JPH0250043B2 - - Google Patents

Info

Publication number
JPH0250043B2
JPH0250043B2 JP58096880A JP9688083A JPH0250043B2 JP H0250043 B2 JPH0250043 B2 JP H0250043B2 JP 58096880 A JP58096880 A JP 58096880A JP 9688083 A JP9688083 A JP 9688083A JP H0250043 B2 JPH0250043 B2 JP H0250043B2
Authority
JP
Japan
Prior art keywords
graphite
ternary
thf
compound
transition metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58096880A
Other languages
Japanese (ja)
Other versions
JPS59223211A (en
Inventor
Michio Inagaki
Masahisa Mimoji
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOKAI KAABON KK
Original Assignee
TOKAI KAABON KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOKAI KAABON KK filed Critical TOKAI KAABON KK
Priority to JP58096880A priority Critical patent/JPS59223211A/en
Publication of JPS59223211A publication Critical patent/JPS59223211A/en
Publication of JPH0250043B2 publication Critical patent/JPH0250043B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、遷移金属、黒鉛および有機分子から
なる均質安定な組成性状を有する三元残存化合物
の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a ternary residual compound having homogeneous and stable compositional properties consisting of a transition metal, graphite and an organic molecule.

黒鉛結晶は、炭素原子の共有結合による正六角
網状平面が3.35Åの層間距離で三次元的に積層し
た製造を有しておりその層平面相互間が弱いフア
ンデルワールス力で結合してることから、適当な
条件下にイオン、原子などを層間に侵入させるこ
とによつて種々の黒鉛層間化合物が生成する。黒
鉛層間化合物を形成する化学種としては、ハロゲ
ン元素、アルカリ金属、無機酸あるいは各種金属
の塩化物、沸化物など多様の物質が知られている
が、得られる層間化合物の多くは空気中で著るし
く不安定で、急速に分解変質する性癖を有してい
る。これらのうち遷移金属の黒鉛層間化合物は、
他の化学種によるものに比べて特異な物性が期待
されるため従来からの多くの研究例がみられる。
しかしながら、これまで知られている製法技術に
よつては生成が不可能であるか生成物に対する異
論があり、現在、合成法として確立された手段は
見出されていない。このため、物性的に期待され
ながらその付加機能を十分に発揮させ得る状態に
至つていない。
Graphite crystal is manufactured by stacking regular hexagonal network planes three-dimensionally with an interlayer distance of 3.35 Å due to covalent bonds of carbon atoms, and the layer planes are bonded by weak van der Waals forces. Various graphite intercalation compounds are produced by allowing ions, atoms, etc. to penetrate between the layers under appropriate conditions. A variety of substances are known to form graphite intercalation compounds, such as halogen elements, alkali metals, inorganic acids, and chlorides and fluorides of various metals, but many of the intercalation compounds obtained are It is extremely unstable and has a tendency to rapidly decompose and change in quality. Among these, graphite intercalation compounds of transition metals are
Since it is expected to have unique physical properties compared to those created by other chemical species, many examples of research have been conducted to date.
However, it is either impossible to produce the product using the production techniques known so far, or there are objections to the product, and no established method for synthesis has been found at present. For this reason, although it is promising in terms of physical properties, it has not yet reached a state where it can fully demonstrate its additional functions.

本発明は、特定の反応手法を用いて一旦、黒鉛
層間に遷移金属ならびにTHFあるいはDMEなど
の有機分子が均質に介在する三成分系の層間化合
物を生成し、更に遷移金属および有機分子の大部
分が黒鉛層間に残留した状態で安定化処理を施す
ことにより、空気中で極めて安定な形態と特異な
物性をを備える三元残存化合物に転化させること
に成功して開発に至つたものである。
The present invention uses a specific reaction method to generate a ternary intercalation compound in which transition metals and organic molecules such as THF or DME are homogeneously interposed between graphite layers, and furthermore, most of the transition metals and organic molecules are By performing a stabilization treatment while remaining between the graphite layers, we succeeded in converting it into a ternary residual compound with an extremely stable form and unique physical properties in the air, leading to its development.

