体Nbのレンズ母材内への
拡散速度が遅く所望の屈折率分布を得るまでに非
常に時間がかかり、且つ処理の終了までの間にレ
ンズ形状が変形してしまうことも多く精密な形状
のものを製作することが難しいとともに大型のも
のが得難いという問題があつた。単量体Maの部
分重合によるレンズ母材の成形とこれに続く単量
体Mb中での拡散処理という二工程を別々に行な
う必要があるため、この面からも全体の工程に多
大の時間を必要とし工程が繁雑になるという欠点
があつた。 本発明の目的は、上記従来の問題を解決し、レ
ンズ母材を成す単量体Maが低重合度の状態にお
いて形状を正確に保持したままこの母材に対して
屈折率分布形成用の単量体Mbを拡散させること
ができ、したがつて全体の処理時間を大幅に短縮
化し得る量産に適した屈折率勾配をもつプラスチ
ツク光伝送体の製造方法を提供することである。 上記目的を達成する本発明に従つた方法では、
目標とする光伝送体の外表面での屈折率をNb、
中心での屈折率をNaとして、屈折率がNbの重合
体(共重合体を含む)Pbを形成する単量体(単
量体混合物を含む)Mbを、該単量体Mbに対し
非反応性であつて該単量体Mbの含浸・浸出が自
在な物質、例えば微細な連続空孔をもつ多孔質体
での形成した成形型中に含浸させる。 この成形型には円柱状、平板状、エルボ状など
所望の光伝送体形状にほぼ合せた雌型の空間部を
形成しておく。 そして上記の雌型部に、屈折率Naの重合体
(共重合体を含む)Paを形成する単量体(単量体
混合物を含む)Maを重合が未了の状態で充填す
る。ここで雌型空間部への単量体Maの充填と前
述した成形型への単量体Mbの含浸はいずれを先
行させてもよい。 上記により、単量体Maに接触する成形型面か
ら単量体Mbが浸出して雌型空間部内の単量体内
部へ拡散し、所定の段階で重合を完結させること
により雌型内に鋳型された重合体Pa内には表面
から中心部に向けて単量体Mbの濃度分布に基づ
いて屈折率NbからNaへと次第に変化する屈折率
分布が形成される。 上述した方法によれば、成形型内にレンズ母材
樹脂単量体を目標とする形状に保持したままこの
成形型の壁面を通して屈折率分布形成用の樹脂単
量体を母材中に拡散させるから、従来方法のよう
に、レンズ母材樹脂体を変形しない程度にまで重
合を進めておく必要がなく、非常に流動性の高い
状態において拡散を行なうことができる。 したがつて拡散の速度が従来法に比較して非常
に高く、本発明の実施例により全体の処理工程を
大幅に短縮することが可能になつたと同時に従来
方法では製作が極めて困難であつた大型の屈折率
勾配型プラスチツク光伝送体を製作することが可
能になつた。 本発明において、単量体Mbを含ませる成形型
に用いる物質としては、ポリオレフイン、ポリカ
ーボネート、ポリウレタン、セルロース、フエノ
ール樹脂、及びポリエーテル、ポリカーボネー
ト、ポリエステル、ポリアミド、ポリオレフイン
などのオリゴマーの両末端に二重結合やシラノー
ル基などの架橋性官能基を導入したマクロモノマ
ーの重合体などの有機高分子材料よりなる多孔質
体、ガラス粉焼結体や素焼粘土の様なセラミツク
ス、または多孔質金属などが使用可能である。 成形型の雌型空間部に充填する単量体Maは、
成形型の壁面を通して外部へ浸出しない範囲内で
あればどのような程度の重合度に重合させておい
てもよく、具体的には拡散条件との関係で決まる
があまり重合度が高いとこの中に拡散する単量体
Mbの拡散速度が遅くなつて処理に時間がかかる
ので、Mbの拡散処理時における単量体Maの重
合度は90%以下にすることが望ましい。 単量体Maは、希望する粘度になるまで重合さ
せておいてから、成型加工した成形型の雌型空間
部に流し込めば良いが、成形型壁面との間に浸出
を防止する境界面を設けておいて単量体Maを重
合させたあとでその境界面を除いても良い。また
成形型が有機高分子材料より成る場合には、成形
型を形成する物質の前駆体と単量体Maとを、所
定の形状を成した境界面で分離しておいて同時に
反応を進め、適当な状態になつてから境界面を除
くという方法も有効である。成形型構成材料に
は、単量体Mbを含むことができて、なおかつ
Mbにおかされなければどの様な材料を用いても
良い。次に、成形型構成材料に単量体Mbを含ま
せておいて、部分的に重合した単量体Maと接触
した成形型の雌型空間部内壁面から部分的に重合
した単量体Maの内部へと単量体Mbを拡散・重
合させて、単量体Mbの濃度が部分的に重合した
単量体Maの成形型に接触している表面から内部
へ行くに従つて次第に減少している様な勾配をつ
けてそれを固定する。 この際、単量体Mbはあとから成形型に含ませ
ることもできるが、Mbが成形型を形成する物質
の前駆体と反応しない様にして成形型を形成する
ことができれば、成形型を形成する以前から両者
を混合しておいても良い。単量体Mbは最初に望
ましい分布となる様に拡散させておいてから単量
体Maと共に重合を完結させて分布を固定しても
良いが、拡散と重合を同時に起こさせても良い。 本発明にレンズ母材形成用として用いられる単
量体Maとしては、重合性二重結合を含んでいる
分子であればどの様なものでも良いが、好ましく
はアリル基、アクリル酸基、メタクリル酸基また
はビニル基を2ケ以上有するかアリル基、アクリ
ル酸基、メタクリル酸基またはビニル基のうちか
ら2種類以上の基を有する単量体を用いることが
できる。 本発明に適した単量体としてはたとえば (1) アリル化合物 フタル酸ジアリル、イソフタル酸ジアリル、テ
レフタル酸ジアリル、ジエチレングリコールビス
アリルカーボネートの如きジアリルエステル、ト
リメリト酸トリアリル、リン酸トリアリル、亜リ
ン酸トリアリルの如きトリアリルエステル:メタ
クリル酸アリル、アクリル酸アリルの如き不飽和
酸アリルエステル (2) R1―R2―R3で示される化合物 R1およびR3がいずれもビニル基、アクリル基、
ビニルエステル基、またはメタクリル基である。
あるいは、R1およびR3のいずれか一方がビニル
基、アクリル基、メタクリル基およびビニルエス
テル基の4つの基のいずれかであり、他方が前記
4つの基のうちの他の3つの基のいずれかであ
る。 R2
The present invention relates to a method for manufacturing a plastic light conduit with a refractive index gradient. It is conventionally known that a transparent body having a refractive index distribution in which the refractive index gradually decreases approximately in proportion to the square of the distance from the central axis acts as a convex lens. In such a transmission body, assuming that the refractive index of the central axis is NO, the refractive index N at a distance of X from the central axis is expressed by equation (1). Here, A is a positive constant (refractive index distribution constant). N=NO(1-1/2AX 2 ) (1) A light flux incident from one end of a rod-shaped body having such a distribution travels while meandering around the central axis. The period L of the meandering optical path is expressed by equation (2). When the refractive index distribution is expressed by equation (3), it becomes a concave lens. Here B is a positive constant. N = NO (1 + 1/ 2B A so-called slab lens that has a refractive index distribution as expressed by equation 3) is also known. When molding an optical transmission body with such a refractive index gradient using a plastic material, conventionally, a monomer Ma forming a polymer Pa having a refractive index of Na is partially polymerized to form a desired lens shape, for example, a cylindrical shape. and mold this lens base material into a monomer Mb forming a polymer Pb having a refractive index Nb different from the above refractive index Na.
