JPH0250443B2 - - Google Patents

Info

Publication number
JPH0250443B2
JPH0250443B2 JP58025529A JP2552983A JPH0250443B2 JP H0250443 B2 JPH0250443 B2 JP H0250443B2 JP 58025529 A JP58025529 A JP 58025529A JP 2552983 A JP2552983 A JP 2552983A JP H0250443 B2 JPH0250443 B2 JP H0250443B2
Authority
JP
Japan
Prior art keywords
monomer
mold
refractive index
lens
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58025529A
Other languages
Japanese (ja)
Other versions
JPS59152406A (en
Inventor
Juichi Aoki
Motoaki Yoshida
Masaaki Funaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP58025529A priority Critical patent/JPS59152406A/en
Publication of JPS59152406A publication Critical patent/JPS59152406A/en
Publication of JPH0250443B2 publication Critical patent/JPH0250443B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/1221Basic optical elements, e.g. light-guiding paths made from organic materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0012Arrays characterised by the manufacturing method
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0087Simple or compound lenses with index gradient
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12083Constructional arrangements
    • G02B2006/12102Lens
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/005Arrays characterized by the distribution or form of lenses arranged along a single direction only, e.g. lenticular sheets

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Optical Integrated Circuits (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は屈折率募配をも぀たプラスチツク光䌝
送䜓の補造方法に関する。 埓来、屈折率が䞭心軞からの距離の乗にほが
比䟋しお次第に枛小する屈折率分垃を有する透明
䜓が凞レンズずしお䜜甚するこずが知られおい
る。このような䌝送䜓においおは、䞭心軞の屈折
率をNOずするず、䞭心軞からのの距離におけ
る屈折率は(1)匏で衚わされる。 ここでは正の定数屈折率分垃定数であ
る。 NO―1/2AX2 (1) このような分垃を有する棒状䜓の䞀端より入射
した光束は、䞭心軞のたわりを蛇行しながら進行
する。蛇行する光路の呚期は(2)匏で衚わされ
る。 屈折率分垃が(3)匏で衚わされる堎合には凹レンズ
ずなる。ここでは正の定数である。 NO1/2BX2 (3) 䞊蚘のような屈折率分垃をも぀光䌝送䜓ずし
お、円柱状のもの以倖に平板状基材に倖衚面から
肉厚方向に(1)匏あるいは(3)匏で衚わされるような
屈折率分垃を䞎えたいわゆるスラブレンズも知ら
れおいる。かかる屈折率募配をも぀た光䌝送䜓を
プラスチツク材料で成圢する堎合、埓来はたず屈
折率がNaの重合䜓Paを圢成する単量䜓Maを䞀
郚重合させお所望のレンズ圢状、䟋えば円柱䜓を
成圢し、このレンズ母材を䞊蚘屈折率Naずは異
なる屈折率Nbの重合䜓Pbを圢成する単量䜓Mb
の液䞭に浞挬しお母材衚面から内郚ぞ向けおの単
量䜓Mbの拡散濃床募配に基づく屈折率分垃を䞎
えた埌、重合を完了させるずいう方法が実斜され
おいる。 しかしながら、䞊蚘埓来方法では圓初準備すべ
き単量䜓Maのレンズ母材は重合がほが完了する
皋床たで進行しおいないず圢状を保持するこずが
できず、このため単量䜓Nbのレンズ母材内ぞの
拡散速床が遅く所望の屈折率分垃を埗るたでに非
垞に時間がかかり、䞔぀凊理の終了たでの間にレ
ンズ圢状が倉圢しおしたうこずも倚く粟密な圢状
のものを補䜜するこずが難しいずずもに倧型のも
のが埗難いずいう問題があ぀た。単量䜓Maの郚
分重合によるレンズ母材の成圢ずこれに続く単量
䜓Mb䞭での拡散凊理ずいう二工皋を別々に行な
う必芁があるため、この面からも党䜓の工皋に倚
倧の時間を必芁ずし工皋が繁雑になるずいう欠点
があ぀た。 本発明の目的は、䞊蚘埓来の問題を解決し、レ
ンズ母材を成す単量䜓Maが䜎重合床の状態にお
いお圢状を正確に保持したたたこの母材に察しお
屈折率分垃圢成甚の単量䜓Mbを拡散させるこず
ができ、したが぀お党䜓の凊理時間を倧幅に短瞮
化し埗る量産に適した屈折率募配をも぀プラスチ
ツク光䌝送䜓の補造方法を提䟛するこずである。 䞊蚘目的を達成する本発明に埓぀た方法では、
目暙ずする光䌝送䜓の倖衚面での屈折率をNb、
䞭心での屈折率をNaずしお、屈折率がNbの重合
䜓共重合䜓を含むPbを圢成する単量䜓単
量䜓混合物を含むMbを、該単量䜓Mbに察し
非反応性であ぀お該単量䜓Mbの含浞・浞出が自
圚な物質、䟋えば埮现な連続空孔をも぀倚孔質䜓
での圢成した成圢型䞭に含浞させる。 この成圢型には円柱状、平板状、゚ルボ状など
所望の光䌝送䜓圢状にほが合せた雌型の空間郚を
圢成しおおく。 そしお䞊蚘の雌型郚に、屈折率Naの重合䜓
共重合䜓を含むPaを圢成する単量䜓単量䜓
混合物を含むMaを重合が未了の状態で充填す
る。ここで雌型空間郚ぞの単量䜓Maの充填ず前
述した成圢型ぞの単量䜓Mbの含浞はいずれを先
行させおもよい。 䞊蚘により、単量䜓Maに接觊する成圢型面か
ら単量䜓Mbが浞出しお雌型空間郚内の単量䜓内
郚ぞ拡散し、所定の段階で重合を完結させるこず
により雌型内に鋳型された重合䜓Pa内には衚面
から䞭心郚に向けお単量䜓Mbの濃床分垃に基づ
いお屈折率NbからNaぞず次第に倉化する屈折率
分垃が圢成される。 䞊述した方法によれば、成圢型内にレンズ母材
暹脂単量䜓を目暙ずする圢状に保持したたたこの
成圢型の壁面を通しお屈折率分垃圢成甚の暹脂単
量䜓を母材䞭に拡散させるから、埓来方法のよう
に、レンズ母材暹脂䜓を倉圢しない皋床にたで重
合を進めおおく必芁がなく、非垞に流動性の高い
状態においお拡散を行なうこずができる。 したが぀お拡散の速床が埓来法に比范しお非垞
に高く、本発明の実斜䟋により党䜓の凊理工皋を
倧幅に短瞮するこずが可胜にな぀たず同時に埓来
方法では補䜜が極めお困難であ぀た倧型の屈折率
募配型プラスチツク光䌝送䜓を補䜜するこずが可
胜にな぀た。 本発明においお、単量䜓Mbを含たせる成圢型
に甚いる物質ずしおは、ポリオレフむン、ポリカ
ヌボネヌト、ポリりレタン、セルロヌス、プノ
ヌル暹脂、及びポリ゚ヌテル、ポリカヌボネヌ
ト、ポリ゚ステル、ポリアミド、ポリオレフむン
などのオリゎマヌの䞡末端に二重結合やシラノヌ
ル基などの架橋性官胜基を導入したマクロモノマ
ヌの重合䜓などの有機高分子材料よりなる倚孔質
䜓、ガラス粉焌結䜓や玠焌粘土の様なセラミツク
ス、たたは倚孔質金属などが䜿甚可胜である。 成圢型の雌型空間郚に充填する単量䜓Maは、
成圢型の壁面を通しお倖郚ぞ浞出しない範囲内で
あればどのような皋床の重合床に重合させおおい
おもよく、具䜓的には拡散条件ずの関係で決たる
があたり重合床が高いずこの䞭に拡散する単量䜓
Mbの拡散速床が遅くな぀お凊理に時間がかかる
ので、Mbの拡散凊理時における単量䜓Maの重
合床は90以䞋にするこずが望たしい。 単量䜓Maは、垌望する粘床になるたで重合さ
せおおいおから、成型加工した成圢型の雌型空間
郚に流し蟌めば良いが、成圢型壁面ずの間に浞出
を防止する境界面を蚭けおおいお単量䜓Maを重
合させたあずでその境界面を陀いおも良い。たた
成圢型が有機高分子材料より成る堎合には、成圢
型を圢成する物質の前駆䜓ず単量䜓Maずを、所
定の圢状を成した境界面で分離しおおいお同時に
反応を進め、適圓な状態にな぀おから境界面を陀
くずいう方法も有効である。成圢型構成材料に
は、単量䜓Mbを含むこずができお、なおか぀
Mbにおかされなければどの様な材料を甚いおも
良い。次に、成圢型構成材料に単量䜓Mbを含た
せおおいお、郚分的に重合した単量䜓Maず接觊
した成圢型の雌型空間郚内壁面から郚分的に重合
した単量䜓Maの内郚ぞず単量䜓Mbを拡散・重
合させお、単量䜓Mbの濃床が郚分的に重合した
単量䜓Maの成圢型に接觊しおいる衚面から内郚
ぞ行くに埓぀お次第に枛少しおいる様な募配を぀
けおそれを固定する。 この際、単量䜓Mbはあずから成圢型に含たせ
るこずもできるが、Mbが成圢型を圢成する物質
の前駆䜓ず反応しない様にしお成圢型を圢成する
こずができれば、成圢型を圢成する以前から䞡者
を混合しおおいおも良い。単量䜓Mbは最初に望
たしい分垃ずなる様に拡散させおおいおから単量
䜓Maず共に重合を完結させお分垃を固定しおも
良いが、拡散ず重合を同時に起こさせおも良い。 本発明にレンズ母材圢成甚ずしお甚いられる単
量䜓Maずしおは、重合性二重結合を含んでいる
分子であればどの様なものでも良いが、奜たしく
はアリル基、アクリル酞基、メタクリル酞基たた
はビニル基をケ以䞊有するかアリル基、アクリ
ル酞基、メタクリル酞基たたはビニル基のうちか
ら皮類以䞊の基を有する単量䜓を甚いるこずが
できる。 本発明に適した単量䜓ずしおはたずえば (1) アリル化合物 フタル酞ゞアリル、む゜フタル酞ゞアリル、テ
レフタル酞ゞアリル、ゞ゚チレングリコヌルビス
アリルカヌボネヌトの劂きゞアリル゚ステル、ト
リメリト酞トリアリル、リン酞トリアリル、亜リ
ン酞トリアリルの劂きトリアリル゚ステルメタ
クリル酞アリル、アクリル酞アリルの劂き䞍飜和