すなわち、本発明で提供される遷移金属−黒鉛
−有機分子系三元残存化合物の製造方法は、黒鉛
とカリウムを反応させて得られたカリウム−黒鉛
層間化合物(CnK)を、テトラヒドロフラン
(THF)またはジメトキシエタン(DME)中で
鉄、コバルト、ニツケル、マンガン、銅、モリブ
デン、クロム、亜鉛、ルテニウム、パラジウムお
よび白金から選ばれた遷移金属のイオンと接触さ
せて置換反応により一旦、三成分系の層間化合物
を生成し、ついで該層間化合物を水中に浸漬して
安定化処理を施すことを構成的特徴とする。
That is, the method for producing a transition metal-graphite-organic molecule-based ternary residual compound provided by the present invention is to react a potassium-graphite intercalation compound (CnK) obtained by reacting graphite and potassium with tetrahydrofuran (THF) or Once the interlayer of the ternary system is formed by a substitution reaction in contact with ions of a transition metal selected from iron, cobalt, nickel, manganese, copper, molybdenum, chromium, zinc, ruthenium, palladium, and platinum in dimethoxyethane (DME), The structural feature is that a compound is generated, and then the intercalation compound is immersed in water to perform a stabilization treatment.

カリウム−黒鉛層間化合物(CnK)の合成は、
黒鉛とカリウムをアルゴン気流中で約200℃に加
熱しながら攪拌混合して反応させる方法、あるい
は真空もしくはアルゴン雰囲気下に加熱された黒
鉛にカリウム蒸気を均一に接触させ気一固反応さ
せる方法によるが、後者の方法においてより純粋
かつ低ステージの生成物を得ることができる。
The synthesis of potassium-graphite intercalation compound (CnK) is
There are two methods: a method in which graphite and potassium are stirred and mixed while being heated to approximately 200℃ in an argon stream, or a method in which potassium vapor is uniformly brought into contact with heated graphite in a vacuum or an argon atmosphere to cause a vapor-solid reaction. , purer and lower stage products can be obtained in the latter method.

生成したCnKは、蒸留精製により十分に脱水
したTHFまたはDME中で遷移金属と置換反応さ
せる。化学種となる遷移金属は、鉄、コバルト、
ニツケル、マンガン、銅、モリブデン、クロム、
亜鉛、ルテニウム、パラジウムおよび白金から選
択され、塩類とくに塩化物の形態で使用に供され
る。しかし、これら塩類に水が含まれていると
THFまたはDME中のCnKを分解して正常な反応
を阻害し、遷移金属−黒鉛−有機分子系層間化合
物の生成収率を著るしく低下させる。したがつ
て、置換反応を効果的におこなうためには無水の
金属塩を適用することが重要な条件となる。
The generated CnK is subjected to a substitution reaction with a transition metal in THF or DME that has been sufficiently dehydrated by distillation purification. Transition metals as chemical species include iron, cobalt,
Nickel, manganese, copper, molybdenum, chromium,
It is selected from zinc, ruthenium, palladium and platinum and is used in the form of salts, especially chlorides. However, if these salts contain water,
It decomposes CnK in THF or DME, inhibits normal reactions, and significantly reduces the production yield of transition metal-graphite-organic molecular intercalation compounds. Therefore, in order to carry out the substitution reaction effectively, it is an important condition to use an anhydrous metal salt.

置換反応は、THFおよび遷移金属の無水塩化
物を例にとると、次の反応式により進行する。
Taking THF and anhydrous chloride of a transition metal as an example, the substitution reaction proceeds according to the following reaction formula.

CnK+MClnTHF ――→ MCn(THF)p+nKCl 但し、Mは遷移金属、THFはテトラヒドロフ
ラン分子、n(n〓8)およびp(0<p3)は
系数である。
CnK+MClnTHF ---→ MCn(THF)p+nKCl where M is a transition metal, THF is a tetrahydrofuran molecule, and n (n〓8) and p (0<p3) are series numbers.

上記置換反応を効率よく完結させるためには、
CnKを加えたTHFまたはDMEに、予め遷移金属
の無水塩を接解したTHF溶液またはDME溶液を
攪拌しながら徐々に添加する方法をとることが有
効である。また、遷移金属無水塩の添加量は
CnKに対して過剰量とし、反応雰囲気はアルゴ
ン、窒素のような不活性ガスに保持することが望
ましい。
In order to efficiently complete the above substitution reaction,
It is effective to gradually add, while stirring, a THF or DME solution in which an anhydrous salt of a transition metal has been fused in advance to THF or DME to which CnK has been added. Also, the amount of transition metal anhydride added is
It is desirable to use an excess amount relative to CnK, and to maintain the reaction atmosphere in an inert gas such as argon or nitrogen.