A method has been implemented in which the polymerization is completed after immersing the base material in a liquid to give a refractive index distribution based on the diffusion concentration gradient of monomer Mb from the surface of the base material toward the inside. However, in the conventional method described above, the shape of the monomer Ma lens base material that should be initially prepared cannot be maintained unless the polymerization has progressed to a point where polymerization is almost complete. The rate of inward diffusion is slow, and it takes a very long time to obtain the desired refractive index distribution, and the lens shape often deforms until the end of the process, making it difficult to manufacture lenses with precise shapes. There was a problem that it was difficult and it was difficult to obtain large ones. Because it is necessary to perform two separate steps: molding of the lens base material by partial polymerization of monomer Ma and subsequent diffusion treatment in monomer Mb, the entire process takes a lot of time. The drawback was that the process was complicated. An object of the present invention is to solve the above-mentioned conventional problems, and to form a monomer Ma for forming a refractive index distribution on the lens base material while maintaining its shape accurately in a state where the monomer Ma constituting the lens base material has a low degree of polymerization. It is an object of the present invention to provide a method for manufacturing a plastic optical transmission body having a refractive index gradient suitable for mass production, which can diffuse the mercury Mb and thus greatly shorten the overall processing time. In the method according to the present invention for achieving the above object,
The refractive index at the outer surface of the target optical transmission body is Nb,
When the refractive index at the center is Na, monomers (including monomer mixtures) Mb forming polymers (including copolymers) and Pb with a refractive index of Nb are non-reactive with respect to the monomer Mb. The monomer Mb is impregnated into a mold made of a porous material having fine continuous pores, such as a porous material having fine continuous pores. In this mold, a female cavity is formed which approximately matches the desired shape of the optical transmitter, such as a columnar shape, a flat plate shape, an elbow shape, or the like. Then, a monomer (including a monomer mixture) Ma forming a polymer (including a copolymer) Pa having a refractive index of Na is filled into the female mold part in an uncompleted polymerization state. Here, filling the female mold space with the monomer Ma and impregnating the aforementioned mold with the monomer Mb may be performed first. As a result of the above, monomer Mb leaches from the mold surface in contact with monomer Ma, diffuses into the monomer inside the female mold space, and completes polymerization at a predetermined stage to form the mold in the female mold. A refractive index distribution is formed in the polymer Pa in which the refractive index gradually changes from Nb to Na based on the concentration distribution of the monomer Mb from the surface toward the center. According to the method described above, the resin monomer for forming the refractive index distribution is diffused into the base material through the wall surface of the mold while the resin monomer for the lens base material is held in the target shape within the mold. Therefore, unlike conventional methods, it is not necessary to proceed with polymerization to the extent that the lens base resin body is not deformed, and diffusion can be carried out in a highly fluid state. Therefore, the diffusion rate is extremely high compared to conventional methods, and the embodiments of the present