酞アリル゚ステル (2) R1―R2―R3で瀺される化合物 R1およびR3がいずれもビニル基、アクリル基、
ビニル゚ステル基、たたはメタクリル基である。
あるいは、R1およびR3のいずれか䞀方がビニル
基、アクリル基、メタクリル基およびビニル゚ス
テル基の぀の基のいずれかであり、他方が前蚘
぀の基のうちの他の぀の基のいずれかであ
る。 R2
The present invention relates to a method for manufacturing a plastic light conduit with a refractive index gradient. It is conventionally known that a transparent body having a refractive index distribution in which the refractive index gradually decreases approximately in proportion to the square of the distance from the central axis acts as a convex lens. In such a transmission body, assuming that the refractive index of the central axis is NO, the refractive index N at a distance of X from the central axis is expressed by equation (1). Here, A is a positive constant (refractive index distribution constant). N=NO(1-1/2AX 2 ) (1) A light flux incident from one end of a rod-shaped body having such a distribution travels while meandering around the central axis. The period L of the meandering optical path is expressed by equation (2). When the refractive index distribution is expressed by equation (3), it becomes a concave lens. Here B is a positive constant. N = NO (1 + 1/ 2B A so-called slab lens that has a refractive index distribution as expressed by equation 3) is also known. When molding an optical transmission body with such a refractive index gradient using a plastic material, conventionally, a monomer Ma forming a polymer Pa having a refractive index of Na is partially polymerized to form a desired lens shape, for example, a cylindrical shape. and mold this lens base material into a monomer Mb forming a polymer Pb having a refractive index Nb different from the above refractive index Na.
A method has been implemented in which the polymerization is completed after immersing the base material in a liquid to give a refractive index distribution based on the diffusion concentration gradient of monomer Mb from the surface of the base material toward the inside. However, in the conventional method described above, the shape of the monomer Ma lens base material that should be initially prepared cannot be maintained unless the polymerization has progressed to a point where polymerization is almost complete. The rate of inward diffusion is slow, and it takes a very long time to obtain the desired refractive index distribution, and the lens shape often deforms until the end of the process, making it difficult to manufacture lenses with precise shapes. There was a problem that it was difficult and it was difficult to obtain large ones. Because it is necessary to perform two separate steps: molding of the lens base material by partial polymerization of monomer Ma and subsequent diffusion treatment in monomer Mb, the entire process takes a lot of time. The drawback was that the process was complicated. An object of the present invention is to solve the above-mentioned conventional problems, and to form a monomer Ma for forming a refractive index distribution on the lens base material while maintaining its shape accurately in a state where the monomer Ma constituting the lens base material has a low degree of polymerization. It is an object of the present invention to provide a method for manufacturing a plastic optical transmission body having a refractive index gradient suitable for mass production, which can diffuse the mercury Mb and thus greatly shorten the overall processing time. In the method according to the present invention for achieving the above object,
The refractive index at the outer surface of the target optical transmission body is Nb,
When the refractive index at the center is Na, monomers (including monomer mixtures) Mb forming polymers (including copolymers) and Pb with a refractive index of Nb are non-reactive with respect to the monomer Mb. The monomer Mb is impregnated into a mold made of a porous material having fine continuous pores, such as a porous material having fine continuous pores. In this mold, a female cavity is formed which approximately matches the desired shape of the optical transmitter, such as a columnar shape, a flat plate shape, an elbow shape, or the like. Then, a monomer (including a monomer mixture) Ma forming a polymer (including a copolymer) Pa having a refractive index of Na is filled into the female mold part in an uncompleted polymerization state. Here, filling the female mold space with the monomer Ma and impregnating the aforementioned mold with the monomer Mb may be performed first. As a result of the above, monomer Mb leaches from the mold surface in contact with monomer Ma, diffuses into the monomer inside the female mold space, and completes polymerization at a predetermined stage to form the mold in the female mold. A refractive index distribution is formed in the polymer Pa in which the