JPH0249999B2 - - Google Patents
Info
- Publication number
- JPH0249999B2 JPH0249999B2 JP57063289A JP6328982A JPH0249999B2 JP H0249999 B2 JPH0249999 B2 JP H0249999B2 JP 57063289 A JP57063289 A JP 57063289A JP 6328982 A JP6328982 A JP 6328982A JP H0249999 B2 JPH0249999 B2 JP H0249999B2
- Authority
- JP
- Japan
- Prior art keywords
- valve
- liquid
- filling
- flow rate
- container
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000007788 liquid Substances 0.000 claims description 90
- 238000006073 displacement reaction Methods 0.000 claims description 6
- 230000001965 increasing effect Effects 0.000 claims description 6
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 4
- 238000004891 communication Methods 0.000 claims description 4
- 230000005484 gravity Effects 0.000 claims description 4
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 2
- 239000001569 carbon dioxide Substances 0.000 claims description 2
- 235000014171 carbonated beverage Nutrition 0.000 claims description 2
- 239000000463 material Substances 0.000 claims description 2
- 230000001105 regulatory effect Effects 0.000 claims 1
- 230000006835 compression Effects 0.000 description 4
- 238000007906 compression Methods 0.000 description 4
- 238000007796 conventional method Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000003111 delayed effect Effects 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000003651 drinking water Substances 0.000 description 1
- 235000020188 drinking water Nutrition 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000013013 elastic material Substances 0.000 description 1
- 230000003028 elevating effect Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000003595 mist Substances 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
Landscapes
- Filling Of Jars Or Cans And Processes For Cleaning And Sealing Jars (AREA)
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は壜詰機等に応用できる液充填装置に関
するものである。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a liquid filling device that can be applied to bottling machines and the like.
(従来の技術)
第1図は従来の底詰め壜詰バルブの概略図を示
す。また第2図は容器へ液を充填する際の充填流
量変化を、第3図は充填管から液が噴出する状態
をそれぞれ示す。第1図において、充填装置10
は、図示されていない回転式充填機に属するリン
グ状の液体室12の底にある流出口11の下方に
固定されている。また開口13を介して大気と通
じている別の戻りガス室14並びに圧力ガス室1
5が前記の液体室12と結合して、機械の上部を
形成する構成単位となつている。(Prior Art) FIG. 1 shows a schematic diagram of a conventional bottom filling bottling valve. Further, FIG. 2 shows the change in the filling flow rate when filling the container with liquid, and FIG. 3 shows the state in which the liquid is spouted from the filling pipe. In FIG. 1, a filling device 10
is fixed below the outlet 11 at the bottom of a ring-shaped liquid chamber 12 belonging to a rotary filling machine (not shown). A further return gas chamber 14 also communicates with the atmosphere via an opening 13, as well as a pressure gas chamber 1.
5 is combined with the liquid chamber 12 to form a structural unit forming the upper part of the machine.
また充填装置10は、流出口11と同芯的に位
置する空間16の中に、外部と連接した弁体18
と、それを押し上げるためにバネ19および液を
シールする弁座17で構成された液体弁を有す
る。しかし液を充填しないときは、外部と連動す
るレバー(図示せず)等によつて、弁体18は弁
座17に押しつけられ、液の流出を止めている。
前記の弁座17の下部の空間16と接続された孔
20の中には、充填装置10から下方に向つて突
出している充填管21が挿し込まれている。 The filling device 10 also includes a valve body 18 connected to the outside in a space 16 located concentrically with the outlet 11.
and a liquid valve consisting of a spring 19 for pushing it up and a valve seat 17 for sealing the liquid. However, when the liquid is not being filled, the valve body 18 is pressed against the valve seat 17 by a lever (not shown) or the like that is interlocked with the outside to stop the liquid from flowing out.
A filling pipe 21 protruding downward from the filling device 10 is inserted into a hole 20 connected to the space 16 below the valve seat 17 .
また充填装置10の下部には、ゴム等の弾性材
質で作られたリング22を有し、シリンダ等の昇
降装置(図示せず)で容器38が押上げられた際
に、容器口と充填装置間の気密を保つようになつ
ている。 Further, the lower part of the filling device 10 has a ring 22 made of an elastic material such as rubber. It is designed to maintain airtightness between the two.
充填管21には管壁に沿つて延長していて側方
に孔25を有する戻りガス通路24が取付けられ
ており、同戻りガス通路24は充填装置10の内
部に位置する球自閉弁26まで延長している。こ
の球自閉弁26は球27とそれを支えている突出
体28とから成る。容器38内のガスは、この球
自閉弁26の弁室部および通路29を経て、弁3
0,36に至る。 A return gas passage 24 is attached to the filling pipe 21 and extends along the pipe wall and has a hole 25 on the side. It has been extended to This self-closing ball valve 26 consists of a ball 27 and a protrusion 28 supporting it. The gas in the container 38 passes through the valve chamber of the self-closing ball valve 26 and the passage 29, and then enters the valve 3.
