JPH0250081B2 - - Google Patents

Info

Publication number
JPH0250081B2
JPH0250081B2 JP56060070A JP6007081A JPH0250081B2 JP H0250081 B2 JPH0250081 B2 JP H0250081B2 JP 56060070 A JP56060070 A JP 56060070A JP 6007081 A JP6007081 A JP 6007081A JP H0250081 B2 JPH0250081 B2 JP H0250081B2
Authority
JP
Japan
Prior art keywords
cis
acid
present
compound
alcohol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56060070A
Other languages
Japanese (ja)
Other versions
JPS57175106A (en
Inventor
Yoshio Katsuta
Hajime Hirobe
Yoshihiro Namite
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP56060070A priority Critical patent/JPS57175106A/en
Priority to US06/333,451 priority patent/US4457940A/en
Publication of JPS57175106A publication Critical patent/JPS57175106A/en
Publication of JPH0250081B2 publication Critical patent/JPH0250081B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Description

【発明の詳細な説明】 本発明は一般式 (式中、Xは塩素原子又は臭素原子を示す。R
は水素原子又はシアノ基であり、Yは水素原子、
フツ素原子、塩素原子又は臭素原子を表す。)で
表される(1R,シス)の立体配置のシクロプロ
パンカルボン酸エステル誘導体を含有することを
特徴とする殺虫、殺ダニ剤に関する。近年、天然
の殺虫成分であるピレトリンの化学構造を改変し
た類縁体の研究が広く進められ一般式 (式中、R,Yは前述と同じ意味を表し、
R′は菊酸、ジハロビニル菊酸をはじめ合成ピレ
スロイドを構成する種々のカルボン酸を表す。)
で示される一連の化合物は既に公知であり、その
うちのいくつかは家庭用、防疫用、農業用殺虫剤
として広く実用に供されている。本発明者らは更
に有用な殺虫成分を探索すべく研究を続け、一般
式(iv)で表される化合物のフエノキシ基を置換アニ
リノ基で置き換えた一連の化合物(広義には一般
式()の化合物も含む)がもとの化合物に比べ
て殺虫効力が著しく増強する一方、温血動物及び
魚介類に対する毒性が軽減されることを知り、先
に特許を出願した(出願番号55−185758及び56−
13147)。本発明者らは更に、異性体の構造活性に
注目し特にハロビニル菊酸の光学、幾何異性体に
関して種々鋭意研究を重ねた結果、一般式()
で表される(1R,シス)の立体配置を有する2,
2−ジメチル−3−(2,2−ジハロビニル)シ
クロプロパンカルボン酸エステル誘導体を含有す
る殺虫剤が、他の立体配置のものに比べ、種々の
害虫に対して格段に殺虫効力がすぐれていること
を見出し、本発明を完成した。 ジハロビニル菊酸の3−フエノキシベンジルア
ルコールエステル及び3−フエノキシ−α−シア
ノベンジルアルコールエステルの各異性体の研究
については(IR,トランス)すなわちd−シス
体の殺虫活性が、(1R,シス)すなわちd−トラ
ンス体に比べ、1.5〜2.5倍高いことがエリオツト
らにより明らかにされている(Pestic.Sci.1974,
5791、同1975,537、同1978,112を参照)。
しかるに本発明者らが今回、3−アニリノベンジ
ルアルコールエステル誘導体について検討した結
果によれば、驚くべきことにd−シス体の殺虫効
力はd−トランス体のそれに比べ、イエバエ、チ
ヤバネゴキブリ、ハスモンヨトウ等に対しいずれ
も3倍以上であり、従来の知見からは予期しえな
い効力の増強であつた。また両者のノツクダウン
効果を比較した場合、d−シス体が極めて高いこ
とも明らかとなつた。近年、環境汚染の見地か
ら、高殺虫活性薬剤の少量散布が志向されてお
り、このような極めて殺虫力のすぐれた異性体の
発見は非常に有用なものである。さらに最近シス
体のジハロビニル菊酸の選択的合成法やdl体分割
の改良法が次々と開発されて(Pestic.Sci.1980,
11180を参照)、本発明化合物を構成する酸、アル
コール両成分は容易にしかも安価に得ることがで
きるようになり、実用化も充分期待しえるもので
ある。本発明で有効成分として用いる上記式
(I)で表される化合物はエステル製造の一般方
法に準じて一般式 (式中、Xは塩素原子又は臭素原子を示す。)
で示される(IR,シス)の立体配置のシクロプ
ロパンカルボン酸又はその反応性誘導体と一般式 (式中、Rは水素原子又はシアノ基であり、Y
は水素原子、フツ素原子、塩素原子又は臭素原子
を表す。)で示されるアルコール又はその反応性
誘導体とを反応させることによつて調製しえる。
シクロプロパンカルボン酸の反応性誘導体として
は例えば酸ハライド、酸無水物、低級アルキルエ
ステル、アルカリ金属塩などがあげられる。アル
コールの反応性誘導体としては例えばクロライ
ド、ブロマイド、P−トルエンスルホン酸エステ
ルなどがあげられる。反応は適当な溶媒中で必要
になり、脱酸剤又は触媒としての有機又は無機塩
基又は酸の存在下に必要により加熱下に行われ
る。なおアルコール成分にいてRがシアノ基の場
合不斎炭素が存在し、通常の合成法で得られるも
のはRSラセミ体であるがこれらの各々異性体も
本発明に含まれる。そしてフエノキシベンジルア
ルコールエステル誘導体の場合と同様、S体の方
が殺虫活性体でありより好ましい。上記式()
で示される化合物の代表例を示せば次の通りであ
るが本発明はもちろんこれらのみに限定されるも
のではない。 【表】 本発明で有効成分として用いる化合物は新規化
合物であり、常温で固体又は液体であつて有機溶
剤一般に易溶である。従つて散布用殺虫剤として
は、乳剤、油剤、粉剤、水和剤、エアゾール剤等
として用いることができ、又木粉その他適当な基
材と混合して蚊取線香の如き燻蒸用殺虫剤として
使用することができる。又、この有効成分を適当
な有機溶剤に溶解して台紙に浸ませ又は適当な溶
剤に溶かして適当な加熱体によつて加熱蒸散させ
るいわゆる電気蚊取として使用する場合も蚊取線
香と同様すぐれた効果を示す。なお本発明で有効
成分として用いる化合物は従来の菊酸エステル系
ピレスロイドに比べ光に安定であり、しかも殺虫
スペクトルが広いこと、低毒性であること、安価
であることから従来の有機リン剤、有機塩素系殺
虫剤に替わる農園芸用殺虫剤として使用すること
ができる。本発明殺虫剤の用途として、ハエ、
蚊、ゴキブリ等の衛生害虫をはじめ、有機リン
剤、カーバメート剤抵抗性ツマグロヨコバイ、ウ
ンカ類や、ニカメイチユウ、カメムシ類、ヨトウ
ガ、コナガ、タバコガ、マメゾウムシ、ヤガ、モ
ンシロチヨウ、クリケムシ、ハマキ、アブラム
シ、カイガラムシ類等の農業害虫、コクゾウ等の
貯穀害虫、ダニ類等の防除に極めて有用である。
また本発明の殺虫剤にN−オクチルビシクロヘプ
テンジカルボキシイミド(商品名MGK−264)、
N−オクチルビシクロヘプテンジカルボキシイミ
ドとアリールスルホン酸塩との混合物(商品名
MGK−5026)、サイネピン500、オクタクロロジ
プロピルエーテル、ピペロニルブトキサイド等の
共力剤を加えるとその殺虫効果を一層高めること
ができる。なお必要があれば本発明殺虫剤に
BHT、DBHQ等の安定剤、酸化防止剤を加える
ことによつて安定性を一層向上することができ
る。また本発明の殺虫剤に他の殺虫剤例えばフエ
ニトロチオン、DDVP、ダイアジノン、プロパ
ホス、ピリダフエンチオン等の有機リン剤、
NAC、MTMC、BPMC、PHC等のカーバメー
ト剤、ピレトリン、アレスリン、フタールスリ
ン、フラメトリン、フエノトリン、ペルメトリ
ン、サイペルメトリン、デカメトリン、フエンバ
レレート、フエンプロパネート等の従来のピレス
ロイド系殺虫剤、カルタツプ、クロルフエナミジ
ン、メソミル等の殺虫剤、あるいは殺ダニ剤、殺
菌剤、殺線虫剤、除草剤、植物生長調整剤、肥料
その他の農薬を混合することによつて効果のすぐ
れた多目的組成物が得られ、労力の省力化、薬剤
間の相乗効果も充分期待しえるものである。 次に代表例について合成実施例を示す。 合成実施例 1 (IR,シス)2,2−ジメチル−3−(2,2
−ジクロロビニル)シクロプロパンカルボン酸
の合成 Pestic.Sci.1974,791に記載された方法に従
い、dl−cis−2,2−ジメチル−3−(2,2−
ジクロロビニル)シクロプロパンカルボン酸7.3
gをベンゼン100mlに溶解し、これにl−α−メ
チルベンジルアミン4.2gをベンゼン15mlに溶解
したものを50℃で混合し室温で一晩放置した。得
られた結晶をベンセンから3回再結晶を繰り返
し、d−cis酸のl−α−メチルベンジルアミン
塩3.0gを得た。 〔m.p.147゜〔α〕20 D−26.1゜(C,1.9in EtoH)〕 アミン塩にベンゼン25mlと3N−HCl25mlを加
えてよく振とうし、ベンゼン層をよく洗浄後溶媒
を除去してd−cisすなわち(1R,シス)2,2
−ジメチル−3−(2,2−ジクロロビニル)シ
クロプロパンカルボン酸1.7gを得た。 〔m.p.90゜〔α〕20 D+27.2゜(C,2.1in CHCl3)〕 合成実施例 2 3−アニリノ−α−シアノベンジルアルコール
の合成 Zhur.Obshchei Khim30,2693(1960)に記載
された方法に従い、3−アセチルアミノ安息香酸
メチルとヨードベンゼンをニトロメタン中で炭酸
カリウム及び活性銅粉の存在下に反応させて3−
アニリノ安息香酸を得、以下図に示すルートによ
つて合成した。 3−アニリノ安息香酸4.2gをメタノール40mlに
溶解しこれに1N−HClメタノール溶液40mlを加
えて2時間還流した。メタノールを除去し、エー
テルを加えてエステルを抽出した。エーテル層
は、2%NaOH、飽和食塩水で洗浄しエーテル
を除去して3−アニリノ安息香酸4.2gを得た。
(m.p.110〜112℃) 3−アニリノ安息香酸メチル4.5gをメタノー
ル20mlに溶解し氷冷下で水酸化ホウ素ナトリウム
7.2gを徐々に加えた。しだいに温度を上げ、8
時間還流後、反応液を氷冷した10%H2SO4水溶