置換反応により得られる生成物は、黒鉛層間内
に遷移金属およびTHFまたはDMEの分子が均質
に挿入分散した三成分系層間化合物の形態を有す
るが、空気中に曝すと急激に分解変質する不安定
な物性を呈する。
The product obtained by the substitution reaction has the form of a ternary intercalation compound in which transition metal and THF or DME molecules are homogeneously intercalated and dispersed between graphite interlayers, but it is unstable and rapidly decomposes and deteriorates when exposed to air. exhibits physical properties.

三成分系層間化合物は、ついで水中に浸漬して
安定化処理する。この処理により、層間化合物は
略そのままの組成形態を留めた状態で不変質分解
を生じ、安定な遷移金属−黒鉛−有機分子からな
る三元系の残存化合物に転化する。処理後の残存
化合物は、更に水洗して残留する大部分のカリウ
ム成分および置換反応により沈澱した塩化カリウ
ムを溶解除去する。
The ternary intercalation compound is then stabilized by immersion in water. Through this treatment, the intercalation compound undergoes permanent decomposition while retaining its compositional form as it is, and is converted into a stable residual ternary compound consisting of transition metal-graphite-organic molecules. The remaining compounds after the treatment are further washed with water to dissolve and remove most of the remaining potassium components and potassium chloride precipitated by the substitution reaction.

以上の工程を経て製造される三元残存化合物
は、遷移金属およびTHFまたはDMEのような有
機分子の大部分が黒鉛層間に留まつた層性状を有
し、もはや空気中で分解変質することのない極め
て安定な物性を備えている。これは、遷移金属が
共存する有機分子によつて黒鉛層間内に安定状態
に保有された独特の製造形態に基づくものと考え
られ、該構成により鉄、コバルト等を化学種とし
た場合の磁性具備、あるいは加熱時の有機分子放
出に伴う膨張変化(表面積の増大作用)などの特
異な物性が付与される。
The ternary residual compound produced through the above process has a layered structure in which most of the transition metals and organic molecules such as THF or DME remain between the graphite layers, and are no longer susceptible to decomposition and alteration in the air. It has extremely stable physical properties. This is thought to be based on a unique manufacturing form in which transition metals are held in a stable state between graphite layers by organic molecules coexisting with them, and due to this structure, magnetic property when iron, cobalt, etc. are used as chemical species. , or unique physical properties such as expansion changes (surface area increase effect) due to the release of organic molecules upon heating.

このように本発明によれば、遷移金属−黒鉛層
間化合物として期待されている広汎用途に適用可
能な有効特性をもち、かつ空気中で極めて安定性
状を備える三元残存化合物が容易に製造しえる利
益がもたらされる。
As described above, according to the present invention, it is possible to easily produce a ternary residual compound that has effective properties applicable to a wide range of applications and is extremely stable in air, which is expected as a transition metal-graphite intercalation compound. Profit is brought.

以下、本発明を実施例に基づいて説明する。 Hereinafter, the present invention will be explained based on examples.

実施例 1 内部を予め真空引きしたのちアルゴンガスで置
換した密閉式反応管に天然黒鉛粉〔日本黒鉛工業
(株)製〕および酸化表面を除去した金属カリウム片
〔(株)関東化学製、試薬一級〕を隔離して装入し、
密閉後反応管を250〜255℃の温度に保持しながら
定期的に天然黒鉛粉を振蘯攪拌した。加熱過程で
金属カリウムは溶融気化し、蒸気の状態で天然黒
鉛粉と接触反応した。反応生成物はC8Kの化学組
成を有する粉末で、X線回折結果5.37Åおよび
2.67Åの位置に極大ピークを示す純粋な第1ステ
ージのカリウム−黒鉛層間化合物であることが確
認された。第1図に、そのX線回折パターンを示
した。
Example 1 Natural graphite powder [Nippon Graphite Industries Co., Ltd.
Co., Ltd.] and a metal potassium piece with the oxidized surface removed [Kanto Kagaku Co., Ltd., reagent grade 1] separated and charged.
After sealing, the natural graphite powder was periodically stirred while maintaining the reaction tube at a temperature of 250 to 255°C. During the heating process, metallic potassium was melted and vaporized, and reacted with natural graphite powder in the vapor state. The reaction product is a powder with a chemical composition of C 8 K, with X-ray diffraction results of 5.37 Å and
It was confirmed that this was a pure first stage potassium-graphite intercalation compound showing a maximum peak at a position of 2.67 Å. FIG. 1 shows the X-ray diffraction pattern.