It reaches 0.36.
弁30,36の下流側(容器38から大気に通
じている戻りガス室14の方向)には、高流量で
ガスを逃がすことのできる穴径のきい絞り31
と、低流量でガスを逃がすことのできる穴径の小
さい絞り33がそれぞれあり、大気に開放してい
る戻りガス室14に通じている。戻りガス室14
は排気中のミストを分離する役目を持つ。また弁
35は液体室12と容器38内を同圧にするため
に開閉する弁で、ガスが圧力ガス室15から通路
34を通り、容器38内に流入するようになつて
いる。 On the downstream side of the valves 30 and 36 (in the direction of the return gas chamber 14 communicating from the container 38 to the atmosphere), there is a throttle 31 with a hole diameter that allows gas to escape at a high flow rate.
and a throttle 33 with a small hole diameter capable of escaping gas at a low flow rate, each communicating with a return gas chamber 14 open to the atmosphere. Return gas chamber 14
has the role of separating the mist in the exhaust. Further, the valve 35 is a valve that opens and closes to make the pressure in the liquid chamber 12 and the container 38 the same, and gas flows from the pressure gas chamber 15 through the passage 34 and into the container 38.
以下第1図、第2図、第3図にもとずいて従来
方式の作用について述べると、まず容器38は昇
降装置(図示せず)によつて充填装置に押付けら
れ、容器口が充填装置に密着される。次に外部と
連動するレバー等(図示せず)によつて、弁体1
8を弁座17に押びつけている機械的な力を解除
する。 The operation of the conventional method will be described below with reference to FIGS. 1, 2, and 3. First, the container 38 is pressed against the filling device by an elevating device (not shown), and the container opening is pressed against the filling device. closely followed. Next, the valve body 1 is
8 to the valve seat 17 is released.
このとき弁体18を上方に引げ上げるようにバ
ネ19が作用するが、加圧された液体室12の圧
力によつて弁18は開かない。弁35を開くと圧
力ガスが圧力ガス室15から通路34、穴23を
通り、容器38内に流入する。容器38内が圧力
ガス室15の圧力に近づくと、液体室12の圧力
にバネ19の力が打勝つて、弁18が開き、液が
充填管21をつて容器38内に流入し始める。 At this time, the spring 19 acts to pull the valve body 18 upward, but the valve 18 does not open due to the pressure in the pressurized liquid chamber 12. When the valve 35 is opened, pressure gas flows from the pressure gas chamber 15 through the passage 34 and the hole 23 into the container 38. When the pressure in the container 38 approaches the pressure in the pressure gas chamber 15, the force of the spring 19 overcomes the pressure in the liquid chamber 12, the valve 18 opens, and liquid begins to flow into the container 38 through the filling tube 21.
つづいて弁35を閉じ、弁36を開くと、容器
38内のガスは穴25→通路24→球自閉弁26
→通路29→弁36→通路37→絞り33→戻り
ガス室14を通つて大気に逃げる。これにともな
つて液は液体室12から空間16→弁18→充填
管21を通つて容器38内に流入する。このとき
の充填流量Qは絞り33の径によつて決まり、低
速域()となる。充填流量Qが低速域()の
ままならば流入速度が遅いため、液中での気泡の
発生はなく、良好な充填が可能である。しかし充
填完了までに時間が掛るので充填容器の生産能力
が低くなる。 Then, when the valve 35 is closed and the valve 36 is opened, the gas in the container 38 is released from the hole 25 → passage 24 → ball self-closing valve 26.
→ Passage 29 → Valve 36 → Passage 37 → Throttle 33 → Return gas chamber 14 to escape to the atmosphere. Along with this, the liquid flows from the liquid chamber 12 into the container 38 through the space 16 → the valve 18 → the filling pipe 21. The filling flow rate Q at this time is determined by the diameter of the throttle 33 and falls in a low speed range ( ). If the filling flow rate Q remains in the low speed range ( ), the inflow speed is slow, so no bubbles are generated in the liquid, and good filling is possible. However, since it takes time to complete filling, the production capacity of the filled containers is reduced.
そこで充填時間の短縮を計るために、容器38
内の液が充填管21の下端を浸したときに弁30
を開く。弁30を開くと、穴径の大きい絞り31
から高流量のガスが急激に戻りガス室14に逃げ
出すので、それに応じて液の容器38への充填流
量Qが急激に増加する。 Therefore, in order to shorten the filling time, the container 38
When the liquid inside soaks the lower end of the filling tube 21, the valve 30
open. When the valve 30 is opened, the orifice 31 with a large hole diameter opens.
Since a high flow rate of gas rapidly returns and escapes into the gas chamber 14, the flow rate Q of liquid filling the container 38 increases rapidly accordingly.