液に流入した。エーテル抽出して油分5.0gを集
め、さらに未反応のメチルエステルを除去するた
め5%KOHメタノール溶液を加えて加水分解を
行つた。反応液からアルカリ洗浄により副生した
3−アニリノ安息香酸を除去し、3−アニリノベ
ンジルアルコール3.5gを得た。 上記アルコール3.0gをベンゼン30mlに溶解し
活性化したMnO26.0gを加えて3時間還流後、生
成したMnOをろ過により除去した。ろ液を濃縮
しシリカゲルカラム40gを流下させて3−アニリ
ノベンズアルデヒド2.7gを得た。得られたアル
デヒド2.5gをエタノール40mlに溶解しKCN1.5
g、酢酸1.8mlを加えて一晩かく拌後2N−KCl100
ml中に注入しベンゼンにて抽出した。ベンゼン層
は食塩水で洗浄後濃縮し、3−アニリノ−α−シ
アノベンジルアルコール2.7gを得た。 アルコールの反応性誘導体であるブロマイドは
ベンゼン中氷冷下でピリジン存在下にチオニルブ
ロマイドを反応させて得た。 合成実施例 3 アルコールとカルボン酸ハライドとの反応によ
るエステルの合成 (1R,シス)2,2−ジメチル−3−(2,2
−ジクロロビニル)シクロプロパンカルボン酸ク
ロライド4.8gを乾燥ベンゼン15mlに溶解し、こ
れに3−アニリノ−α−シアノベンジルアルコー
ル4.5gを乾燥ベンゼン20mlに溶解したものを加
え、さらに縮合助剤として乾燥ピリジン3mlを加
えるとピリジン塩酸塩が析出する。密栓して室温
で一夜放置後ピリジン塩酸塩の結晶をろ過した
後、ベンゼン溶液をぼう硝で乾燥しベンゼンを減
圧下に留去して3′−アニリノ−α′−シアノベンジ
ル(1R,シス)2,2−ジメチル−3−(2,2
−ジクロロビニル)シクロプロパンカルボキシレ
ート7.7gを得た。 合成実施例 4 アルコールとカルボン酸との反応によるエステ
ルの合成 (1R,シス)2,2−ジメチル−3−(2,2
−ジブロモビニル)シクロプロパンカルボン酸
6.0gと3−(4−フルオロアニリノ)ベンジルア
ルコール4.4gとを50mlの乾燥ベンゼンに溶解し
6.2gのジシクロキシルカルボジイミドを添加し
て一晩密栓放置した。翌日、4時間加熱還流して
反応を完結させ冷却後析出したジシクロヘキシル
尿素をろ別した。ろ液を濃縮して得られた油状物
質を100gのシリカゲルカラムを流下させて3′−
(4−フルオロアニリノ)ベンジル(1R,シス)
2,2−ジメチル−3−(2,2−ジブロモビニ
ル)シクロプロパンカルボキシレート9.7gを得
た。 合成実施例 5 Pestic.Sci.1980,11188に記載された方法に従
い、(1R,4R,5S)−4−ハイドロキシ−6,6
−ジメチル−3−オキサビシクロ〔3,1,0〕
ヘキサ−2−オンと3−アニリノ−α−シアノベ
ンジルアルコールをトルエン−4−スルフオニツ
クアシツドの存在下に反応させてラクトンエーテ
ルを得た。カラムクロマトグラフイーで(S)−
2−〔(1R,4R,5S)−6,6−ジメチル−2−
オキソ−3−オキサビシクロ〔3,1,0〕ヘキ
サ−4−イルオキシ〕−2−(3−アニリノフエニ
ル)アセトニトリルを分離し加水分解により得た
(S)3−アニリノ−α−シアノベンジルアルコ
ールを用いて合成実施例4に従い(S)3′−アニ
リノ−α′−シアノベンジル(1R,シス)2,2
−ジメチル−3−(2,2−ジブロモビニル)シ
クロプロパンカルボキシレートを合成した。 合成実施例 6 アルコールのハライドと有機第3級塩基カボン
酸塩の反応によるエステルの合成 (1R,シス)2,2−ジメチル−3−(2,2
−ジクロロビニル)シクロプロパンカルボン酸
4.2gをアセトン50mlに溶解し、これに3−(4−
ブロモアニリノ)−α−シアノベンジルブロマイ
ド7.4gを加える。かく拌下にトリエチルアミン
4mlを加え、60〜80℃で3時間反応させた後エー
テルで溶解しエーテル溶液を希塩酸、重曹水、食
塩水で充分洗浄後ぼう硝で乾燥しエーテルを減圧
下に留去して3′−(4−ブロモアニリノ)−α′−シ
アノベンジル(1R,シス)2,2−ジメチル−
3−(2,2−ジクロロビニル)シクロプロパン
カルボキシレート8.6gを得た。 次に本発明の殺虫剤がすぐれたものであること
をより明らかにするため効果の試験成績を示す。 試験例1 散布による殺虫試験 本発明で有効成分として用いる化合物及びその
対照化合物の0.02%白灯溶液(A)、0.02%とピ
ペロニルブトキサイド0.1%の白灯溶液(B)、
0.01%とフタールスリン0.01%の白灯溶液(C)
及びアレスリン、フタールスリンの夫々0.02%の
白灯溶液をターンテーブル装置により噴霧した。
1分、2分、5分、10分、20分後のイエバエの落
下仰転率から供試薬剤のノツクダウン効果の相対
有効度を算出し、更に24時間後の致死率を求めた
ところ次の如くである。対照薬剤は化合物番号の
後にA,B,Cの記号をつけて示したがいずれも
アルコール成分はもとの化合物と同一である。
( )内は24時間後の致死率を表す。 【表】 試験の結果(1R,シス)の本発明殺虫剤のノ
ツクダウン効果は非常にすぐれ、対応する(1R,
トランス)すなわちトランス体に比べると3〜5
倍活性が高かつた。 試験例2 微量滴下法による殺虫試験 フエノトリン及び本発明化合物、その対照化合
物の各々とそれらにサイネピリン500をそれぞれ
有効成分の2倍量を添加し所定濃度のアセトン溶
液としたものをマイクロシリンジにてイエバエ成
虫、チヤバネゴキブリ成虫、ハスモンヨトウ3令
幼虫に施用し、24時間後の死虫率からフエノトリ
ンに対する相対殺虫効力及びサイネピリン500に
よる共力効果を調べたところ次の如くである。な
お対照化合物の記号A,B,Cは試験例1と同じ
意味を示す。 【表】 試験の結果、本発明殺虫剤のイエバエ、チヤバ
ネゴキブリ、ハスモンヨトウに対する殺虫活性は
対応するトランス体あるいはdl−cis,trans体の
3倍以上であり、また共力剤を加えることによつ
て効力は更に増強した。 次に製剤化の実施例を示す製剤化にあたつては
一般農薬に準じて何らの特別な条件を必要とせず
当業技術者の熟知する方法によつて調製しえる。 参考例 1 本発明化合物(1)0.2部に白灯油を加えて全体を
100部として0.2%油剤を得る。 参考例 2 本発明化合物(2)0.2部とピペロニルブトキシサ
イド0.8部に白灯油を加えて全体を100部として油
剤を得る。 参考例 3 本発明化合物(4)20部にソルポールSM−200(東
邦化学登録商標名)10部、キシロール70部を加え
てかく拌混合溶解して20%乳剤を得る。 参考例 4 本発明化合物(5)0.4部、レスメトリン0.1部、オ
クタクロロジプロピルエーテル1.5部を精製灯油
28部に溶解しエアゾール容器に充填しバルブ部分
を取り付けた後該バルブ部分を通じて噴射剤(液
化石油ガス)70部を加圧充填してエアゾールを得
る。 参考例 5 本発明化合物(7)0.5g、BHT0.5gを除虫菊抽出
粕粉、木粉、デン粉等の蚊取線香用基材99.0gに
均一に混合し、公知の方法によつて蚊取線香を得
る。 参考例 6 本発明化合物(9)0.4g、MGK−5026 1.0gを蚊
取線香用基材98.6gに均一に混合し、公知の方法
によつて蚊取線香を得る。 参考例 7 本発明化合物(10)0.3部とクレー99.7部をよく粉
砕混合して0.3%粉剤を得る。 参考例 8 本発明化合物(12)40部、硅藻土35部、クレー20
部、ラウリルスルホン酸塩3部、カルボキシメチ
ルセルローズ2部を粉砕混合して水和剤を得る。 試験例 3 モモアカアブラムシの多数発生した一面の5〜
6葉期の大根畑に参考例3によつて得られた乳剤
のうち本発明化合物(1),(3),(6)及び(9)を含む各々
の乳剤の水による1000倍希釈液を100/反あた
り散布した。2日後の寄生率調査で散布前密度の
1/10以下に各区共に減少していた。 試験例 4 鉢植えのソラ豆へ殺虫成分を適用する1日前に
1本の木に対してアブラムシを約200匹寄生させ
た。参考例8によつて得られた水和剤のうち(2),
(7),(10)及び(12)の4000倍希釈液を害虫がついた葉へ
圧縮空気スプレー法で10ml/ポツトあたり散布
し、2日後の被害度を観察した。その結果いずれ
によつても被害度の増大は認められなかつた。 試験例 5 播種5日後の鉢植えツルナシインゲン4葉に1
葉あたり10頭のニセナミハダニ雌成虫を寄生さ
せ、27℃恒温室で保管する。6日後、参考例3で
得られた乳剤(4),(5),(8)及び(10)を水で有効成分
100p.p.m.に希釈した薬液をターンテーブル上で
1鉢あたり10ml散布した。10日後植物上のニセナ
ミハダニの調査ではいずれの薬剤においても寄生
数は10頭以下であつた。 試験例 6 参考例7によつて得られた(1),(4),(7)及び(11)の
各々の粉剤を直径14cmの腰高ガラスシヤーレ底面
に2g/m2の割合で均一に散布し底部約1cmを残
してバターを壁面に塗布する。その中にチヤバネ
ゴキブリ成虫を1群10匹として放ち、30分間接触
させ新しい容器にゴキブリを移せば3日後にはい
ずれの粉剤によつても80%以上のゴキブリを殺虫
することができた。
[Detailed Description of the Invention] The present invention relates to the general formula (In the formula, X represents a chlorine atom or a bromine atom.R
is a hydrogen atom or a cyano group, Y is a hydrogen atom,
Represents a fluorine atom, chlorine atom or bromine atom. ) The present invention relates to an insecticide and acaricide characterized by containing a cyclopropanecarboxylic acid ester derivative having the (1R, cis) configuration represented by (1R, cis). In recent years, research has been widely conducted on analogs with modified chemical structures of pyrethrin, a natural insecticidal ingredient, and the general formula (In the formula, R and Y represent the same meanings as above,
R' represents various carboxylic acids constituting synthetic pyrethroids, including chrysanthemum acid and dihalobinyl chrysanthemum acid. )