十分に脱水蒸溜したTHFの10mlを枝付フラス
コに入れ、これに2.0439(8.97mmol)の上記C8K
を投入浸漬した。別に無水塩化コバルト
〔CoCl2、(株)和光純薬製〕の2.2116g(17.04m
mol)を脱水蒸溜したTHFに添加し、一部を溶
解した。
Pour 10 ml of THF that has been sufficiently dehydrated and distilled into a side-armed flask, and add 2.0439 (8.97 mmol) of the above C 8 K to it.
was added and soaked. Separately, 2.2116 g ( 17.04 m
mol) was added to dehydrated and distilled THF, and a portion was dissolved.

ついで枝付フラスコの雰囲気をアルゴンガスで
置換したのち、攪拌しながらCoCl2を溶解した
THF溶液を1時間かけて滴下した。適下の初期
でTHF溶液の青色は即座に消失し、C8Kは金色
から黒色に変化した。引続きフラスコ内の混合溶
液を48時間に亘つて攪拌し、置換反応を完結し
た。フラスコ底部には、黒色フレーク状粉末と塩
化カリウムの白色結晶が沈澱した。
Then, after replacing the atmosphere in the flask with side arms with argon gas, CoCl 2 was dissolved while stirring.
The THF solution was added dropwise over 1 hour. At the beginning of the application, the blue color of the THF solution disappeared immediately, and the color of C 8 K changed from gold to black. Subsequently, the mixed solution in the flask was stirred for 48 hours to complete the substitution reaction. A black flaky powder and white crystals of potassium chloride precipitated at the bottom of the flask.

比較のためにC8K2.0439g(15.1mmol)、含水
塩化コバルト(CoCl2・6H2O)3.6768g(15.5m
mol)の量的条件により同様手法を用いて生成実
験をおこなつたところ、カリウムとコバルトが置
換反応する以前にC8Kが塩化コバルトの含有水分
により分解を起し、黒色フレーク状粉末の生成は
ほとんど認められなかつた。
For comparison, 2.0439 g (15.1 mmol) of C 8 K, 3.6768 g (15.5 mmol) of hydrated cobalt chloride (CoCl 2 6H 2 O)
When we conducted a production experiment using the same method under quantitative conditions of (mol), we found that C 8 K decomposed due to the water content of cobalt chloride before the substitution reaction between potassium and cobalt, resulting in the formation of black flake-like powder. was hardly recognized.

得られたフレーク状粉末生成物は、X線回折の
結果8.9Åおよび4.45Åなどの位置に明確なピー
クが現出した。第2図にX線回折のパターンを示
したが、この図形は第1図(C8Kの回折パター
ン)とは著るしく異なりKC24(THF)2系層間化
合物(第1ステージ)と酷似する形態であつた。
これはTHF分子(5.55Å)が黒鉛層の間隔を形
成(面間隔5.55Å+3.35Å=8.9Å)していること
を示しており、THF溶液中で高度な磁性をもつ
ことから、コバルトおよびTHF分子が均質に黒
鉛層間に介在するコバルト−黒鉛−THF系の層
間化合物〔CoC24(THF)2〕であることが確認さ
れた。
As a result of X-ray diffraction of the obtained flaky powder product, clear peaks appeared at positions such as 8.9 Å and 4.45 Å. Figure 2 shows the X-ray diffraction pattern, which is significantly different from Figure 1 (C 8 K diffraction pattern) and very similar to the KC 24 (THF) 2 intercalation compound (first stage). It was in the form of
This indicates that THF molecules (5.55 Å) form the spacing between graphite layers (planar spacing 5.55 Å + 3.35 Å = 8.9 Å), and since it has a high degree of magnetism in THF solution, cobalt and THF It was confirmed that this was a cobalt-graphite-THF intercalation compound [CoC 24 (THF) 2 ] in which molecules were homogeneously interposed between graphite layers.