refractive index gradually changes from Nb to Na based on the concentration distribution of the monomer Mb from the surface toward the center. According to the method described above, the resin monomer for forming the refractive index distribution is diffused into the base material through the wall surface of the mold while the resin monomer for the lens base material is held in the target shape within the mold. Therefore, unlike conventional methods, it is not necessary to proceed with polymerization to the extent that the lens base resin body is not deformed, and diffusion can be carried out in a highly fluid state. Therefore, the diffusion rate is extremely high compared to conventional methods, and the embodiments of the present invention make it possible to significantly shorten the entire processing process. It has now become possible to fabricate a refractive index gradient type plastic optical transmission body. In the present invention, the materials used in the mold containing the monomer Mb include polyolefin, polycarbonate, polyurethane, cellulose, phenolic resin, and oligomers such as polyether, polycarbonate, polyester, polyamide, and polyolefin, which have a double molecule at both ends. Porous bodies made of organic polymer materials such as macromonomer polymers with crosslinkable functional groups such as bonds and silanol groups introduced, ceramics such as glass powder sintered bodies and unglazed clay, or porous metals are used. It is possible. The monomer Ma filling the female mold space is
Polymerization may be carried out to any degree as long as it does not leak out through the wall of the mold.The specific degree of polymerization is determined by the relationship with the diffusion conditions, but if the degree of polymerization is too high, monomer diffusing into
Since the diffusion rate of Mb becomes slow and the treatment takes time, it is desirable that the degree of polymerization of the monomer Ma during the Mb diffusion treatment is 90% or less. The monomer Ma can be polymerized until it reaches the desired viscosity, and then poured into the female cavity of the mold. The boundary surface may be removed after the monomer Ma is polymerized. In addition, when the mold is made of an organic polymer material, the precursor of the substance forming the mold and the monomer Ma are separated at an interface having a predetermined shape, and the reaction is proceeded simultaneously. It is also effective to remove the boundary surface after a suitable state is reached. The mold constituent material may contain monomeric Mb, and
Any material may be used as long as it does not interfere with Mb. Next, the monomer Mb is included in the mold constituent material, and the partially polymerized monomer Ma is removed from the inner wall surface of the female mold space of the mold that has come into contact with the partially polymerized monomer Ma. Monomer Mb is diffused and polymerized into the interior, and the concentration of monomer Mb gradually decreases from the surface of the partially polymerized monomer Ma in contact with the mold to the inside. Create a slope that looks like this and fix it. At this time, the monomer Mb can be included in the mold later, but if the mold can be formed in such a way that Mb does not react with the precursor of the material that forms the mold, it is possible to form the mold. You may mix both before doing so. Monomer Mb may be first diffused to obtain a desired distribution and then polymerized together with monomer Ma to fix the distribution, or diffusion and polymerization may occur simultaneously. The monomer Ma used to form the lens base material in the present invention may be any molecule as long as it contains a polymerizable double bond, but is preferably an allyl group, an acrylic acid group, or a methacrylic acid group. A monomer having two or more groups or vinyl groups, or two or more groups selected from the group consisting of an allyl group, an acrylic acid group, a methacrylic acid group, and a vinyl group can be used. Examples of monomers suitable for the present invention include (1) allyl compounds diallyl esters such as diallyl phthalate, diallyl isophthalate, diallyl terephthalate, diethylene glycol bisallyl carbonate, triallyl trimellitate, triallyl phosphate, and triallyl phosphite; Triallyl esters such as: unsaturated acid allyl esters such as allyl methacrylate and allyl acrylate (2) Compounds represented by R 1 - R 2 - R 3 R 1 and R 3 are both vinyl groups, acrylic groups,
It is a vinyl ester group or a methacrylic group.
Alternatively, one of R 1 and R 3 is any of the four groups vinyl, acrylic, methacrylic, and vinyl ester, and the other is any of the other three groups among the four groups. That's it. R2 :