A series of compounds represented by are already known, and some of them are widely used as household, epidemic prevention, and agricultural insecticides. The present inventors continued their research to search for more useful insecticidal ingredients, and developed a series of compounds in which the phenoxy group of the compound represented by the general formula (iv) was replaced with a substituted anilino group (in a broad sense, the compound represented by the general formula ()). After learning that the insecticidal efficacy of the compound (including the compound) was significantly enhanced compared to the original compound, while the toxicity to warm-blooded animals and seafood was reduced, I applied for a patent earlier (application numbers 55-185758 and 56). −
13147). The present inventors further focused on the structural activity of the isomers, and as a result of intensive research on the optical and geometrical isomers of halobinyl chrysanthemum acid, the general formula ()
2, which has the (1R, cis) configuration represented by
Insecticides containing 2-dimethyl-3-(2,2-dihalobinyl)cyclopropanecarboxylic acid ester derivatives have significantly superior insecticidal efficacy against various pests compared to those with other steric configurations. They discovered this and completed the present invention. Regarding the study of each isomer of 3-phenoxybenzyl alcohol ester and 3-phenoxy-α-cyanobenzyl alcohol ester of dihalobinyl chrysanthemum acid, the insecticidal activity of the (IR, trans) or d-cis form is ), that is, 1.5 to 2.5 times higher than the d-trans form (Pestic.Sci.1974,
5791, 1975, 6 537, 1978, 9 112).
However, according to the results of the present inventors' study of 3-anilinobenzyl alcohol ester derivatives, surprisingly, the insecticidal efficacy of the d-cis form is higher than that of the d-trans form, against house flies, German cockroaches, In each case, it was more than three times as strong as that of Spodoptera spp., which was an unexpected increase in efficacy based on conventional knowledge. Furthermore, when comparing the knock-down effects of both, it was revealed that the d-cis form had an extremely high knockdown effect. In recent years, from the standpoint of environmental pollution, there has been a trend toward spraying small amounts of highly insecticidal agents, and the discovery of such isomers with extremely excellent insecticidal activity is extremely useful. Furthermore, methods for selectively synthesizing cis-dihalovinyl chrysanthemum acid and improved methods for splitting dl-isomer have recently been developed one after another (Pestic.Sci.1980,
11180), both the acid and alcohol components constituting the compound of the present invention can now be obtained easily and inexpensively, and its practical application is fully expected. The compound represented by the above formula (I) used as an active ingredient in the present invention can be prepared using the general formula (In the formula, X represents a chlorine atom or a bromine atom.)
Cyclopropanecarboxylic acid or its reactive derivative with the (IR, cis) configuration shown by and the general formula (In the formula, R is a hydrogen atom or a cyano group, and Y
represents a hydrogen atom, a fluorine atom, a chlorine atom or a bromine atom. ) or a reactive derivative thereof.
Examples of reactive derivatives of cyclopropanecarboxylic acid include acid halides, acid anhydrides, lower alkyl esters, and alkali metal salts. Examples of reactive derivatives of alcohol include chloride, bromide, and P-toluenesulfonic acid ester. The reaction is carried out in a suitable solvent, in the presence of an organic or inorganic base or acid as a deoxidizing agent or catalyst, and if necessary with heating. Note that when R in the alcohol component is a cyano group, a non-satile carbon is present, and the RS racemate obtained by ordinary synthesis methods is also included in the present invention. As in the case of the phenoxybenzyl alcohol ester derivatives, the S form is more preferred as it is the insecticidal form. The above formula ()