ついで一旦生成した上記の三成分系層間化合物
を窒素気流中でTHFから別したのち、直ちに
水中に浸漬して安定化処理を施し、さらに大気中
で過・水洗を繰返した。処理物は、空気中80℃
の温度で乾燥し保管した。三成分系層間化合物
は、安定化処理により過、水洗、保管の過程で
変質することのない極めて安定性状フレーク状残
存化合物に転化した。
Then, the above-generated ternary intercalation compound was separated from THF in a nitrogen stream, immediately immersed in water for stabilization treatment, and then filtered and washed in the air repeatedly. The processed material is kept at 80℃ in the air.
It was dried and stored at a temperature of Through stabilization treatment, the ternary intercalation compound was converted into an extremely stable flake-like residual compound that did not change in quality during filtration, water washing, or storage.

第3図は、得られた残存化合物について測定し
たX線回折のパターンを示したものである。この
図形は、各回折線がブロード化している点を除け
ば黒鉛と同一パターンを呈しており、多くの場
合、00l回折線以外は非常に弱いかほとんど確認
されない。また、00l回折線は低角側に裾を引く
形態を伴うこともあるが、金属コバルトおよびそ
の他のコバルト化合物に相当する回折線は認めら
れなかつた。
FIG. 3 shows the X-ray diffraction pattern measured for the residual compound obtained. This figure exhibits the same pattern as graphite except that each diffraction line is broad, and in many cases, lines other than the 00l diffraction line are very weak or barely visible. Furthermore, although the 00l diffraction line sometimes has a tail toward the lower angle side, no diffraction line corresponding to metallic cobalt or other cobalt compounds was observed.

第4図はX線マイクローブアナライザーによる
組成分析の結果を示したものである。図形から残
存化合物中には多量のコバルトが介在することが
確認されるが、面分析の結果、その分布は局部的
凝集を伴わない均質分散状態を呈しているが判明
した。なお、大部分の塩化カリウムは水洗処理で
除去され、カリウムおよび塩素の残留は少量であ
つた。
FIG. 4 shows the results of compositional analysis using an X-ray microphone analyzer. Although the shape confirms that a large amount of cobalt is present in the remaining compound, surface analysis reveals that its distribution is homogeneous and dispersed without local aggregation. Note that most of the potassium chloride was removed by washing with water, and only a small amount of potassium and chlorine remained.

得られた残存化合物は、コバルト−黒鉛−
THF系層間化合物の組成性状をそのまま保持す
る三元系の物質で、物質的にs字形ヒスチリシス
ループの磁性曲線を示す磁性体である。また、こ
れを加熱処理すると、150℃以上の温度域で黒鉛
層間からTHF分子が揮散して急激な膨潤現象を
生じ、この段階で磁性を消失する特異な物性を有
していた。
The resulting residual compound is cobalt-graphite-
It is a ternary material that maintains the compositional properties of a THF-based intercalation compound, and is a magnetic material that exhibits an S-shaped hysteresis loop magnetic curve. Furthermore, when this was heat-treated, THF molecules volatilized from between the graphite layers at temperatures above 150°C, causing a rapid swelling phenomenon, and it had the unique physical property of losing magnetism at this stage.

上例と同様にして、鉄、ニツケル、マンガン、
銅、モリブデン、クロムおよび亜鉛の各無水塩化
物を用いて生成実験をおこなつたところ、それぞ
れの化学種について良性状の遷移金属−黒鉛−有
機(THF)分子からなる三元残存化合物が得ら
れた。
Similarly to the above example, iron, nickel, manganese,
When experiments were conducted using anhydrous chlorides of copper, molybdenum, chromium, and zinc, ternary residual compounds consisting of benign transition metal-graphite-organic (THF) molecules were obtained for each chemical species. Ta.