【匏】―たたは―異 性䜓 もしくは[Formula] (P- or m-different gender) or

【匏】―又は―異性䜓 以䞊2Aグルヌプたたは[Formula] (P- or m-isomer) (more than 2A groups) or

【匏】 ―CH2CH2O―mCH2CH2― 〜20 ―CH2― 〜15 もしくは[Formula] - (CH 2 CH 2 O -) mCH 2 CH 2 - (m = 0 to 20) -( CH2 )p- (p=3~15) or

【匏】 以䞊2Bグルヌプ (3) 䞊蚘(1)(2)の単量䜓の混合物、たたはモノビニ
ル化合物、ビニル゚ステル類、アクリル酞゚ス
テル類およびメタクリル酞゚ステル類の皮の
うちの少なくずも皮ず䞊蚘(1)(2)単量䜓たた
はその混合物ずの混合物。 Mbずしおは、 (4)
[Formula] (The above 2B groups) (3) A mixture of the monomers in (1) and (2) above, or at least one of the five types of monovinyl compounds, vinyl esters, acrylic esters, and methacrylic esters. A mixture of a species and monomers (1) and (2) above (or a mixture thereof). As Mb, (4)

【匏】で瀺される化合物 ただし、は氎玠たたはメチル基、 はCompound represented by [Formula] However, X is hydrogen or methyl group, Y is

【匏】【formula】

【匏】 ―CHCH2―CH2lH 〜 ―プロピル、―ブチル、―ブチル、―
ブチル
[Formula] -CH= CH2- ( CH2 )lH (l=1-8) i-propyl, i-butyl, S-butyl, t-
butyl

【匏】【formula】

【匏】〜 もしくは ―CH2CH2O―pCH2CH3 〜 以䞊4Aグルヌプ たたは ―CF2a 〜 ―CH2CF2b 〜 ―CH2CH2O・CH2CF3 ―CH2CH2OcCF2CF2H 〜 ―CH2CH2O・CH2CF2a 〜 ―CH2CF2dCF2l 〜
〜 もしくは―SiOC2H53 以䞊4Bグルヌプ (5)
[Formula] (h=0 to 2) or -(CH 2 CH 2 O-) p CH 2 CH 3 (p=1 to 6) (more than 4A groups) or - (CF 2 ) a F (a=1 to 6) -CH 2 (CF 2 ) b H (b = 1 to 8) - CH 2 CH 2 O・CH 2 CF 3 - (CH 2 CH 2 O) c CF 2 CF 2 H (c = 1 to 4) -CH 2 CH 2 O・CH 2 (CF 2 ) a F (a=1 to 6) - CH 2 (CF 2 ) d O(CF 2 ) l F (d=1 to 2, l=
1 to 4) or -Si(OC 2 H 5 ) 3 (4B groups) (5)