invention make it possible to significantly shorten the entire processing process. It has now become possible to fabricate a refractive index gradient type plastic optical transmission body. In the present invention, the materials used in the mold containing the monomer Mb include polyolefin, polycarbonate, polyurethane, cellulose, phenolic resin, and oligomers such as polyether, polycarbonate, polyester, polyamide, and polyolefin, which have a double molecule at both ends. Porous bodies made of organic polymer materials such as macromonomer polymers with crosslinkable functional groups such as bonds and silanol groups introduced, ceramics such as glass powder sintered bodies and unglazed clay, or porous metals are used. It is possible. The monomer Ma filling the female mold space is
Polymerization may be carried out to any degree as long as it does not leak out through the wall of the mold.The specific degree of polymerization is determined by the relationship with the diffusion conditions, but if the degree of polymerization is too high, monomer diffusing into
Since the diffusion rate of Mb becomes slow and the treatment takes time, it is desirable that the degree of polymerization of the monomer Ma during the Mb diffusion treatment is 90% or less. The monomer Ma can be polymerized until it reaches the desired viscosity, and then poured into the female cavity of the mold. The boundary surface may be removed after the monomer Ma is polymerized. In addition, when the mold is made of an organic polymer material, the precursor of the substance forming the mold and the monomer Ma are separated at an interface having a predetermined shape, and the reaction is proceeded simultaneously. It is also effective to remove the boundary surface after a suitable state is reached. The mold constituent material may contain monomeric Mb, and
Any material may be used as long as it does not interfere with Mb. Next, the monomer Mb is included in the mold constituent material, and the partially polymerized monomer Ma is removed from the inner wall surface of the female mold space of the mold that has come into contact with the partially polymerized monomer Ma. Monomer Mb is diffused and polymerized into the interior, and the concentration of monomer Mb gradually decreases from the surface of the partially polymerized monomer Ma in contact with the mold to the inside. Create a slope that looks like this and fix it. At this time, the monomer Mb can be included in the mold later, but if the mold can be formed in such a way that Mb does not react with the precursor of the material that forms the mold, it is possible to form the mold. You may mix both before doing so. Monomer Mb may be first diffused to obtain a desired distribution and then polymerized together with monomer Ma to fix the distribution, or diffusion and polymerization may occur simultaneously. The monomer Ma used to form the lens base material in the present invention may be any molecule as long as it contains a polymerizable double bond, but is preferably an allyl group, an acrylic acid group, or a methacrylic acid group. A monomer having two or more groups or vinyl groups, or two or more groups selected from the group consisting of an allyl group, an acrylic acid group, a methacrylic acid group, and a vinyl group can be used. Examples of monomers suitable for the present invention include (1) allyl compounds diallyl esters such as diallyl phthalate, diallyl isophthalate, diallyl terephthalate, diethylene glycol bisallyl carbonate, triallyl trimellitate, triallyl phosphate, and triallyl phosphite; Triallyl esters such as: unsaturated acid allyl esters such as allyl methacrylate and allyl acrylate (2) Compounds represented by R 1 - R 2 - R 3 R 1 and R 3 are both vinyl groups, acrylic groups,
It is a vinyl ester group or a methacrylic group.
Alternatively, one of R 1 and R 3 is any of the four groups vinyl, acrylic, methacrylic, and vinyl ester, and the other is any of the other three groups among the four groups. That's it. R2 :