実施例 2 実施例1と同一方法により合成したC8Kを脱水
蒸溜したDMEに加え、これに無水塩化ルテニウ
ム(RuCl3)のDME溶液を攪拌しながら滴下し、
引続き8時間攪拌して置換反応を完結した。該置
換反応により、ルテニウム−黒鉛−DME分子に
よる三成分系の層間化合物が生成した。
Example 2 C 8 K synthesized by the same method as Example 1 was added to dehydrated and distilled DME, and a DME solution of anhydrous ruthenium chloride (RuCl 3 ) was added dropwise with stirring.
Subsequently, the mixture was stirred for 8 hours to complete the substitution reaction. The substitution reaction produced a ternary intercalation compound of ruthenium-graphite-DME molecules.

上記の三成分系層間化合物を空気に接触させず
に水中に浸漬して安定化処理し、引続き大気中で
過・水洗を繰返した。
The above three-component intercalation compound was stabilized by immersing it in water without contacting it with air, followed by repeated filtering and washing in the air.

得られた生成物は、ルテニウム−黒鉛−DME
系の均質組成からなる残存化合物で、空気および
水中で極めて安定な物性を有するものであつた。
この三元残存化合物を150℃に加熱したところ、
DME分子が脱揮して急激に膨潤し、触媒用途に
好適な製造に変化した。
The obtained product is Ruthenium-Graphite-DME
The residual compound had a homogeneous composition and had extremely stable physical properties in air and water.
When this ternary residual compound was heated to 150°C,
DME molecules devolatilized and rapidly swelled, making the product suitable for catalytic applications.

パラジウムおよび白金の無水塩化物を用いて上
記同様の反応一安定化処理を施した結果、均質安
定な遷移金属−有機(DME)分子系の三元残存
化合物が得られた。
As a result of performing the same reaction stabilization treatment as described above using anhydrous chlorides of palladium and platinum, a homogeneously stable ternary residual compound of a transition metal-organic (DME) molecular system was obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の出発原料となるカリウム−黒
鉛層間化合物のX線回折パターン、第2図は中間
生成物の例である三成分系(コバルト−黒鉛−
THF分子)層間化合物のX線回折パターン、第
3図は本発明により得られたコバルト−黒鉛−
THF系三元残存化合物のX線回折パターンであ
る。第4図は、上記コバルト−黒鉛−THF系三
元残存化合物のX線マイクロプローブアナライザ
ーによる組成分析図形を示したものである。
Fig. 1 shows the X-ray diffraction pattern of the potassium-graphite intercalation compound which is the starting material of the present invention, and Fig. 2 shows the ternary system (cobalt-graphite-
The X-ray diffraction pattern of the THF molecule) intercalation compound, Figure 3 shows the cobalt-graphite-
This is an X-ray diffraction pattern of a THF-based ternary residual compound. FIG. 4 shows a compositional analysis pattern of the above-mentioned cobalt-graphite-THF ternary residual compound using an X-ray microprobe analyzer.

Claims (1)

【特許請求の範囲】 1 黒鉛とカリウムを反応させて得られたカリウ
ム−黒鉛層間化合物(CnK)を、テトラヒドロ
フラン(THF)またはジメトキシエタン
(DME)中で鉄、コバルト、ニツケル、マンガ
ン、銅、モリブデン、クロム、亜鉛、ルテニウ
ム、パラジウムおよび白金から選ばれた遷移金属
と接触させて置換反応により一旦、三成分系の層
間化合物を生成し、ついで該層間化合物を水中に
浸漬して安定化処理を施すことを特徴とする遷移
金属−黒鉛−有機分子からなる三元残存化合物の
製造方法。 2 カリウム−黒鉛層間化合物(CnK)を加え
たテトラヒドロフラン(THF)またはジメトキ
シエタン(DME)に、遷移金属の無水塩化物を
溶解したテトラヒドロフラン(THF)溶液また
はジメトキシエタン(DME)溶液を攪拌しなが
ら徐々に添加して置換反応を完結する特許請求の
範囲第1項記載の遷移金属−黒鉛−有機分子から
なる三元残存化合物の製造方法。
[Claims] 1 A potassium-graphite intercalation compound (CnK) obtained by reacting graphite and potassium is mixed with iron, cobalt, nickel, manganese, copper, and molybdenum in tetrahydrofuran (THF) or dimethoxyethane (DME). , contact with a transition metal selected from chromium, zinc, ruthenium, palladium, and platinum to generate a ternary intercalation compound through a substitution reaction, and then stabilize the intercalation compound by immersing it in water. A method for producing a ternary residual compound consisting of a transition metal, graphite, and an organic molecule, characterized by the following. 2 Gradually add a solution of anhydrous transition metal chloride in tetrahydrofuran (THF) or dimethoxyethane (DME) to which potassium-graphite intercalation compound (CnK) has been added while stirring. A method for producing a ternary residual compound comprising a transition metal-graphite-organic molecule according to claim 1, which comprises adding the ternary residual compound to a molecule to complete the substitution reaction.
JP58096880A 1983-06-02 1983-06-02 Manufacture of ternary residual compound consisting of transition metal, graphite and organic molecule Granted JPS59223211A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58096880A JPS59223211A (en) 1983-06-02 1983-06-02 Manufacture of ternary residual compound consisting of transition metal, graphite and organic molecule