Representative examples of the compounds represented by are shown below, but the present invention is of course not limited to these. [Table] The compound used as an active ingredient in the present invention is a new compound, is solid or liquid at room temperature, and is generally easily soluble in organic solvents. Therefore, as an insecticide for spraying, it can be used as an emulsion, oil, powder, wettable powder, aerosol, etc. It can also be mixed with wood flour or other suitable base material as an insecticide for fumigation such as mosquito coils. can be used. Also, when used as a so-called electric mosquito repellent, in which the active ingredient is dissolved in an appropriate organic solvent and soaked in a mount, or dissolved in an appropriate solvent and heated and evaporated with an appropriate heating element, it is as good as a mosquito coil. This shows the effect of The compound used as an active ingredient in the present invention is more stable to light than conventional chrysanthemum acid ester-based pyrethroids, has a broad insecticidal spectrum, has low toxicity, and is inexpensive, so it is not suitable for conventional organic phosphorus agents, organic It can be used as an agricultural and horticultural insecticide in place of chlorine-based insecticides. The insecticide of the present invention can be used for flies,
In addition to sanitary pests such as mosquitoes and cockroaches, organophosphorus and carbamate resistant leafhoppers, planthoppers, stinkbugs, armyworms, diamondback moths, tobacco moths, bean weevils, nocturnal moths, cabbage moths, chestnut beetles, leafhoppers, aphids, and scale insects. It is extremely useful for the control of agricultural pests such as, grain storage pests such as brown elephant, mites, etc.
In addition, the insecticide of the present invention includes N-octylbicycloheptenedicarboximide (trade name MGK-264),
Mixture of N-octylbicycloheptenedicarboximide and arylsulfonate (trade name)
The insecticidal effect can be further enhanced by adding a synergist such as MGK-5026), Cinepine 500, octachlorodipropyl ether, or piperonyl butoxide. If necessary, use the insecticide of the present invention.
Stability can be further improved by adding stabilizers and antioxidants such as BHT and DBHQ. In addition, the insecticide of the present invention may include other insecticides such as organic phosphorus agents such as fenitrothion, DDVP, diazinon, propaphos, and pyridafentione;
Carbamate agents such as NAC, MTMC, BPMC, and PHC, conventional pyrethroid insecticides such as pyrethrin, allethrin, phthalthrin, flamethrin, phenothrin, permethrin, cypermethrin, decametrin, fuenvalerate, and fuenpropanate, cartap, and chlorphenamide. A highly effective multi-purpose composition can be obtained by mixing insecticides such as gin, methomyl, acaricides, fungicides, nematicides, herbicides, plant growth regulators, fertilizers and other agricultural chemicals. , labor savings, and synergistic effects between drugs can be fully expected. Next, synthetic examples will be shown for representative examples. Synthesis Example 1 (IR, cis)2,2-dimethyl-3-(2,2
-Dichlorovinyl) cyclopropanecarboxylic acid Synthesis of dl-cis-2,2 - dimethyl-3-(2,2-
dichlorovinyl)cyclopropanecarboxylic acid 7.3
g was dissolved in 100 ml of benzene, and 4.2 g of l-α-methylbenzylamine dissolved in 15 ml of benzene was mixed at 50°C and left overnight at room temperature. The obtained crystals were recrystallized three times from benzene to obtain 3.0 g of l-α-methylbenzylamine salt of d-cis acid. [mp147゜〔α〕 20 D −26.1゜(C, 1.9in EtoH)] Add 25 ml of benzene and 25 ml of 3N-HCl to the amine salt, shake well, wash the benzene layer thoroughly, remove the solvent, and add d-cis. i.e. (1R, cis)2,2
1.7 g of -dimethyl-3-(2,2-dichlorovinyl)cyclopropanecarboxylic acid was obtained. [mp90゜[α] 20 D +27.2゜ (C, 2.1in CHCl 3 )] Synthesis Example 2 Synthesis of 3-anilino-α-cyanobenzyl alcohol Described in Zhur. Obshchei Khim 30 , 2693 (1960) According to the method, methyl 3-acetylaminobenzoate and iodobenzene were reacted in nitromethane in the presence of potassium carbonate and activated copper powder to produce 3-
Anilinobenzoic acid was obtained and synthesized by the route shown in the figure below. 4.2 g of 3-anilinobenzoic acid was dissolved in 40 ml of methanol, 40 ml of 1N HCl methanol solution was added thereto, and the mixture was refluxed for 2 hours. Methanol was removed and ether was added to extract the ester. The ether layer was washed with 2% NaOH and saturated brine to remove ether, yielding 4.2 g of 3-anilinobenzoic acid.
(mp110-112℃) Dissolve 4.5g of methyl 3-anilinobenzoate in 20ml of methanol and add sodium borohydroxide under ice cooling.
7.2g was added gradually. Gradually raise the temperature and
After refluxing for an hour, the reaction solution was poured into an ice-cooled 10% aqueous H 2 SO 4 solution. Ether extraction was performed to collect 5.0 g of oil, and further hydrolysis was performed by adding a 5% KOH methanol solution to remove unreacted methyl ester. By-product 3-anilinobenzoic acid was removed from the reaction solution by alkali washing to obtain 3.5 g of 3-anilinobenzyl alcohol. 3.0 g of the above alcohol was dissolved in 30 ml of benzene, 6.0 g of activated MnO 2 was added, and after refluxing for 3 hours, the generated MnO was removed by filtration. The filtrate was concentrated and passed down a 40 g silica gel column to obtain 2.7 g of 3-anilinobenzaldehyde. Dissolve 2.5g of the obtained aldehyde in 40ml of ethanol and make KCN1.5