このような充填流量Qの時間tに対する変化を
表わしたのが第2図である。第2図において、弁
36を開いた場合は絞り33で充填流量Qが決ま
り、低速域()がそのときの充填流量となる。
つづいて弁30を開くと、絞り31と絞り33で
充填流量Qが決まり、高速域()がそれに相当
する充填流量となる。 FIG. 2 shows the change in the filling flow rate Q over time t. In FIG. 2, when the valve 36 is opened, the filling flow rate Q is determined by the throttle 33, and the low speed region () becomes the filling flow rate at that time.
When the valve 30 is subsequently opened, the filling flow rate Q is determined by the throttle 31 and the throttle 33, and the high speed range () becomes the corresponding filling flow rate.
高速域()になると、容器38内の液量は急
激に増加して孔25に到達する。液はさらに流入
して、孔25から戻りガス通路24を通り、球自
閉弁26に達する。液が球自閉弁26に達する
と、液より軽い球27を持ち上げて通路27を閉
鎖する。これによりガスおよび液の逃げる通路が
すべて閉じるので液の流入が停止する。 In the high speed range ( ), the amount of liquid in the container 38 increases rapidly and reaches the hole 25 . The liquid further flows through the hole 25 through the return gas passage 24 and reaches the self-closing ball valve 26. When the liquid reaches the self-closing ball valve 26, the ball 27, which is lighter than the liquid, is lifted up and the passage 27 is closed. This closes all the passages for gas and liquid to escape, stopping the inflow of liquid.
その後弁18,30,36を閉じて、容器38
への液充填の動作が完了する。つづいて容器38
は内部圧力を図示しない装置により大気に開放
し、その後昇降装置(図示せず)にて下げられ、
容器38のフタをする工程に転送される。以上の
ような公知の特願昭52−10063号の壜詰バルブで
は、次のような欠点があつた。 Thereafter, valves 18, 30, 36 are closed, and container 38
The liquid filling operation is completed. Next, container 38
The internal pressure is released to the atmosphere by a device not shown, and then lowered by a lifting device (not shown).
The process is then transferred to the step of capping the container 38. The well-known bottled valve disclosed in Japanese Patent Application No. 52-10063 has the following drawbacks.
すなわち、第3図において充填管21から噴出
する液の流れは、容器38の底に衝突した後、容
器38の側壁部に沿つて上昇するという矢印aの
フローパターンを示す。このようなフローパター
ンの流れでは、充填流量Q、すなわち充填管21
から噴出する流速の急激な変化が液面40に影響
して波立たせる。さらに充填流量Qの変化を大き
くすると、液面40の波立ちが大きくなり液面4
0から気泡41a,41bが取り込まれる。 That is, in FIG. 3, the flow of liquid ejected from the filling tube 21 shows a flow pattern as indicated by arrow a, in which the liquid collides with the bottom of the container 38 and then rises along the side wall of the container 38. With such a flow pattern, the filling flow rate Q, that is, the filling tube 21
A sudden change in the velocity of the flow jetting out affects the liquid level 40 and causes it to ripple. Furthermore, when the change in the filling flow rate Q is increased, the ripples on the liquid level 40 become larger and the liquid level 40 becomes more undulating.
Bubbles 41a and 41b are taken in from 0.
次に戻りガス通路24の入口である孔25の定
位置に液面が達すると、液の充填が止る方式の壜
詰バルブでは液中に大きな気泡41aが有する
と、無い場合に比べて実質充填量が少なくなる。
すなわち、気泡41aがある分だけ充填量が不足
し、バラツキの原因となる。また液中に小さな気
泡41bがあると、炭酸飲料では容器38内を大
気に開放した際に泡が大量に発生し、容器38の
液が吹きこぼれて充填量不足となる等の液充填で
の重大な問題となる。 Next, in a bottling valve that stops filling the liquid when the liquid level reaches the fixed position of the hole 25, which is the entrance of the return gas passage 24, if there are large bubbles 41a in the liquid, the actual filling amount will be smaller than when there are no large bubbles 41a. becomes less.
That is, the filling amount is insufficient due to the presence of the bubbles 41a, which causes variations. In addition, if there are small bubbles 41b in the liquid, a large amount of bubbles will be generated when the inside of the container 38 of carbonated drinks is opened to the atmosphere, causing serious problems during liquid filling, such as the liquid in the container 38 boiling over and causing insufficient filling. This becomes a problem.
前記のような問題は、高速域()での充填流
量Qの最大値を高くするほど顕著になる。従つて
高速域()での充填流量Qに限界が生じるの
で、液の充填開始から終了までの充填時間を短縮
することができない。すなわち充填容器の生産能
力を高めることができない等の欠点があつた。 The above-mentioned problems become more pronounced as the maximum value of the filling flow rate Q in the high speed range () is increased. Therefore, there is a limit to the filling flow rate Q in the high speed range ( ), and it is not possible to shorten the filling time from the start to the end of liquid filling. That is, there were drawbacks such as the inability to increase the production capacity of filled containers.