【式】(P―またはm―異 性体) もしくは[Formula] (P- or m-different gender) or

【式】(P―又はm―異性体) (以上2Aグループ)または[Formula] (P- or m-isomer) (more than 2A groups) or

【式】 ―(CH2CH2O―)mCH2CH2― (m=0〜20) ―(CH2)p― (p=3〜15) もしくは[Formula] - (CH 2 CH 2 O -) mCH 2 CH 2 - (m = 0 to 20) -( CH2 )p- (p=3~15) or

【式】 (以上2Bグループ) (3) 上記(1)(2)の単量体の混合物、またはモノビニ
ル化合物、ビニルエステル類、アクリル酸エス
テル類およびメタクリル酸エステル類の5種の
うちの少なくとも1種と上記(1)(2)単量体(また
はその混合物)との混合物。 Mbとしては、 (4)
[Formula] (The above 2B groups) (3) A mixture of the monomers in (1) and (2) above, or at least one of the five types of monovinyl compounds, vinyl esters, acrylic esters, and methacrylic esters. A mixture of a species and monomers (1) and (2) above (or a mixture thereof). As Mb, (4)

【式】で示される化合物 ただし、Xは水素またはメチル基、 YはCompound represented by [Formula] However, X is hydrogen or methyl group, Y is

【式】【formula】

【式】 ―CH=CH2―(CH2)lH (l=1〜8) i―プロピル、i―ブチル、S―ブチル、t―
ブチル
[Formula] -CH= CH2- ( CH2 )lH (l=1-8) i-propyl, i-butyl, S-butyl, t-
butyl

【式】【formula】

【式】(h=0〜2) もしくは ―(CH2CH2O―)pCH2CH3 (p=1〜6) (以上4Aグループ) または ―(CF2aF (a=1〜6) ―CH2(CF2bH (b=1〜8) ―CH2CH2O・CH2CF3 ―(CH2CH2O)cCF2CF2H (c=1〜4) ―CH2CH2O・CH2(CF2aF (a=1〜6) ―CH2(CF2dO(CF2lF (d=1〜2,l=
1〜4) もしくは―Si(OC2H53 (以上4Bグループ) (5)
[Formula] (h=0 to 2) or -(CH 2 CH 2 O-) p CH 2 CH 3 (p=1 to 6) (more than 4A groups) or - (CF 2 ) a F (a=1 to 6) -CH 2 (CF 2 ) b H (b = 1 to 8) - CH 2 CH 2 O・CH 2 CF 3 - (CH 2 CH 2 O) c CF 2 CF 2 H (c = 1 to 4) -CH 2 CH 2 O・CH 2 (CF 2 ) a F (a=1 to 6) - CH 2 (CF 2 ) d O(CF 2 ) l F (d=1 to 2, l=
1 to 4) or -Si(OC 2 H 5 ) 3 (4B groups) (5)

【式】で示される化合物 R4:―(CH2f―CH3 (f=0〜2) (以上5Aグループ)または ―(CH2gH (g=1〜3)Compound R 4 represented by [Formula]: -(CH 2 ) f - CH 3 (f = 0 to 2) (5A groups) or - (CH 2 ) g H (g = 1 to 3)