【匏】で瀺される化合物 R4―CH2f―CH3 〜 以䞊5Aグルヌプたたは ―CH2g 〜Compound R 4 represented by [Formula]: -(CH 2 ) f - CH 3 (f = 0 to 2) (5A groups) or - (CH 2 ) g H (g = 1 to 3)

【匏】【formula】

【匏】 以䞊5Bグルヌプ (6) 項および項蚘茉の単量䜓の混合物Maず
しお䞊蚘(1)〜(3)、Mbずしお(4)〜(6)のいずれも
組み合わせるこずができるが、特にMaずしお
2Bグルヌプの単量䜓を甚いMbずしお4Bグル
ヌプたたは5Aの単量䜓を甚いるず色収差
の極めお小さい耐久性の優れた光䌝送䜓が埗ら
れる。 たた、䞊蚘透明重合䜓の重合床を調節するに
は、項に挙げた劂く架橋性Maに䞍飜和基を䞀
ケ有する単量䜓を添加する方法およびCBr4
Ccl4メルカプタン類などの連鎖移動剀を添加す
る方法、たたは䞡者を䜵甚する方法が有効であ
る。 次に本発明方法を図面に瀺した実斜䟋に぀いお
説明する。 第図ないし第図は本発明方法により半円柱
レンズに盞圓するレンズ䜜甚をも぀屈折率分垃型
の䞀次元レンズを補䜜する方法を瀺す。 屈折率分垃型の䞀次元レンズは第図に瀺すよ
うに、透明プラスチツクからなる平行六面䜓の基
板䞭に、この基板の厚みtoの䞭心における屈
折率Naが最倧で基板の䞊䞋䞡衚面における屈
折率Nbを最小ずしお䞭心から䞡衚面に向けお攟
物線状に屈折率が挞枛するような屈折率分垃を蚭
け、䞔぀基板の幅の方向には屈折率を䞀様ず
したレンズである。 このような光䌝送䜓においおは䞀方の端面
偎から平行光線を入射させるず基板䞭に入
射した光線は前述(2)匏の呚期で蛇行しながら進
み、レンズ長に応じたレンズ端面からの適
宜距離においお焊線を結ぶ。 䞊蚘のような平板状の䞀次元レンズを補䜜する
に圓り本発明に埓぀た方法では、たずず第図に
瀺すように、ガラス板の劂く衚面が平坊で暹脂液
透過のおそれのない材質の基板の䞊にレンズ成
圢型を茉せる。 この成圢型は前述のように単量䜓Mbに察し
非反応性であ぀おこの単量䜓Mbの含浞・浞出が
自圚な物質、䞀䟋ずしお連続気孔を有するプノ
ヌル暹脂発泡䜓で圢成する。 そしおこの成圢型に所望のレンズ圢状に合せ
おレンズ雌型空間郚を蚭けおおく。 本䟋の堎合、平板状の雌型空間郚を間隔をお
いお耇数個蚭ける。 次に䞊蚘の各雌型空間郚に䞀郚重合させた暹
脂単量䜓Maを充填し、この䞊から基板ず同様
の他の基板で挟み、䞡基板ず成圢型の積
局物を盞互に分離しないように固定した埌、屈折
率分垃圢成甚の暹脂単量䜓Mbの液の䞭に浞挬す
る。 これにより、単量䜓Mbは偎方に露出しおいる
成圢型面から成圢型内に浞み蟌み、レンズ雌型
空間郚の内壁面から浞出しおこの空間郚に充
填されおいる䞀郚重合した単量䜓Ma内ぞ拡散し
おいく。 䞀定時間の浞挬の埌取り出しお重合を完了させ
るこずにより第図に瀺したような平板状の屈折
率分垃型プラスチツク䞀次元レンズが埗られる。 同様にしお成圢型の雌型空間郚の圢状を倉
えるこずにより䟋えば第図ないし第図に䟋瀺
するような皮々の圢状をも぀た屈折率分垃型のプ
ラスチツク光䌝送䜓を簡単に補䜜するこずが
できる。第図は円柱状レンズを90床に折り曲げ
た゚ルボ型䌝送䜓で、䟋えば䞡端面に光フアむバ
ヌを接続するこずにより䞀方の光フアむバヌを䌝
送されおくる光を盎角方向に曲げお他方の光フア
むバヌに䞭継䌝送する。 たた第図のものは分岐・合流甚のもので䞉ツ
叉のそれぞれの端面に光フアむバヌを接続するこ
ずにより、本の光フアむバヌを䌝送されおくる
光を二本の光フアむバヌに均等分岐させたりある
いは逆に二本の光フアむバヌによる䌝送光を混合
した埌、䞀本の光フアむバヌに䌝送する甚途に䜿
甚される。 たた第図のものは䞭倮郚が単䞀の屈折率分垃
型の円柱レンズの䞡端にそれぞれ耇数の屈折率分
垃型円柱レンズが分岐する圢にしたもので、これ
ら分岐端にそれぞれ光フアむバヌを接続するこず
により、䞀方のフアむバヌ矀を通しお個別に送ら
れおくる皮々の波長の光を䞭倮郚で混合した埌、
他方偎の光フアむバヌ矀に均等分岐入射させるミ
キシングカプラずしお働く。 実斜䟋  孔埄が60ÎŒm前埌で連通した気泡が党䜓の玄30
皋床存圚するプノヌル暹脂発泡䜓を第図の
様な圢に切削しお成圢型を成圢し、CR―39ゞ
゚チレングリコヌルビスアリルカヌボネヌトに
BPOベンゟむルパヌオキサむドを玄添加
しお均䞀に溶解させ、これを75℃の恒枩氎槜䞭で
重合させお粘床が25℃で玄20000cp皋床にな぀た
ずころで冷华したものを、この発泡䜓成圢物にあ
けた盎方䜓の雌型空間郚に充填しおガラス板で
はさみ蓋をした。これを4FMAメタクリル酞
―トリヒドロパヌフロロプロピル䞭に浞
挬しお宀枩で玄時間攟眮し、次いで75℃の恒枩
氎槜に移しお10時間加熱し、硬化させた。 端面を研磚したあずで氎銀ランプからの光を通
すず、氎銀ランプず反察偎のレンズ端面から玄
mmのずころに眮いたスクリヌン䞊に本の茝線が
認められた。 実斜䟋  DAIPゞアリルむ゜フタレヌトにBPOベン
ゟむルパヌオキサむドを玄添加しお玄䞀に
溶解させ、これを75℃の恒枩氎槜䞭で重合させお
粘床が25℃で玄20000cp皋床にな぀たずころで冷
华し、重合を停止させた。ポリ゚チレン埮粉末を
焌結させお埮现孔が倖郚ず連通しおいる板を貌り
合わせお第図に瀺した成圢型を䜜り、これの
盎方䜓の圢をした雌型空間郚の䞭に䞊蚘の様に
しお補造したDAIPの半重合䜓を泚入しお䞊䞋を
ガラス板ではさんで蓋をした。これをMMAメ
チルメタクリレヌト䞭に浞挬しお宀枩で玄時
間攟眮し、次いで75℃の恒枩氎槜に移しお10時間
加熱し、硬化させた。端面を研磚したあずで氎銀
ランプからの光を通すず、氎銀ランプず反察偎の
レンズ端面から玄mmのずころに眮いたスクリヌ
ン䞊に本の茝線が認められた。
[Formula] (The above 5B groups) (6) Any of the above (1) to (3) as Ma and (4) to (6) as Mb can be combined as the mixture of monomers described in Items 4 and 5. But especially as Ma
If a 2B group monomer is used and a 4B group or (5A) monomer is used as Mb, an optical transmission body with extremely small chromatic aberration and excellent durability can be obtained. In addition, in order to adjust the degree of polymerization of the transparent polymer, the method of adding a monomer having one unsaturated group to the crosslinkable Ma as mentioned in Section 3, and the method of adding CBr 4 ,