(発明が解決しようとする課題)
前記従来装置では、充填流量Qの低速域()
から高速域()への切換えを急激に実施する
と、容器内の液面40が波立つて気泡が巻込むた
め、高速域()の充填流量Qに限界が生じる。
また低速域()から高速域()への切換えタ
イミングを遅らせて容器内の液面を上げると、高
速域()での気泡を巻込まない充填流量Qの限
界も高まるが、この場合には高速化が実現出来な
い等の問題があつた。(Problem to be Solved by the Invention) In the conventional device, the filling flow rate Q is in the low speed range ()
If the switching from the high speed range () to the high speed range (2) is suddenly performed, the liquid level 40 in the container will ripple and bubbles will be drawn in, resulting in a limit to the filling flow rate Q in the high speed range (2).
Furthermore, if the timing of switching from the low speed range () to the high speed range () is delayed to raise the liquid level in the container, the limit of the filling flow rate Q that does not involve air bubbles in the high speed range () will also increase; There were problems such as the inability to realize the
本発明は液の充填開始当初は低流量で充填さ
せ、一定時間後弁体のストローク変位に応じて流
路断面積が変化する開閉弁によつて、連続的に充
填流量を増加させる手段を講ずることにより、前
記従来の課題を解決しようとするものである。 The present invention takes means to fill the liquid at a low flow rate at the beginning of filling, and after a certain period of time, to continuously increase the filling flow rate by using an on-off valve whose flow path cross-sectional area changes according to the stroke displacement of the valve body. This is an attempt to solve the above-mentioned conventional problems.
(課題を解決するための手段)
このため本発明は、炭酸ガス等のガス圧力の作
用する炭酸飲料水等を収容した液体室の下方に、
同液体室底部の連通路を介して連通し、同連通路
内の出口側に設けられバネによる開弁力と外力に
よる閉弁力で開閉制御されると共に、液体を充填
するための容器に挿入される液充填管と、前記液
体室位置に設けられた圧力ガス室と容器入口部を
連通し、その途中に外部の制御手段によつて開閉
制御される開閉弁を設けた加圧用通路と、前記液
充填管に平行して設けられ、一端が前記容器内に
開口し、他端が大気と連通するガス通路と、同ガ
ス通路の途中に設けられ、被充填液体の比重より
小さい比重の材質よりなる弁体に作用する浮力と
自重により開閉動作する開閉弁と、同浮力式開閉
弁と直列接続され外部の制御手段によつて弁体の
変位量が制御され同弁体の変位に応じて通路を全
閉から全開まで連続的に変化させ得る流量調整弁
とを具備し、液の充填開始当初は低流量で充填さ
せ、一定時間後連続的に充填流量を増加させるよ
うにしてなるもので、これを課題解決のための手
段とするものである。(Means for Solving the Problems) For this reason, the present invention provides for a liquid chamber below a liquid chamber containing carbonated drinking water or the like to which gas pressure such as carbon dioxide gas acts.
The liquid chamber communicates through a communication path at the bottom of the liquid chamber, is provided on the outlet side of the communication path, and is controlled to open and close by a valve opening force from a spring and a valve closing force from an external force, and is inserted into a container for filling liquid. a pressurizing passage that communicates a liquid filling pipe provided at the liquid chamber position with a pressure gas chamber provided at the liquid chamber position and a container inlet, and is provided with an on-off valve that is opened and closed by an external control means in the middle; a gas passage provided in parallel with the liquid filling pipe, one end opening into the container and the other end communicating with the atmosphere; and a material provided in the middle of the gas passage and having a specific gravity smaller than the specific gravity of the liquid to be filled. The on-off valve is connected in series with the buoyant on-off valve, and the amount of displacement of the valve body is controlled by an external control means, and the amount of displacement of the valve body is controlled according to the displacement of the valve body. It is equipped with a flow rate adjustment valve that can continuously change the passage from fully closed to fully open, and is configured to fill the liquid at a low flow rate at the beginning of filling, and to continuously increase the filling flow rate after a certain period of time. , this is a means to solve problems.
(作用)
液充填管から噴出した液の流れは容器の底に衝
突して側壁面に沿つて上方に流れる。そして容器
内の液面に液充填管の下端が没入していない時
は、噴出した液が液面に衝突するため、この領域
では、充填流量Qを高速域にすると気泡の巻込み
が発生する。また充填管の下端が液面に没入した
直後に高速域にすると、充填管の液流速が上り、
ベルヌーイの定理に基づく負圧が生じ、更に容器
の側壁面を上昇する液の流量が上るために液面が
波立ち、気泡を巻込む。そのため低速域から高速
域への切換えタイミングは、高速域での充填流量
Qを増加するほど遅らせて容器内の液量が多くな
つたところで実施する。(Operation) The flow of liquid ejected from the liquid filling pipe collides with the bottom of the container and flows upward along the side wall surface. When the lower end of the liquid filling tube is not immersed in the liquid level in the container, the ejected liquid will collide with the liquid level, so in this region, if the filling flow rate Q is set to a high speed range, air bubbles will be entrained. . In addition, if the high speed region is set immediately after the lower end of the filling tube is immersed in the liquid surface, the liquid flow rate in the filling tube will increase.