【式】【formula】

【式】 (以上5Bグループ) (6) 4項および5項記載の単量体の混合物Maと
して上記(1)〜(3)、Mbとして(4)〜(6)のいずれも
組み合わせることができるが、特にMaとして
2Bグループの単量体を用いMbとして4Bグル
ープまたは(5A)の単量体を用いると色収差
の極めて小さい耐久性の優れた光伝送体が得ら
れる。 また、上記透明重合体の重合度を調節するに
は、3項に挙げた如く架橋性Maに不飽和基を一
ケ有する単量体を添加する方法およびCBr4
Ccl4,メルカプタン類などの連鎖移動剤を添加す
る方法、または両者を併用する方法が有効であ
る。 次に本発明方法を図面に示した実施例について
説明する。 第1図ないし第3図は本発明方法により半円柱
レンズに相当するレンズ作用をもつ屈折率分布型
の一次元レンズを製作する方法を示す。 屈折率分布型の一次元レンズは第4図に示すよ
うに、透明プラスチツクからなる平行六面体の基
板1中に、この基板1の厚みtoの中心における屈
折率Naが最大で基板1の上下両表面における屈
折率Nbを最小として中心から両表面に向けて放
物線状に屈折率が漸減するような屈折率分布を設
け、且つ基板1の幅Wの方向には屈折率を一様と
したレンズである。 このような光伝送体10においては一方の端面
1A側から平行光線を入射させると基板1中に入
射した光線は前述(2)式の周期Lで蛇行しながら進
み、レンズ長zに応じたレンズ端面1Bからの適
宜距離において焦線を結ぶ。 上記のような平板状の一次元レンズを製作する
に当り本発明に従つた方法では、まずず第1図に
示すように、ガラス板の如く表面が平坦で樹脂液
透過のおそれのない材質の基板2の上にレンズ成
形型3を載せる。 この成形型3は前述のように単量体Mbに対し
非反応性であつてこの単量体Mbの含浸・浸出が
自在な物質、一例として連続気孔を有するフエノ
ール樹脂発泡体で形成する。 そしてこの成形型3に所望のレンズ形状に合せ
てレンズ雌型空間部4を設けておく。 本例の場合、平板状の雌型空間部4を間隔をお
いて複数個設ける。 次に上記の各雌型空間部4に一部重合させた樹
脂単量体Maを充填し、この上から基板2と同様
の他の基板で挾み、両基板2,2と成形型3の積
層物を相互に分離しないように固定した後、屈折
率分布形成用の樹脂単量体Mbの液の中に浸漬す
る。 これにより、単量体Mbは側方に露出している
成形型面から成形型3内に浸み込み、レンズ雌型
空間部4の内壁面から浸出してこの空間部4に充
填されている一部重合した単量体Ma内へ拡散し
ていく。 一定時間の浸漬の後取り出して重合を完了させ
ることにより第4図に示したような平板状の屈折
率分布型プラスチツク一次元レンズが得られる。 同様にして成形型3の雌型空間部4の形状を変
えることにより例えば第5図ないし第7図に例示
するような種々の形状をもつた屈折率分布型のプ
ラスチツク光伝送体10を簡単に製作することが
できる。第5図は円柱状レンズを90度に折り曲げ
たエルボ型伝送体で、例えば両端面に光フアイバ
ーを接続することにより一方の光フアイバーを伝
送されてくる光を直角方向に曲げて他方の光フア
イバーに中継伝送する。 また第6図のものは分岐・合流用のもので三ツ
叉のそれぞれの端面に光フアイバーを接続するこ
とにより、1本の光フアイバーを伝送されてくる
光を二本の光フアイバーに均等分岐させたりある
いは逆に二本の光フアイバーによる伝送光を混合
した後、一本の光フアイバーに伝送する用途に使
用される。 また第7図のものは中央部が単一の屈折率分布
型の円柱レンズの両端にそれぞれ複数の屈折率分
布型円柱レンズが分岐する形にしたもので、これ
ら分岐端にそれぞれ光フアイバーを接続すること
により、一方のフアイバー群を通して個別に送ら
れてくる種々の波長の光を中央部で混合した後、
他方側の光フアイバー群に均等分岐入射させるミ
キシングカプラとして働く。 実施例 1 孔径が60μm前後で連通した気泡が全体の約30
%程度存在するフエノール樹脂発泡体を第1図の
様な形に切削して成形型3を成形し、CR―39(ジ
エチレングリコールビスアリルカーボネート)に
BPO(ベンゾイルパーオキサイド)を約3%添加
して均一に溶解させ、これを75℃の恒温水槽中で
重合させて粘度が25℃で約20000cp程度になつた
ところで冷却したものを、この発泡体成形物にあ
けた直方体の雌型空間部4に充填してガラス板で
はさみ蓋をした。これを4FMA(メタクリル酸1,
1,3―トリヒドロパーフロロプロピル)中に浸
漬して室温で約1時間放置し、次いで75℃の恒温
水槽に移して10時間加熱し、硬化させた。 端面を研磨したあとで水銀ランプからの光を通
すと、水銀ランプと反対側のレンズ端面から約3
mmのところに置いたスクリーン上に3本の輝線が
認められた。 実施例 2 DAIP(ジアリルイソフタレート)にBPO(ベン
ゾイルパーオキサイド)を約3%添加して約一に
溶解させ、これを75℃の恒温水槽中で重合させて
粘度が25℃で約20000cp程度になつたところで冷
却し、重合を停止させた。ポリエチレン微粉末を
焼結させて微細孔が外部と連通している板を貼り
合わせて第1図に示した成形型3を作り、これの
直方体の形をした雌型空間部4の中に上記の様に
して製造したDAIPの半重合体を注入して上下を
ガラス板ではさんで蓋をした。これをMMA(メ
チルメタクリレート)中に浸漬して室温で約1時
間放置し、次いで75℃の恒温水槽に移して10時間
加熱し、硬化させた。端面を研磨したあとで水銀
ランプからの光を通すと、水銀ランプと反対側の
レンズ端面から約2mmのところに置いたスクリー
ン上に3本の輝線が認められた。
[Formula] (The above 5B groups) (6) Any of the above (1) to (3) as Ma and (4) to (6) as Mb can be combined as the mixture of monomers described in Items 4 and 5. But especially as Ma
If a 2B group monomer is used and a 4B group or (5A) monomer is used as Mb, an optical transmission body with extremely small chromatic aberration and excellent durability can be obtained. In addition, in order to adjust the degree of polymerization of the transparent polymer, the method of adding a monomer having one unsaturated group to the crosslinkable Ma as mentioned in Section 3, and the method of adding CBr 4 ,
A method of adding a chain transfer agent such as Ccl 4 or mercaptans, or a method of using both in combination is effective. Next, an embodiment of the method of the present invention shown in the drawings will be described. 1 to 3 show a method of manufacturing a one-dimensional gradient index lens having a lens function equivalent to a semi-cylindrical lens using the method of the present invention. As shown in Fig. 4, a gradient index type one-dimensional lens has a parallelepiped substrate 1 made of transparent plastic, and the refractive index Na at the center of the thickness of the substrate 1 is the maximum, and the refractive index Na is the maximum at the center of the thickness to of the substrate 1. The lens has a refractive index distribution such that the refractive index Nb is the minimum and the refractive index gradually decreases parabolically from the center toward both surfaces, and the refractive index is uniform in the direction of the width W of the substrate 1. . In such an optical transmission body 10, when a parallel light beam is incident from one end surface 1A side, the light beam that enters the substrate 1 meanderingly travels with the period L of the above-mentioned equation (2), and the lens length z corresponds to the lens length z. The focal lines are connected at appropriate distances from the end surface 1B. In the method according to the present invention for manufacturing the flat one-dimensional lens as described above, first, as shown in FIG. A lens mold 3 is placed on the substrate 2. As described above, the mold 3 is made of a material that is non-reactive with the monomer Mb and can be freely impregnated and leached with the monomer Mb, such as a phenolic resin foam having continuous pores. A lens female mold space 4 is provided in this mold 3 in accordance with the desired lens shape. In the case of this example, a plurality of flat female spaces 4 are provided at intervals. Next, each of the female mold spaces 4 is filled with a