After adding 1.8 ml of acetic acid and stirring overnight, 2N-KCl100
ml and extracted with benzene. The benzene layer was washed with brine and concentrated to obtain 2.7 g of 3-anilino-α-cyanobenzyl alcohol. Bromide, a reactive derivative of alcohol, was obtained by reacting thionyl bromide in the presence of pyridine in benzene under ice cooling. Synthesis Example 3 Synthesis of ester by reaction of alcohol and carboxylic acid halide (1R, cis)2,2-dimethyl-3-(2,2
-Dichlorovinyl) cyclopropanecarboxylic acid chloride (4.8 g) was dissolved in 15 ml of dry benzene, to which was added 4.5 g of 3-anilino-α-cyanobenzyl alcohol dissolved in 20 ml of dry benzene, and then dry pyridine was added as a condensation aid. When 3 ml is added, pyridine hydrochloride precipitates out. After sealing the cap and leaving it overnight at room temperature, the crystals of pyridine hydrochloride were filtered, the benzene solution was dried with nitric acid, and the benzene was distilled off under reduced pressure to obtain 3'-anilino-α'-cyanobenzyl (1R, cis). 2,2-dimethyl-3-(2,2
-dichlorovinyl) cyclopropane carboxylate 7.7 g were obtained. Synthesis Example 4 Synthesis of ester by reaction of alcohol and carboxylic acid (1R, cis)2,2-dimethyl-3-(2,2
-dibromovinyl)cyclopropanecarboxylic acid
Dissolve 6.0 g and 4.4 g of 3-(4-fluoroanilino)benzyl alcohol in 50 ml of dry benzene.
6.2 g of dicycloxylcarbodiimide was added and the mixture was left sealed overnight. The next day, the reaction was completed by heating under reflux for 4 hours, and after cooling, the precipitated dicyclohexyl urea was filtered off. The oily substance obtained by concentrating the filtrate was passed down a 100 g silica gel column to 3'-
(4-fluoroanilino)benzyl (1R, cis)
9.7 g of 2,2-dimethyl-3-(2,2-dibromovinyl)cyclopropanecarboxylate was obtained. Synthesis Example 5 (1R,4R,5S)-4-hydroxy-6,6 was synthesized according to the method described in Pestic.Sci.1980, 11 188.
-dimethyl-3-oxabicyclo[3,1,0]
Lactone ether was obtained by reacting hex-2-one and 3-anilino-α-cyanobenzyl alcohol in the presence of toluene-4-sulfonic acid. Column chromatography (S)-
2-[(1R,4R,5S)-6,6-dimethyl-2-
Using (S) 3-anilino-α-cyanobenzyl alcohol obtained by separating and hydrolyzing oxo-3-oxabicyclo[3,1,0]hex-4-yloxy]-2-(3-anilinophenyl)acetonitrile According to Synthesis Example 4, (S)3'-anilino-α'-cyanobenzyl (1R, cis)2,2
-Dimethyl-3-(2,2-dibromovinyl)cyclopropanecarboxylate was synthesized. Synthesis Example 6 Synthesis of ester by reaction of alcohol halide and organic tertiary base carboxylate (1R, cis)2,2-dimethyl-3-(2,2
-dichlorovinyl)cyclopropanecarboxylic acid
Dissolve 4.2g in 50ml of acetone and add 3-(4-
Add 7.4 g of bromoanilino-α-cyanobenzyl bromide. Add 4 ml of triethylamine under stirring, react at 60-80°C for 3 hours, then dissolve in ether, wash the ether solution thoroughly with diluted hydrochloric acid, aqueous sodium bicarbonate, and brine, dry over sulfuric acid, and distill off the ether under reduced pressure. and 3'-(4-bromoanilino)-α'-cyanobenzyl (1R, cis)2,2-dimethyl-
8.6 g of 3-(2,2-dichlorovinyl)cyclopropanecarboxylate was obtained. Next, in order to make it clearer that the insecticide of the present invention is excellent, we will show the results of efficacy tests. Test Example 1 Insecticidal test by spraying A 0.02% white light solution of the compound used as an active ingredient in the present invention and its reference compound (A), a white light solution of 0.02% and piperonyl butoxide 0.1% (B),
White light solution of 0.01% and Phthalthrin 0.01% (C)
A white lamp solution of 0.02% each of allethrin and phthalthrin was sprayed using a turntable device.
The relative effectiveness of the knockdown effect of the test drug was calculated from the falling and turning rates of houseflies after 1, 2, 5, 10, and 20 minutes, and the mortality rate after 24 hours was calculated as follows. It is like that. The control drugs are indicated by the symbols A, B, and C after the compound number, and the alcohol component in each drug is the same as the original compound.
The numbers in parentheses represent the mortality rate after 24 hours. [Table] The test results (1R, cis) show that the knock-down effect of the insecticide of the present invention is very good;
trans), that is, 3 to 5 compared to the trans form.