Negative pressure is generated based on Bernoulli's theorem, and the flow rate of the liquid rising on the side wall of the container increases, causing the liquid surface to ripple and entrain air bubbles. Therefore, the timing of switching from the low speed range to the high speed range is delayed as the filling flow rate Q in the high speed range increases, and is performed when the amount of liquid in the container increases.
本発明では絞りと直結した開閉弁のロツドを外
部の制御手段により押してストロークをl移動さ
ると、容器内のガスは加圧用通路を通つて同開閉
弁の弁体と絞りを介して流出する。このときが低
速域(′)である。また液充填管の下端が液面
に没入した時点で開閉弁のロツドを押し、更に開
閉弁のロツドを押していくと、弁体と弁座の開口
面積に応じて充填流量Qが変化していく。液充填
管の液没高さと気泡の巻込み発生の限界の充填流
量Qとは比例関係(容器の形状によつて異なる
が)があるため、充填時間の経過と共に充填流量
Qを増加すれば、単純に2段階で充填流量Qを変
化させるよい充填時間が短縮する。 In the present invention, when the rod of the on-off valve, which is directly connected to the throttle, is pushed by an external control means to move one stroke, the gas in the container flows out through the pressurizing passage and through the valve body of the on-off valve and the throttle. This time is the low speed range ('). Also, when the lower end of the liquid filling pipe is immersed in the liquid level, push the on-off valve rod, and if you push the on-off valve rod further, the filling flow rate Q will change according to the opening area of the valve body and valve seat. . There is a proportional relationship between the submerged height of the liquid filling tube and the filling flow rate Q which is the limit for bubble entrainment (although it varies depending on the shape of the container), so if the filling flow rate Q is increased as the filling time elapses, The filling time is shortened by simply changing the filling flow rate Q in two steps.
(実施例)
以下本発明の実施例を図面について説明する
と、第4図は本発明の実施例を示す液充填装置の
概略図を示す。また流量調節弁50の詳細図を第
5図に示す。さて第4図において、戻りガスの逃
げ方向の通路29と戻りガス室14間に設けた流
量調節弁50を除けば、第1図の従来の壜詰バル
ブと全く同様のため、この流量調節弁以外の説明
は省略する。(Example) An example of the present invention will be described below with reference to the drawings. Fig. 4 shows a schematic diagram of a liquid filling device showing an example of the present invention. Further, a detailed view of the flow control valve 50 is shown in FIG. Now, in FIG. 4, except for the flow rate control valve 50 provided between the return gas escape direction passage 29 and the return gas chamber 14, it is exactly the same as the conventional bottling valve shown in FIG. The explanation of is omitted.
さて前記流量調節弁50は、第5図の如くテー
パ部を持つ弁座52と、中錐状の弁体および同弁
体51を弁座52に押し付けてシールするめの圧
縮バネ54を有している。また弁体51にはロツ
ド53が設けてあり、外部に突出している。ロツ
ド53はカム等(図示せず)により軸方向に移動
させられるので、弁体51と弁座52の隙間も変
化するようになつている。 As shown in FIG. 5, the flow control valve 50 has a valve seat 52 having a tapered portion, a conical valve body, and a compression spring 54 for pressing the valve body 51 against the valve seat 52 for sealing. There is. Further, a rod 53 is provided on the valve body 51 and protrudes to the outside. Since the rod 53 is moved in the axial direction by a cam or the like (not shown), the gap between the valve body 51 and the valve seat 52 is also changed.
次に作用を説明すると、本発明での充填流量Q
の時間tに対する変化を第6図に示す。第4図〜
第6図において、従来方式と同様に容器38を充
填装置10に押し付け、弁35及び18を開く
と、液が液体室12から空間16、充填管21を
通つて容器38内に流入し始める。ここで弁35
は閉とする。 Next, to explain the operation, the filling flow rate Q in the present invention
FIG. 6 shows the change in time t. Figure 4~
In FIG. 6, as in the conventional method, when the container 38 is pressed against the filling device 10 and the valves 35 and 18 are opened, liquid begins to flow from the liquid chamber 12 through the space 16 and the filling tube 21 into the container 38. Here valve 35
shall be closed.