A method of adding a chain transfer agent such as Ccl 4 or mercaptans, or a method of using both in combination is effective. Next, an embodiment of the method of the present invention shown in the drawings will be described. 1 to 3 show a method of manufacturing a one-dimensional gradient index lens having a lens function equivalent to a semi-cylindrical lens using the method of the present invention. As shown in Fig. 4, a gradient index type one-dimensional lens has a parallelepiped substrate 1 made of transparent plastic, and the refractive index Na at the center of the thickness of the substrate 1 is the maximum, and the refractive index Na is the maximum at the center of the thickness to of the substrate 1. The lens has a refractive index distribution such that the refractive index Nb is the minimum and the refractive index gradually decreases parabolically from the center toward both surfaces, and the refractive index is uniform in the direction of the width W of the substrate 1. . In such an optical transmission body 10, when a parallel light beam is incident from one end surface 1A side, the light beam that enters the substrate 1 meanderingly travels with the period L of the above-mentioned equation (2), and the lens length z corresponds to the lens length z. The focal lines are connected at appropriate distances from the end surface 1B. In the method according to the present invention for manufacturing the flat one-dimensional lens as described above, first, as shown in FIG. A lens mold 3 is placed on the substrate 2. As described above, the mold 3 is made of a material that is non-reactive with the monomer Mb and can be freely impregnated and leached with the monomer Mb, such as a phenolic resin foam having continuous pores. A lens female mold space 4 is provided in this mold 3 in accordance with the desired lens shape. In the case of this example, a plurality of flat female spaces 4 are provided at intervals. Next, each of the female mold spaces 4 is filled with a partially polymerized resin monomer Ma, and another substrate similar to the substrate 2 is placed between the two substrates 2, 2 and the mold 3. After the laminate is fixed so as not to be separated from each other, it is immersed in a liquid of resin monomer Mb for forming a refractive index distribution. As a result, the monomer Mb seeps into the mold 3 from the side-exposed mold surface, oozes out from the inner wall surface of the lens female mold space 4, and fills this space 4. It diffuses into the partially polymerized monomer Ma. After being immersed for a certain period of time, it is taken out to complete the polymerization, thereby obtaining a flat plate-shaped gradient index plastic one-dimensional lens as shown in FIG. Similarly, by changing the shape of the female mold space 4 of the mold 3, it is possible to easily produce refractive index distribution type plastic optical transmitters 10 having various shapes as illustrated in FIGS. 5 to 7, for example. It can be manufactured. Figure 5 shows an elbow-type transmission body in which a cylindrical lens is bent at 90 degrees.For example, by connecting optical fibers to both end faces, the light transmitted from one optical fiber is bent at right angles and then transferred to the other optical fiber. Relay transmission to. The one in Figure 6 is for branching and merging, and by connecting optical fibers to each end of the trident, the light transmitted through one optical fiber is split equally into two optical fibers. Or conversely, it is used to mix the light transmitted by two optical fibers and then transmit it to a single optical fiber. In addition, the one in Figure 7 has a single gradient index cylindrical lens in the center, with multiple gradient index cylindrical lenses branching out at both ends, and optical fibers are connected to each of these branch ends. By doing this, the lights of various wavelengths sent individually through one group of fibers are mixed in the center, and then