The activity was twice as high. Test Example 2 Insecticidal test using microdropping method Phenothrin, the compound of the present invention, and its control compound, and Cinepirin 500 were added to each of them in an amount twice the amount of the active ingredient to make an acetone solution of a predetermined concentration, and the mixture was infected with house flies using a microsyringe. It was applied to adult cockroaches, adult German cockroaches, and 3rd instar larvae of Spodoptera japonica, and the relative insecticidal efficacy against phenotrin and the synergistic effect with cinepirin 500 were investigated from the mortality rate after 24 hours, and the results are as follows. Note that the symbols A, B, and C of the control compounds have the same meanings as in Test Example 1. [Table] As a result of the test, the insecticidal activity of the insecticide of the present invention against house flies, German cockroaches, and Spodoptera was more than three times that of the corresponding trans form or dl-cis, trans form. The effect was further enhanced. Next, examples of formulation are shown.The formulation can be prepared by a method well known to those skilled in the art without requiring any special conditions in accordance with general agricultural chemicals. Reference example 1 White kerosene was added to 0.2 parts of the present compound (1) and the whole
Obtain 0.2% oil solution as 100 parts. Reference Example 2 White kerosene is added to 0.2 parts of the compound (2) of the present invention and 0.8 parts of piperonyl butoxide to make a total of 100 parts to obtain an oil solution. Reference Example 3 To 20 parts of the compound (4) of the present invention, 10 parts of Solpol SM-200 (registered trademark of Toho Chemical) and 70 parts of xylol were added and stirred and mixed to dissolve, to obtain a 20% emulsion. Reference Example 4 0.4 parts of the present compound (5), 0.1 part of resmethrin, and 1.5 parts of octachlorodipropyl ether were added to refined kerosene.
After dissolving 28 parts of the solution and filling it into an aerosol container and attaching a valve part, 70 parts of a propellant (liquefied petroleum gas) is pressurized and filled through the valve part to obtain an aerosol. Reference Example 5 0.5 g of the compound (7) of the present invention and 0.5 g of BHT were uniformly mixed with 99.0 g of a base material for mosquito coils such as pyrethrum extract lees powder, wood flour, starch powder, etc., and a mosquito repellent was prepared by a known method. Get some incense. Reference Example 6 0.4 g of the compound (9) of the present invention and 1.0 g of MGK-5026 are uniformly mixed into 98.6 g of a mosquito coil base material to obtain a mosquito coil by a known method. Reference Example 7 0.3 parts of the compound (10) of the present invention and 99.7 parts of clay are thoroughly ground and mixed to obtain a 0.3% powder. Reference example 8 40 parts of the present compound (12), 35 parts of diatomaceous earth, 20 parts of clay
1 part, 3 parts of lauryl sulfonate, and 2 parts of carboxymethyl cellulose are ground and mixed to obtain a wettable powder. Test Example 3 5 to 5 on a surface where a large number of green peach aphids appeared
A 1000-fold dilution with water of each emulsion containing the compounds (1), (3), (6), and (9) of the present invention among the emulsions obtained in Reference Example 3 was applied to a radish field at the 6-leaf stage. Scattered per 100/count. A parasitic rate survey two days later showed that the density had decreased to less than 1/10 of the pre-spraying density in each plot. Test Example 4 One day before applying the insecticidal ingredient to potted fava beans, one tree was infested with approximately 200 aphids. Among the hydrating agents obtained in Reference Example 8, (2)
A 4000-fold dilution of solutions (7), (10), and (12) was sprayed on leaves infested with insects using a compressed air spray method (10 ml/pot), and the degree of damage was observed 2 days later. As a result, no increase in the degree of damage was observed in any of the cases. Test Example 5 1 for 4 leaves of potted green beans 5 days after sowing
Each leaf is infested with 10 female adult spider mites and stored in a constant temperature room at 27°C. After 6 days, the active ingredients were added to emulsions (4), (5), (8) and (10) obtained in Reference Example 3 with water.
A chemical solution diluted to 100 ppm was sprayed on a turntable at 10 ml per pot. After 10 days, the number of parasitized spider mites on the plants was less than 10 for all drugs. Test Example 6 Each of the powders (1), (4), (7), and (11) obtained in Reference Example 7 was uniformly sprinkled at a rate of 2 g/m 2 on the bottom of a waist-high glass tray with a diameter of 14 cm. Spread butter on the wall, leaving about 1cm at the bottom. If adult German cockroaches were released into the container in groups of 10, and the cockroaches were left in contact for 30 minutes and then transferred to a new container, more than 80% of the cockroaches could be killed by either powder after three days.