次にカム等(図示せず)によつてロツド53を
矢印イの方向に若干移動させると、弁体51と弁
座52の間に隙間が生じ、低速充填が始まる。そ
して充填液面が充填管21の先端部に達した後
は、ロツド53を更に矢印イ方向に連続移動させ
る。こうすれば弁体51と弁座52の隙間に応じ
て、容器38内のガスは、孔25→通路24→球
自閉弁26→通路29→流量調節弁50→通路5
5→戻りガス室14を通つて大気に開放される。
なお、液体室12から容器38への液の充填流量
は、前記のガスの逃げ量に比例している。 Next, when the rod 53 is slightly moved in the direction of arrow A by a cam or the like (not shown), a gap is created between the valve body 51 and the valve seat 52, and low-speed filling begins. After the filling liquid level reaches the tip of the filling tube 21, the rod 53 is further continuously moved in the direction of arrow A. In this way, depending on the gap between the valve body 51 and the valve seat 52, the gas in the container 38 will flow from the hole 25 → passage 24 → self-closing ball valve 26 → passage 29 → flow rate control valve 50 → passage 5.
5→Return gas is passed through chamber 14 and released to the atmosphere.
Note that the filling flow rate of liquid from the liquid chamber 12 to the container 38 is proportional to the amount of gas escaping.
容器38への液充填が完了(従来方式と同様)
後は、弁18を閉じるとともに、ロツド53の矢
印イの方向の押付力を解消する。圧縮バネ54の
作用によつて、弁体51は矢印ロの方向移動して
弁座52に接触し、流量調節弁50は再び閉じ
る。 Liquid filling into container 38 is completed (same as conventional method)
After that, close the valve 18 and release the pressing force of the rod 53 in the direction of arrow A. By the action of the compression spring 54, the valve body 51 moves in the direction of arrow B and comes into contact with the valve seat 52, and the flow rate control valve 50 is closed again.
前記のように液の充填流量は、弁体51と弁座
52の隙間に比例するので、隙間すなわち、ロツ
ド53の矢印イ方向の移動速度を変化させること
により、充填流量Qは連続的(直線もしくは曲
線)に変化させることができる。 As mentioned above, the filling flow rate of the liquid is proportional to the gap between the valve body 51 and the valve seat 52, so by changing the gap, that is, the moving speed of the rod 53 in the direction of arrow A, the filling flow rate Q can be continuously (linearly) or a curve).
前記実施例以外に、充填流量Qを連続的に変化
させる機構は種々であり、それらを第2〜第4実
施例として第7図〜第9図に示す。以下図に基づ
いて各実施例の構造と作用について述べる。 In addition to the embodiments described above, there are various mechanisms for continuously changing the filling flow rate Q, and these are shown in FIGS. 7 to 9 as second to fourth embodiments. The structure and operation of each embodiment will be described below based on the figures.
先ず第7図において、流量調節弁50aはロツ
ド53aと一体の弁体51aを有する。弁体51
aは頭頂にフランジ51a−1を有し、頭部のl
間は円柱状で弁座52a穴と隙間なく遊嵌してお
り、その先は円錐状となつている。また56aは
弁体51aに設けられた細孔であり、その開口5
6a−1は円柱部l間に設けられている。圧縮バ
ネ54aの作用によつて通常は、弁体51aは弁
座52aに押し付けられこの流量調節弁50aは
閉ざされている。球自閉弁26からくる戻りガス
は通路29を通り、入口ガス室57aに入るよう
になつており、戻りガス室14とは通路55で出
口ガス室58aとつながつている。 First, in FIG. 7, the flow control valve 50a has a valve body 51a integral with a rod 53a. Valve body 51
a has a flange 51a-1 on the top of the head, and
The space between the holes is cylindrical and loosely fits into the hole of the valve seat 52a without any gaps, and the tip thereof is conical. Further, 56a is a pore provided in the valve body 51a, and the opening 56a is a pore provided in the valve body 51a.
6a-1 is provided between the cylindrical portions l. Normally, the valve body 51a is pressed against the valve seat 52a by the action of the compression spring 54a, and the flow rate control valve 50a is closed. The return gas coming from the self-closing ball valve 26 passes through a passage 29 and enters an inlet gas chamber 57a, and the return gas chamber 14 is connected to an outlet gas chamber 58a through a passage 55.
液の充填流量Q、すなわち容器38内のガスの
逃げ流量の調節は次のようにして実施される。す
なわち、ロツド53aをまづ矢印イの方向に距離
lだけ動かすと、入口ガス室57aと弁体51a
の孔56aの開口56a−1がつながり、ガスは
孔56aを通つて出口ガス室58aに入り、通路
55→戻りガス室14→大気開放となる。この状
態が低速域(′)である。 Adjustment of the liquid filling flow rate Q, that is, the escape flow rate of gas in the container 38, is performed as follows. That is, when the rod 53a is first moved by a distance l in the direction of arrow A, the inlet gas chamber 57a and the valve body 51a
The openings 56a-1 of the holes 56a are connected, and gas enters the outlet gas chamber 58a through the holes 56a, and the passage 55→return gas chamber 14→opens to the atmosphere. This state is the low speed range (').