partially polymerized resin monomer Ma, and another substrate similar to the substrate 2 is placed between the two substrates 2, 2 and the mold 3. After the laminate is fixed so as not to be separated from each other, it is immersed in a liquid of resin monomer Mb for forming a refractive index distribution. As a result, the monomer Mb seeps into the mold 3 from the side-exposed mold surface, oozes out from the inner wall surface of the lens female mold space 4, and fills this space 4. It diffuses into the partially polymerized monomer Ma. After being immersed for a certain period of time, it is taken out to complete the polymerization, thereby obtaining a flat plate-shaped gradient index plastic one-dimensional lens as shown in FIG. Similarly, by changing the shape of the female mold space 4 of the mold 3, it is possible to easily produce refractive index distribution type plastic optical transmitters 10 having various shapes as illustrated in FIGS. 5 to 7, for example. It can be manufactured. Figure 5 shows an elbow-type transmission body in which a cylindrical lens is bent at 90 degrees.For example, by connecting optical fibers to both end faces, the light transmitted from one optical fiber is bent at right angles and then transferred to the other optical fiber. Relay transmission to. The one in Figure 6 is for branching and merging, and by connecting optical fibers to each end of the trident, the light transmitted through one optical fiber is split equally into two optical fibers. Or conversely, it is used to mix the light transmitted by two optical fibers and then transmit it to a single optical fiber. In addition, the one in Figure 7 has a single gradient index cylindrical lens in the center, with multiple gradient index cylindrical lenses branching out at both ends, and optical fibers are connected to each of these branch ends. By doing this, the lights of various wavelengths sent individually through one group of fibers are mixed in the center, and then
It works as a mixing coupler that evenly splits and injects light into the group of optical fibers on the other side. Example 1 Approximately 30 communicating bubbles with a pore diameter of around 60 μm
% of the phenolic resin foam is cut into the shape shown in Figure 1 to form a mold 3, and CR-39 (diethylene glycol bisallyl carbonate) is
This foam is made by adding approximately 3% BPO (benzoyl peroxide) and uniformly dissolving it, polymerizing it in a constant temperature water bath at 75 degrees Celsius, and cooling it when the viscosity reaches about 20,000 cp at 25 degrees Celsius. A rectangular parallelepiped female mold space 4 made in the molded product was filled with the mixture, and a lid was placed between a glass plate. Add this to 4FMA (methacrylic acid 1,
1,3-trihydroperfluoropropyl) and left at room temperature for about 1 hour, then transferred to a constant temperature water bath at 75°C and heated for 10 hours to cure. After polishing the end face, when the light from the mercury lamp passes through it, about 3
Three bright lines were observed on the screen placed at mm. Example 2 Approximately 3% BPO (benzoyl peroxide) is added to DAIP (diallylisophthalate) and dissolved to approximately 1%, and this is polymerized in a constant temperature water bath at 75°C to a viscosity of approximately 20,000 cp at 25°C. When the temperature reached the temperature, it was cooled to stop the polymerization. A mold 3 shown in FIG. 1 is made by sintering fine polyethylene powder and pasting together plates in which fine pores communicate with the outside, and the mold 3 shown in FIG. A half-polymer of DAIP prepared as described above was injected into the container, and the top and bottom were sandwiched between glass plates and a lid was placed. This was immersed in MMA (methyl methacrylate) and left at room temperature for about 1 hour, then transferred to a constant temperature water bath at 75°C and heated for 10 hours to harden. After polishing the end face, when light from the mercury lamp was passed through it, three bright lines were observed on the screen placed approximately 2 mm from the end face of the lens on the opposite side of the mercury lamp.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の実施例を示し、第1図は単量体
Maを成形型内に充填した状態を示す断面図、第
2図は同平面図、第3図は単量体Maを充填した
成形型を単量体Mb中に浸漬してMbをMa中に拡
散させる工程を示す断面図、第4図は第1図ない
し第3図の方法で得られる屈折率分布型の一次元
レンズを示す斜視図、第5図ないし第7図は本発
明方法によつて得られる光伝送体の形状例を示す
斜視図である。 3……成形型、4……雌型空間部、10……光
伝送体、Ma,Mb……単量体。
The drawings show examples of the invention, and Figure 1 shows monomers.
Figure 2 is a cross-sectional view showing the state in which Ma is filled into the mold, Figure 2 is a plan view of the same, and Figure 3 is a diagram showing the mold filled with monomer Ma being immersed in monomer Mb to transfer Mb into Ma. FIG. 4 is a cross-sectional view showing the diffusion process, FIG. 4 is a perspective view showing a gradient index type one-dimensional lens obtained by the method shown in FIGS. 1 to 3, and FIGS. FIG. 3... Molding mold, 4... Female mold space, 10... Optical transmission body, Ma, Mb... Monomer.