Claims (1)

【特許請求の範囲】 1 一般式 (式中、Xは塩素原子又は臭素原子を示す。R
は水素原子又はシアノ基であり、Yは水素原子、
フツ素原子、塩素原子又は臭素原子を表す。)で
表わされる(1R,シス)の立体配置のシクロプ
ロパンカルボン酸エステル誘導体を含有すること
を特徴とする殺虫、殺ダニ剤。 2 補助剤としてピレスロイド用共力剤を含有す
ることを特徴とする特許請求の範囲第1項記載の
殺虫、殺ダニ剤。
[Claims] 1. General formula (In the formula, X represents a chlorine atom or a bromine atom.R
is a hydrogen atom or a cyano group, Y is a hydrogen atom,
Represents a fluorine atom, chlorine atom or bromine atom. ) An insecticide and acaricide characterized by containing a cyclopropanecarboxylic acid ester derivative having the configuration (1R, cis). 2. The insecticide and acaricide according to claim 1, which contains a pyrethroid synergist as an adjuvant.
JP56060070A 1980-12-27 1981-04-21 Insecticide and acaricide containing novel carboxylic ester derivative and its preparation Granted JPS57175106A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP56060070A JPS57175106A (en) 1981-04-21 1981-04-21 Insecticide and acaricide containing novel carboxylic ester derivative and its preparation
US06/333,451 US4457940A (en) 1980-12-27 1981-12-22 Carboxylic acid ester derivatives, process for manufacturing said derivatives, insecticides and acaricides containing said derivatives, and method for killing insects and acarina by treating therewith