次にロツド53aを更に矢印イの方向に連続し
て動かすと、弁体51aの円錐部と、弁座52a
との間の隙間が次第に大きくなり、この部分から
もガスが出口ガス室58aを通り、通路55を介
して大気に放出される。従つて充填流量Qも次第
に増加する(高速域(′))。以上のようにして
第6図のような充填流量変化を作ることができ
る。 Next, when the rod 53a is further continuously moved in the direction of arrow A, the conical portion of the valve body 51a and the valve seat 52a
The gap between the two parts gradually becomes larger, and gas also passes through the outlet gas chamber 58a from this part and is released to the atmosphere via the passage 55. Therefore, the filling flow rate Q also gradually increases (high speed range (')). In the above manner, the filling flow rate change as shown in FIG. 6 can be created.
第8図では第7図での円錐状の弁体51aの代
りに円柱状の弁体51bを有し、弁体頭部のl位
置より軸方向にテーパ溝60b(入口ガス室57
a)側より出口ガス室58a側に溝断面積が大き
くなつている)を有する。この場合の高速度
(′)でのガスの逃げ通路は、テーパ溝60bと
孔56aである。 In FIG. 8, a cylindrical valve body 51b is provided instead of the conical valve body 51a in FIG. 7, and a tapered groove 60b (inlet gas chamber 57
The cross-sectional area of the groove is larger on the outlet gas chamber 58a side than on the a) side. In this case, the gas escape passage at high velocity (') is the tapered groove 60b and the hole 56a.
第9図ではストレートのテーパ溝60bの代り
に、スパイラルなテーパ溝60cを弁体51cに
加工したものである。 In FIG. 9, a spiral taper groove 60c is machined into the valve body 51c instead of the straight taper groove 60b.
(発明の効果)
以上詳細に説明した如く本発明は構成されてい
るので、充填流量Qを低速域(′)から高速域
(′)に切換える際、当初は徐々に増加させ、容
器内の液面の波立ちを少なくして、気液界面から
気泡の取り込をなくして、静かな液充填が可能と
なる(なお、容器内液量が多くなり、液面が上る
と充填流量を増加しても液面の波立は少ない)。(Effects of the Invention) Since the present invention is configured as explained in detail above, when switching the filling flow rate Q from the low speed range (') to the high speed range ('), the filling flow rate Q is gradually increased at first, and the liquid in the container is By reducing surface ripples and eliminating air bubbles from the air-liquid interface, quiet liquid filling is possible. (There are few ripples on the liquid surface.)
気泡の取り込みがなければ容器への充填不足は
無いし、充填終了時容器内を大気に開放しても泡
の発生が少なくなる。また、高速域(′)での
充填流量Qに限界を設けず、連続的に増加させる
ことにより、充填時間の短縮、すなわち生産能力
の高い液充填バルブが得られる。 If no air bubbles are taken in, there will be no insufficient filling of the container, and even if the inside of the container is opened to the atmosphere at the end of filling, fewer bubbles will be generated. Furthermore, by continuously increasing the filling flow rate Q in the high speed range (') without setting a limit, it is possible to shorten the filling time, that is, to obtain a liquid filling valve with high production capacity.
第1図は従来の底詰め壜詰バルブの1例を示す
縦断面図、第2図は第1図における充填流量を説
明する線図、第3図は充填管から液が噴出する状
態を示す説明図、第4図は本発明の実施例を示す
液充填装置の縦断面図、第5図は第4図における
流量調節弁の詳細図、第6図は第4図における充
填流量を説明する線図、第7図、第8図及び第9
図は夫々第5図と異なる実施例の流量調節弁の断
面図である。
図の主要部分の説明、10……充填装置、12
……液体室、14……ガス室、18……弁体、2
1……充填管、24……戻りガス通路、26……
球自閉弁、29……通路、35……弁、38……
容器、50……流量調節弁、51……弁体、52
……弁座、53……ロツド、54……圧縮バネ。
Fig. 1 is a vertical cross-sectional view showing an example of a conventional bottom filling bottling valve, Fig. 2 is a diagram illustrating the filling flow rate in Fig. 1, and Fig. 3 is an explanation showing the state in which liquid is ejected from the filling pipe. Fig. 4 is a longitudinal sectional view of a liquid filling device showing an embodiment of the present invention, Fig. 5 is a detailed view of the flow rate control valve in Fig. 4, and Fig. 6 is a line explaining the filling flow rate in Fig. 4. Figures 7, 8 and 9
Each figure is a cross-sectional view of a flow control valve of a different embodiment from FIG. 5. Explanation of main parts of the figure, 10...Filling device, 12
...Liquid chamber, 14...Gas chamber, 18...Valve body, 2
1... Filling pipe, 24... Return gas passage, 26...