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58096880A JPS59223211A (en) 1983-06-02 1983-06-02 Manufacture of ternary residual compound consisting of transition metal, graphite and organic molecule

Publications (2)

Publication Number Publication Date
JPS59223211A JPS59223211A (en) 1984-12-15
JPH0250043B2 true JPH0250043B2 (en) 1990-11-01

Family

ID=14176724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58096880A Granted JPS59223211A (en) 1983-06-02 1983-06-02 Manufacture of ternary residual compound consisting of transition metal, graphite and organic molecule

Country Status (1)

Country Link
JP (1) JPS59223211A (en)

Also Published As

Publication number Publication date
JPS59223211A (en) 1984-12-15

Similar Documents

Publication Publication Date Title
JP5689903B2 (en) Method for producing porous organic-inorganic hybrid body
EP1981897B1 (en) A preparation method of porous hybrid inorganic-organic materials
Chianelli et al. Low-temperature solution preparation of Group 4B, 5B and 6B transition-metal dichalcogenides
EP3625169A1 (en) Graphene-supported metal and/or metal oxide nanoparticle composites, method for making same and uses thereof
Husmann et al. Design of a Prussian Blue Analogue/Carbon Nanotube Thin‐Film Nanocomposite: Tailored Precursor Preparation, Synthesis, Characterization, and Application
Bailey et al. Transition metal complexes of 2, 4, 6-trimercapto-1, 3, 5-triazine (TMT): potential precursors to nanoparticulate metal sulfides
JPS6362446B2 (en)
Shahzad et al. Two‐dimensional MXenes as Emerging Materials: A Comprehensive Review
KR100895413B1 (en) A method for preparing porous organic-inorganic hybrid materials, porous organic-inorganic hybrid materials obtained by the method and catalytic uses of the materials
EP3010857A1 (en) Method for preparing a composition comprising functionalised silico/germano-metal particles and composition obtained
JPH0250043B2 (en)
Yasodhai et al. Hydrazinium oxydiacetates and oxydiacetate dianion complexes of some divalent metals with hydrazine
JP6458417B2 (en) Catalyst, ammonia synthesis method
KR102353597B1 (en) electrode material comprising metal-organic unimolecular and Mxene, Preparing method of the same
Ban et al. Bottom-up synthesis of ruthenate nanosheets by aqueous solution process
Komárková et al. Effect of amines on (peroxo) titanates: characterization and thermal decomposition
KR20050013990A (en) Process for manufactruing diamond using a novel method of catalysis and a new method for processing the graphite and catalyst mixture used in synthesis
Ellermeier et al. Solvothermal syntheses, crystal structures, and properties of new [Mn (dien) 2] 2+ complexes
Chaliha et al. Electrocatalytic Nitrogen (N 2) Reduction
JPS5812058B2 (en) Oxidation catalyst for methane, ethanol and hexane ignition
KR100532030B1 (en) Novel palladium aminoalkoxide complexes and preparation of palladium nano-catalyst using same
KR100582920B1 (en) Preparation of metal nano-wires or rods from metal compounds containing aminoalkoxide ligands
Shoair et al. Unlocking the Potential of NiSO 4· 6H 2 O/NaOCl/NaOH Catalytic System: Insights into Nickel Peroxide as an Intermediate for Benzonitrile Synthesis in Water
Dixit et al. Synthesis of MXenes
Barry Synthesis of transition-metal polyphosphides