It works as a mixing coupler that evenly splits and injects light into the group of optical fibers on the other side. Example 1 Approximately 30 communicating bubbles with a pore diameter of around 60 ÎŒm
% of the phenolic resin foam is cut into the shape shown in Figure 1 to form a mold 3, and CR-39 (diethylene glycol bisallyl carbonate) is
This foam is made by adding approximately 3% BPO (benzoyl peroxide) and uniformly dissolving it, polymerizing it in a constant temperature water bath at 75 degrees Celsius, and cooling it when the viscosity reaches about 20,000 cp at 25 degrees Celsius. A rectangular parallelepiped female mold space 4 made in the molded product was filled with the mixture, and a lid was placed between a glass plate. Add this to 4FMA (methacrylic acid 1,
1,3-trihydroperfluoropropyl) and left at room temperature for about 1 hour, then transferred to a constant temperature water bath at 75°C and heated for 10 hours to cure. After polishing the end face, when the light from the mercury lamp passes through it, about 3
Three bright lines were observed on the screen placed at mm. Example 2 Approximately 3% BPO (benzoyl peroxide) is added to DAIP (diallylisophthalate) and dissolved to approximately 1%, and this is polymerized in a constant temperature water bath at 75°C to a viscosity of approximately 20,000 cp at 25°C. When the temperature reached the temperature, it was cooled to stop the polymerization. A mold 3 shown in FIG. 1 is made by sintering fine polyethylene powder and pasting together plates in which fine pores communicate with the outside, and the mold 3 shown in FIG. A half-polymer of DAIP prepared as described above was injected into the container, and the top and bottom were sandwiched between glass plates and a lid was placed. This was immersed in MMA (methyl methacrylate) and left at room temperature for about 1 hour, then transferred to a constant temperature water bath at 75°C and heated for 10 hours to harden. After polishing the end face, when light from the mercury lamp was passed through it, three bright lines were observed on the screen placed approximately 2 mm from the end face of the lens on the opposite side of the mercury lamp.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の実斜䟋を瀺し、第図は単量䜓
Maを成圢型内に充填した状態を瀺す断面図、第
図は同平面図、第図は単量䜓Maを充填した
成圢型を単量䜓Mb䞭に浞挬しおMbをMa䞭に拡
散させる工皋を瀺す断面図、第図は第図ない
し第図の方法で埗られる屈折率分垃型の䞀次元
レンズを瀺す斜芖図、第図ないし第図は本発
明方法によ぀お埗られる光䌝送䜓の圢状䟋を瀺す
斜芖図である。   成圢型、  雌型空間郚、  光
䌝送䜓、MaMb  単量䜓。
The drawings show examples of the invention, and Figure 1 shows monomers.
Figure 2 is a cross-sectional view showing the state in which Ma is filled into the mold, Figure 2 is a plan view of the same, and Figure 3 is a diagram showing the mold filled with monomer Ma being immersed in monomer Mb to transfer Mb into Ma. FIG. 4 is a cross-sectional view showing the diffusion process, FIG. 4 is a perspective view showing a gradient index type one-dimensional lens obtained by the method shown in FIGS. 1 to 3, and FIGS. FIG. 3... Molding mold, 4... Female mold space, 10... Optical transmission body, Ma, Mb... Monomer.