Self-closing ball valve, 29...passage, 35...valve, 38...
Container, 50...Flow control valve, 51...Valve body, 52
... Valve seat, 53 ... Rod, 54 ... Compression spring.
Claims (1)
等を収容した液体室の下方に、同液体室底部の流
出口と連通路を介して連通し、同連通路内の出口
側に設けられバネによる開弁力と外力による閉弁
力で開閉制御されると共に、液体を充填するため
の容器に挿入される液充填管と、前記液体室位置
に設けられ圧力ガス室と容器入口部を連通し、そ
の途中に外部の制御手段によつて開閉制御される
開閉弁を設けた加圧用通路と、前記液充填管に平
行して設けられ、一端が前記容器内に開口し、他
端が大気と連通するガス通路と、同ガス通路の途
中に設けられ、被充填液体の比重より小さい比重
の材質よりなる弁体に作用する浮力と自重により
開閉動作する開閉弁と、同浮力式開閉弁と直列接
続され、かつ外部の制御手段によつて弁体の変位
量が制御され同弁体の変位に応じて通路を全閉か
ら全開まで連続的に変化させ得る流量調整弁とを
具備し、液の充填開始当初は低流量で充填させ、
一定時間後連続的に充填流量を増加させることを
特徴とする液充填装置。1 The lower part of the liquid chamber containing carbonated beverages, etc., on which gas pressure such as carbon dioxide gas acts, communicates with the outlet at the bottom of the liquid chamber via a communication passage, and a spring installed on the outlet side of the communication passage. The opening and closing are controlled by the valve opening force caused by the valve opening force and the valve closing force caused by the external force, and the liquid filling pipe inserted into the container for filling the liquid communicates with the pressure gas chamber provided at the liquid chamber position and the container inlet. , a pressurizing passage provided with an on-off valve that is controlled to open and close by an external control means, and a pressurizing passage provided in parallel with the liquid filling pipe, one end of which opens into the container and the other end of which is exposed to the atmosphere. A gas passage that communicates with the gas passage, an on-off valve that opens and closes using its own weight and the buoyant force acting on a valve body made of a material with a specific gravity smaller than the specific gravity of the liquid to be filled, which is installed in the middle of the gas passage, and is connected in series with the buoyant on-off valve. A flow rate regulating valve is connected to the valve body and the displacement amount of the valve body is controlled by an external control means, and the passage can be continuously changed from fully closed to fully open according to the displacement of the valve body. At the beginning of filling, fill at a low flow rate,
A liquid filling device characterized by continuously increasing the filling flow rate after a certain period of time.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6328982A JPS58183485A (en) | 1982-04-16 | 1982-04-16 | Device for filling liquid |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6328982A JPS58183485A (en) | 1982-04-16 | 1982-04-16 | Device for filling liquid |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58183485A JPS58183485A (en) | 1983-10-26 |
JPH0249999B2 true JPH0249999B2 (en) | 1990-10-31 |
Family
ID=13225011
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6328982A Granted JPS58183485A (en) | 1982-04-16 | 1982-04-16 | Device for filling liquid |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58183485A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61180999U (en) * | 1985-04-30 | 1986-11-11 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5153940U (en) * | 1974-10-21 | 1976-04-24 |
-
1982
- 1982-04-16 JP JP6328982A patent/JPS58183485A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5153940U (en) * | 1974-10-21 | 1976-04-24 |
Also Published As
Publication number | Publication date |
---|---|
JPS58183485A (en) | 1983-10-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4089353A (en) | Filling valve for carbonated liquid bottling machines | |
JPS6193096A (en) | Vessel filler | |
EP0775635B1 (en) | Liquid metering-filling apparatus | |
US2954806A (en) | Filling mechanism with valve means | |
JPH03226487A (en) | Filling valve device | |
EP0999175B1 (en) | Method for operating a liquid filling apparatus | |
JPH0249999B2 (en) | ||
EP0488215B1 (en) | Container filling apparatus | |
JP3484760B2 (en) | Filling valve | |
CN215160952U (en) | Dual-purpose filling valve | |
JPS6193095A (en) | Filling valve | |
JPH10152198A (en) | Liquid filling valve | |
JP3416216B2 (en) | Filling device | |
JPH06144491A (en) | Filling apparatus | |
JPH0364758B2 (en) | ||
JPH0640160Y2 (en) | Liquid filling valve | |
JPS609191Y2 (en) | liquid filling device | |
JPH0249998B2 (en) | ||
JPS58183486A (en) | Filler | |
JP2750905B2 (en) | Filling valve | |
JPS6212114B2 (en) | ||
JPS5942395Y2 (en) | Filling valve device for long size cans | |
JP2632562B2 (en) | Fountain nozzle | |
JPS5820557Y2 (en) | liquid filling equipment | |
JPH031433Y2 (en) |