Claims (1)

【特許請求の範囲】 1 屈折率がNbの重合体(共重合体を含む)Pb
を形成する単量体(単量体混合物を含む)Mb
を、該単量体Mbに対し非反応性であつて該単量
体Mbの含浸・浸出が自在な物質で形成した成形
型中に含浸させ、前記成形型には所望の光伝送体
形状にぼ合せた雌型部を形成し、前記雌型部に、
Nbとは異なる屈折率Naを有する重合体(共重合
体を含む)Paを形成する単量体(単量体混合物
を含む)Maを重合未完の状態で充填し、前記単
量体Maに接触する成形型面からの単量体Mbの
浸出・拡散によつて前記重合体Pa内に表面から
内部に向けて次第に変化する屈折率勾配を与えた
後、重合を完了させることを特徴とする屈折率勾
配をもつたプラスチツク光伝送体を製造する方
法。 2 特許請求の範囲第1項において、成形型を微
細な連続空孔を有する多孔質体で形成したプラス
チツク光伝送体の製造方法。
[Claims] 1. Polymer (including copolymer) Pb with a refractive index of Nb
Monomers (including monomer mixtures) forming Mb
is impregnated into a mold made of a substance that is non-reactive with the monomer Mb and can be freely impregnated and leached with the monomer Mb, and the mold is filled with a material having a desired shape of the light transmitting body. forming a mated female mold part; in the female mold part;
A monomer (including a monomer mixture) Ma forming a polymer (including a copolymer) Pa having a refractive index Na different from that of Nb is filled in an uncompleted polymerized state and brought into contact with the monomer Ma. Refraction characterized in that polymerization is completed after giving a refractive index gradient that gradually changes from the surface to the inside of the polymer Pa by leaching and diffusing the monomer Mb from the surface of the mold. A method of manufacturing a plastic optical conduit with a rate gradient. 2. The method of manufacturing a plastic optical transmission body according to claim 1, wherein the mold is made of a porous material having fine continuous pores.
JP58025529A 1983-02-18 1983-02-18 Method for producing plastic optical transmission body Granted JPS59152406A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58025529A JPS59152406A (en) 1983-02-18 1983-02-18 Method for producing plastic optical transmission body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58025529A JPS59152406A (en) 1983-02-18 1983-02-18 Method for producing plastic optical transmission body