Claims (1)

【特蚱請求の範囲】  屈折率がNbの重合䜓共重合䜓を含むPb
を圢成する単量䜓単量䜓混合物を含むMb
を、該単量䜓Mbに察し非反応性であ぀お該単量
䜓Mbの含浞・浞出が自圚な物質で圢成した成圢
型䞭に含浞させ、前蚘成圢型には所望の光䌝送䜓
圢状にが合せた雌型郚を圢成し、前蚘雌型郚に、
Nbずは異なる屈折率Naを有する重合䜓共重合
䜓を含むPaを圢成する単量䜓単量䜓混合物
を含むMaを重合未完の状態で充填し、前蚘単
量䜓Maに接觊する成圢型面からの単量䜓Mbの
浞出・拡散によ぀お前蚘重合䜓Pa内に衚面から
内郚に向けお次第に倉化する屈折率募配を䞎えた
埌、重合を完了させるこずを特城ずする屈折率募
配をも぀たプラスチツク光䌝送䜓を補造する方
法。  特蚱請求の範囲第項においお、成圢型を埮
现な連続空孔を有する倚孔質䜓で圢成したプラス
チツク光䌝送䜓の補造方法。
[Claims] 1. Polymer (including copolymer) Pb with a refractive index of Nb
Monomers (including monomer mixtures) forming Mb
is impregnated into a mold made of a substance that is non-reactive with the monomer Mb and can be freely impregnated and leached with the monomer Mb, and the mold is filled with a material having a desired shape of the light transmitting body. forming a mated female mold part; in the female mold part;
A monomer (including a monomer mixture) Ma forming a polymer (including a copolymer) Pa having a refractive index Na different from that of Nb is filled in an uncompleted polymerized state and brought into contact with the monomer Ma. Refraction characterized in that polymerization is completed after giving a refractive index gradient that gradually changes from the surface to the inside of the polymer Pa by leaching and diffusing the monomer Mb from the surface of the mold. A method of manufacturing a plastic optical conduit with a rate gradient. 2. The method of manufacturing a plastic optical transmission body according to claim 1, wherein the mold is made of a porous material having fine continuous pores.
JP58025529A 1983-02-18 1983-02-18 Method for producing plastic optical transmission body Granted JPS59152406A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58025529A JPS59152406A (en) 1983-02-18 1983-02-18 Method for producing plastic optical transmission body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58025529A JPS59152406A (en) 1983-02-18 1983-02-18 Method for producing plastic optical transmission body

Publications (2)

Publication Number Publication Date
JPS59152406A JPS59152406A (en) 1984-08-31
JPH0250443B2 true JPH0250443B2 (en) 1990-11-02

Family

ID=12168564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58025529A Granted JPS59152406A (en) 1983-02-18 1983-02-18 Method for producing plastic optical transmission body

Country Status (1)

Country Link
JP (1) JPS59152406A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62222203A (en) * 1986-03-24 1987-09-30 Nippon Sheet Glass Co Ltd Production of optical element composed of synthetic resin
US5382448A (en) * 1990-08-16 1995-01-17 Yasuhiro Koike Method of manufacturing optical transmission medium from synthetic resin
JP3010369B2 (en) * 1990-08-16 2000-02-21 康博 小池 Method of manufacturing synthetic resin optical transmission body
JP3005808B2 (en) * 1990-08-16 2000-02-07 康博 小池 Manufacturing method of synthetic resin optical transmission body
FR2673576B1 (en) * 1991-03-08 1993-06-18 Essilor Int PROCESS FOR OBTAINING AN ARTICLE OF TRANSPARENT POLYMER MATERIAL WITH GRADIENT OF REFRACTION INDEX.
JP3151364B2 (en) * 1994-12-05 2001-04-03 シャヌプ株匏䌚瀟 Method for manufacturing polymer optical waveguide
US6482551B1 (en) * 1998-03-24 2002-11-19 Inphase Technologies Optical article and process for forming article

Also Published As

Publication number Publication date
JPS59152406A (en) 1984-08-31

Similar Documents

Publication Publication Date Title
US2479935A (en) Method for forming coated optical elements from polymerizable materials
SU674658A3 (en) Mould for making contact lenses
EP0718646B1 (en) Method for producing a polymeric optical waveguide
JP3010369B2 (en) Method of manufacturing synthetic resin optical transmission body
EP0345994B1 (en) Contact lenses and materials and methods of making same
JPH0250443B2 (en)
US3894129A (en) Method of manufacture of strain free contact lenses
JPS60175009A (en) Production of plastic optical element having refractive index distribution
JPH01198312A (en) Method and apparatus for molding plastic lens
JP3005808B2 (en) Manufacturing method of synthetic resin optical transmission body
FI70232C (en) MJUKA KONTAKTLINSER OCH FOERFARANDE FOER DERAS FRAMSTAELLNING
KR100387096B1 (en) Process for the preparation and apparatus of plastic optical fiber preform having refractive index grade and optical fiber preform and optical fiber obtained therefrom
JPH0225484B2 (en)
JPH0740357A (en) Production of plastic lens having distribution of refractive index
JPH0224208B2 (en)
JPH0727928A (en) Production of plastic optical transmission body
JPS62251712A (en) Method for forming endoscope
JPH0252241B2 (en)
JPH0355801B2 (en)
JPH01122431A (en) Manufacture of plastic lens
JPH0621886B2 (en) Method for manufacturing synthetic resin optical transmitter
JPS5974501A (en) Composite lens and its production
JPH06230204A (en) Production of synthetic resin optical element having refractive index distribution
NO162009B (en) CASTLE APPLIANCE FOR THE MANUFACTURING OF LENSES OR OTHER OPTICAL DEVICES.
JPS62222203A (en) Production of optical element composed of synthetic resin