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56060070A JPS57175106A (en) 1981-04-21 1981-04-21 Insecticide and acaricide containing novel carboxylic ester derivative and its preparation

Publications (2)

Publication Number Publication Date
JPS57175106A JPS57175106A (en) 1982-10-28
JPH0250081B2 true JPH0250081B2 (en) 1990-11-01

Family

ID=13131448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56060070A Granted JPS57175106A (en) 1980-12-27 1981-04-21 Insecticide and acaricide containing novel carboxylic ester derivative and its preparation

Country Status (1)

Country Link
JP (1) JPS57175106A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2862964B1 (en) * 2003-11-27 2006-12-29 Merck Sante Sas DERIVATIVES OF DIPHENYLAMINE.

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5639043A (en) * 1979-09-07 1981-04-14 Nippon Soda Co Ltd Cyclopropanecarboxylic acid ester and insecticide and miticide
JPS5788104A (en) * 1980-11-20 1982-06-01 Yoshio Katsuta Insecticide and acaricide comprising novel carboxylate derivative, and its preparation
JPS57109750A (en) * 1980-12-27 1982-07-08 Yoshio Katsuta Insecticidal and miticidal agent containing novel carboxylic acid ester derivative, and its preparation
JPS57128603A (en) * 1981-01-31 1982-08-10 Yoshio Katsuta Insecticide and acaricide containing novel carboxylic ester derivative and preparation thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5639043A (en) * 1979-09-07 1981-04-14 Nippon Soda Co Ltd Cyclopropanecarboxylic acid ester and insecticide and miticide
JPS5788104A (en) * 1980-11-20 1982-06-01 Yoshio Katsuta Insecticide and acaricide comprising novel carboxylate derivative, and its preparation
JPS57109750A (en) * 1980-12-27 1982-07-08 Yoshio Katsuta Insecticidal and miticidal agent containing novel carboxylic acid ester derivative, and its preparation
JPS57128603A (en) * 1981-01-31 1982-08-10 Yoshio Katsuta Insecticide and acaricide containing novel carboxylic ester derivative and preparation thereof

Also Published As

Publication number Publication date
JPS57175106A (en) 1982-10-28

Similar Documents

Publication Publication Date Title
US3666789A (en) Cyclopropanecarboxylic acid esters
US3981903A (en) Cyclopropane carboxylic acid esters
US3966963A (en) Insecticidal composition containing cyclopropane-carboxylate
JPS6157820B2 (en)
JPS6232161B2 (en)
HU176331B (en) Process for producing esters of cyclopropane carboxylic acids and insecticide compositions containing them as active agents
JPH0240642B2 (en)
JPH0250081B2 (en)
JPS6366303B2 (en)
IL32391A (en) Substituted furylmethyl or thienylmethyl cyclopropane carboxylates
JPS6128654B2 (en)
JPS6310944B2 (en)
JPS6223740B2 (en)
JPH0142242B2 (en)
JPH0212210B2 (en)
JP3233696B2 (en) Novel carboxylic acid ester derivative and insecticide and acaricide containing the same
JPH0161082B2 (en)
JPS5837298B2 (en) Cyclopropanecarboxylic acid ester derivative, method for producing cyclopropanecarboxylic acid ester derivative, insecticide containing cyclopropanecarboxylic acid ester derivative゜
JPH0224812B2 (en)
JPH0258242B2 (en)
JPS6049193B2 (en) Cyclopropanecarboxylic acid ester derivatives, methods for producing cyclopropanecarboxylic acid ester derivatives, insecticides containing cyclopropanecarboxylic acid ester derivatives
JPS6125701B2 (en)
JPS59152303A (en) Insecticide and acaricide containing novel pyridylmethyl derivative, and its preparation
JPS5920659B2 (en) Cyclopropanecarboxylic acid ester derivatives, methods for producing cyclopropanecarboxylic acid ester derivatives, insecticides containing cyclopropanecarboxylic acid ester derivatives
JPS6141903B2 (en)