Publications (2)

Publication Number Publication Date
JPS59152406A JPS59152406A (en) 1984-08-31
JPH0250443B2 true JPH0250443B2 (en) 1990-11-02

Family

ID=12168564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58025529A Granted JPS59152406A (en) 1983-02-18 1983-02-18 Method for producing plastic optical transmission body

Country Status (1)

Country Link
JP (1) JPS59152406A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62222203A (en) * 1986-03-24 1987-09-30 Nippon Sheet Glass Co Ltd Production of optical element composed of synthetic resin
JP3010369B2 (en) * 1990-08-16 2000-02-21 康博 小池 Method of manufacturing synthetic resin optical transmission body
JP3005808B2 (en) * 1990-08-16 2000-02-07 康博 小池 Manufacturing method of synthetic resin optical transmission body
US5382448A (en) * 1990-08-16 1995-01-17 Yasuhiro Koike Method of manufacturing optical transmission medium from synthetic resin
FR2673576B1 (en) * 1991-03-08 1993-06-18 Essilor Int PROCESS FOR OBTAINING AN ARTICLE OF TRANSPARENT POLYMER MATERIAL WITH GRADIENT OF REFRACTION INDEX.
JP3151364B2 (en) * 1994-12-05 2001-04-03 シャープ株式会社 Method for manufacturing polymer optical waveguide
US6482551B1 (en) 1998-03-24 2002-11-19 Inphase Technologies Optical article and process for forming article

Also Published As

Publication number Publication date
JPS59152406A (en) 1984-08-31

Similar Documents

Publication Publication Date Title
US2479935A (en) Method for forming coated optical elements from polymerizable materials
SU674658A3 (en) Mould for making contact lenses
EP0718646B1 (en) Method for producing a polymeric optical waveguide
JP3010369B2 (en) Method of manufacturing synthetic resin optical transmission body
JPH0250443B2 (en)
US3894129A (en) Method of manufacture of strain free contact lenses
JPS60175009A (en) Production of plastic optical element having refractive index distribution
JPH01198312A (en) Method and apparatus for molding plastic lens
JP3005808B2 (en) Manufacturing method of synthetic resin optical transmission body
KR100387096B1 (en) Process for the preparation and apparatus of plastic optical fiber preform having refractive index grade and optical fiber preform and optical fiber obtained therefrom
JPH0225484B2 (en)
BR8202377A (en) PROCESS OF FORMING HYDROPHYL POLYMERIC GEL MOLD USED IN THE POLYMERIZATION AND COMPOSITION OF HYDROPHYL GEL POLYMERS PRODUCED BY THIS PROCESS
JPH0740357A (en) Production of plastic lens having distribution of refractive index
JPH0224208B2 (en)
JPH0727928A (en) Production of plastic optical transmission body
JPS62251712A (en) Method for forming endoscope
JPH0252241B2 (en)
JPH0355801B2 (en)
JPH01122431A (en) Manufacture of plastic lens
JPH0621886B2 (en) Method for manufacturing synthetic resin optical transmitter
JPS5974501A (en) Composite lens and its production
JPH06230204A (en) Production of synthetic resin optical element having refractive index distribution
NO162009B (en) CASTLE APPLIANCE FOR THE MANUFACTURING OF LENSES OR OTHER OPTICAL DEVICES.
JPS62222203A (en) Production of optical element composed of synthetic resin
JPS62256641A (en) Manufacture of optical element